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Abstract. We prove a particular case of the conjecture of

Berest–Eshmatov–Eshmatov by showing that the group of unimod-

ular automorphisms of C[x, y] acts in an infinitely-transitive way

on the Calogero-Moser space C2.

1. Introduction

Let Mn be the C-algebra of n×n matrices over C. The group GLn(C)
acts on the direct product Mn ×Mn in the natural way:

g · (X,Y ) = (gXg−1, gY g−1), g ∈ GLn(C) . (1)

For an integer n > 0, let Ĉn be the subset of Mn ×Mn defined as

{(X,Y ) ∈ Mn ×Mn : rank([X,Y ] + In) = 1} ,

where In is the n × n identity matrix. The action of (1) on Mn × Mn

restricts to an action on Ĉn, and we can then define the n-th Calogero-
Moser space Cn to be the quotient Ĉn//GLn. These spaces were studied in
detail by Wilson [4], where it was shown, among other things, that Cn is a
smooth, affine, irreducible, complex, symplectic variety of dimension 2n.
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The group of unimodular automorphisms of C[x, y] acts on Cn, and
it is proved in [1] that this action is doubly transitive. Additionally, a
conjecture that this action is infinitely transitive is stated. Recently, in
[3], this conjecture was proved.

The goal of this paper is to give another proof of infinite transi-
tivity for the case n = 2. The proofs here are more constructive and
shed more light on the action on C2. We do this inductively by first
choosing distinct points x1, . . . , xn, xn+1 ∈ C2. Then, for any tuple of
distinct elements (y1, . . . , yn, yn+1), we use the inductive hypothesis to
move (y1, . . . , yn, yn+1) to (x1, . . . , xn, ỹn+1). If we can then find elements
of G that stabilize x1, . . . , xn while acting transitively on the rest of the
elements of C2, we can then move the element ỹn+1 to the predetermined
element xn+1, while keeping x1, . . . , xn fixed. This will show that any
tuple (y1, . . . , yn+1) is in the same orbit as (x1, . . . , xn+1), thus establish-
ing (n+ 1)−transitivity. For this approach to work, we see that we will
require information about the stabilizers of specific elements in C2, which
we collect in future sections.

In general, an explicit representation for the coordinate ring, C[Cn], of a
Calogero-Moser space is not known. However, for n = 2, it is not difficult to
find. Let A = X− 1

2Tr(X)I2 and B = Y − 1
2Tr(Y )I2 be traceless matrices

associated to X and Y , respectively. In this case, using the generators
{Tr(X),Tr(Y ),Tr(X2),Tr(XY ),Tr(Y 2)} of C[(M2 × M2)//GL2] found
in [2], we define the following generators of C[C2]:

a1 = Tr(X), a2 = Tr(Y ), a3 = Tr(A2), a4 = Tr(AB), a5 = Tr(B2).

Using the fact that a non-zero 2× 2 matrix is of rank one if and only
if its determinant is zero, we find that

C[C2] = C[a1, a2, a3, a4, a5]/(a
2
4 − a3a5 − 1).

Note that there is a one to one correspondence between a point (X,Y ) ∈ C2
and a point (a1, . . . , a5) ∈ C5 such that a24 − a3a5 = 1, given by

(X,Y ) 7→ (Tr(X),Tr(Y ),Tr(A2),Tr(AB),Tr(B2)). (2)

2. Preliminaries

Denote by G the group generated by the following two kinds of auto-
morphisms of Mn ×Mn:

(i) Φp : (X,Y ) 7→ (X,Y + p(X)), where p ∈ C[t],
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(ii) Ψq : (X,Y ) 7→ (X + q(Y ), Y ), where q ∈ C[t].
It is known [5], G is isomorphic to

SAut(C[x, y]) = {f = (f1, f2) ∈ Aut(C[x, y]) | Jac(f1, f2) = 1},

where Jac(f1, f2) is the determinant of the Jacobian matrix of the map
(f1, f2). Note that Aut(C[x, y]) is isomorphic to a semidirect product
SAut(C[x, y]) ⋊ Gm, where Gm is a multiplicative group of the field C
which acts on C[x, y] by scalar multiplication on variables x and y. From
the correspondence given in (2), we obtain an easy way of computing the
action of the above group, G, using the following component-wise rules:

Φp(a1) :=a1

Φp(a2) :=a2 +Tr(p(X))

Φp(a3) :=a3

Φp(a4) :=a4 +Tr(Ap(X))

Φp(a5) :=a5 +Tr(p2(X)) + 2Tr(B · p(X))− 1

3
Tr2(p(X)).

(3)

The action of Ψq on C2 is similar, and is symmetric to (3).

For a matrix M =

(

α β
λ µ

)

∈ SL2 (so that αµ − βλ = 1) consider

ΘM : C2 → C2 defined by

(X,Y ) 7→ (αX + βY, λX + µY ).

One can easily find that the action ΘM is a composition of the au-
tomorphisms of type (i) and (ii) using some linear polynomials p and q.
Under this action, a point will change as follows:

ΘM (a1) =αa1 + βa2

ΘM (a2) =λa1 + µa2

ΘM (a3) =α2a3 + 2αβa4 + β2a5

ΘM (a4) =αλa3 + (αµ+ βλ)a4 + βµa5

ΘM (a5) =λ2a3 + 2λµa4 + µ2a5

(4)

We now remind the following definitions concerning group actions on sets.
To do this, let G be a group acting on a set S.

Definition 1. We say the group G acts transitively, or that the action is
transitive, if for every pair of elements s, r ∈ S, there is a g ∈ G such that
g · s = r.
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Definition 2. The group G acts n-transitively, or the action is n-transitive,
if it can map any n-tuple of distinct points of the set to any other n-tuple
of distinct points. In other words, if (s1, . . . , sn) and (r1, . . . , rn) are n-
tuples of distinct elements in S, then there is some g ∈ G such that
g · (s1, . . . , sn) = (g · s1, . . . , g · sn) = (r1, . . . , rn).

Definition 3. Lastly, we say that the action of G on S is infinitely
transitive if it is n-transitive for every positive integer n.

We now claim that the action of G on C2 defined above is infinitely-
transitive.

3. Base cases: n = 1, 2, 3

As stated previously, we plan to prove this main result by induction,
and so we begin by proving the base cases for n = 1, 2, 3. We start with
n = 1:

Proposition 1. The action of G on C2 is a transitive group action.

Proof. Let A = (a1, a2, a3, a4, a5) ∈ C2 be an arbitrary point. Note that
this proof does not require us to stabilize any elements, and so we may
use p(t) = −a2

2 and q(t) = −a1
2 , to get that

(Ψq ◦ Φp)(A) = (0, 0, a3, a4, a5).

From here we use the action of ΘM , defined in (4), with either the matrix

M+ :=

[− a5
2(a4+1)

1
2

a4 + 1 a3

]

or the matrix M− :=

[− a5
2(a4−1)

1
2

a4 − 1 a3

]

to reach the

point
ΘM (0, 0, a3, a4, a5) = (0, 0, 0, 1, 0).

More specifically, if a3 = 0 or a5 = 0, then, since a24 − a3a5 = 1, we
must have that a4 = ±1. If a4 = 1, then we use the matrix M+. If a4 = −1,
we use the matrix M−. If a3a5 6= 0, then either matrix M+ or M− will
suffice. Thus we have that all elements A ∈ C2 are in the orbit of the point
(0, 0, 0, 1, 0) ∈ C2.

Next, we prove 2- and 3-transitivity, since they differ from the general
n case by requiring us only to focus on stabilizing nilpotent points. We
will need the following two lemmas:

Lemma 1. Let A ∈ C2 \ {(0, 0, 0,±1, 0)}. Then there is a g ∈
Stab{(0, 0, 0,±1, 0)} such that A′ = gA satisfies a′1a

′

3 6= 0, where A′ =
(a′1, a

′

2, a
′

3, a
′

4, a
′

5).
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Proof. We may assume at least one of a1, a2, a3, a5 is nonzero. We will
proceed by case work.

Case 1: a1 6= 0. If a3 6= 0 we are already done, so suppose a3 = 0.
Without loss of generality, we may assume that a2 6= 0, since if a2 = 0, we

may apply Φt2 to arrive at the point (b1, b2, b3, b4, b5) with b2 =
a2
1

2 6= 0.
Additionally, since a3 = 0, we must have a4 is non-zero, so that there exists

an α ∈ C such that αa2(αa2a5+2a4) 6= 0 and such that α(a5+
a2
2

2 )+a1 6= 0,
since this is a non-zero polynomial in α. We now apply Ψαt2 to arrive at
A′ where a′1a

′

3 6= 0.

Case 2: a1 = 0. From here, we will show that we can move into case
one.

Case 2.1: a5 +
a2
2

2 6= 0. We can calculate explicitly that applying Ψt2

gives a′1 = a5 +
a2
2

2 6= 0, so that we are back in Case 1.

Case 2.2: a5 +
a2
2

2 = 0.

Case 2.2.1: a3 6= 0. We can map a2 and a5 to a′2 and a′5 such that

a′5 +
(a′

2
)2

2 6= 0 by Φβt2 , since a′2 = a2 + βa3 and a′5 = a5. This moves us
back to Case 2.1.

Case 2.2.2: a3 = 0. Since a1 = 0 and a5 +
a2
2

2 = 0 with a2 6= 0 after

we are at the point (0, a2, 0,±1,
−a2

2

2 ). By applying Ψt3 , we can send a1

to
−a3

2

2 , thus showing that we can send a1 to a nonzero value, returning
us to Case 1 and completing the proof. It is easy to check that all of the
elements of G used above are indeed in Stab{(0, 0, 0,±1, 0)}.

Lemma 2. Let A ∈ C2 with a1a3 6= 0. Then there is a g ∈
Stab{(0, 0, 0,±1, 0)} such that A′ = gA satisfies a′1a

′

3 6= 0 and a′3 6=
a2
1

2 .

Proof. Let A = (a1, a2, a3, a4, a5) with a1a3 6= 0 be given. We also assume

a3 =
a2
1

2 , since otherwise we are done.

Case 1: a2a5 6= 0. Then we can apply Ψαt2 to get

Ψαt2(a1, a2,
a21
2
, a4, a5) =(a1 + (

a2
2

+ a5)α, a2,
a21
2

+ 2a2a4α+ a22a5α
2,

a4 + a2a5α, a5).

From this we can see that a′1, a
′

3 are non-zero polynomials of α, so that
there are at most finitely many values of α such that a′1a

′

3 = 0. Additionally,
plugging into a′21 − 2a′3, we obtain the polynomial

(−4a2a4 + 2a1(a
2
2/2 + a5))α+ (−2a22a5 + (a22/2 + a5)

2)α2.
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We claim this is a non-zero polynomial in α. To see this, assume that
it is the zero polynomial, so that −4a2a4 + 2a1(a

2
2/2 + a5) = 0 and

−2a22a5 + (a22/2 + a5)
2 = 0. This implies that a5 =

−a1a
2
2
+4a2a4

2a1
and

a5 =
a2
2

2 . Setting these equal means that we must have a4 =
a1a2
2 . (Note

that this is where we have used the assumption that a2a5 6= 0, so that we
can actually solve for a4 in this way.) It leads to a contradiction. Thus we
have that a′21 − 2a′3 is a non-zero polynomial in α, and hence, since there
are uncountably many α ∈ C, we can choose an α such that a′1a

′

3 6= 0 and
a′21 − 2a′3 6= 0, as desired.

Case 2: a2a5 = 0. We again assume that a3 =
a2
1

2 . Applying Φαt2 , we
get

Φαt2(a1, a2,
a21
2
, a4, a5) = (a1, a2+a21α,

a21
2
, a4+

a31α

2
, a5+2a1a4α+

a41α
2

2
)

From this, since a1 6= 0, we can conclude that a′2 and a′5 are non-zero
polynomials in α, and hence we can choose some α ∈ C such that a′2a

′

5 6= 0,
landing us back in the Case 1. (Again, it is easy to check that all elements
of G used in the above proof are elements of Stab{(0, 0, 0,±1, 0)}.)

We are now able to prove 2- and 3- transitivity:

Proposition 2. The action of G on C2 is a 2-transitive group action.

Proof. Let (A,B) ∈ C2 × C2 be a pair of distinct points. Then, since
G acts on C2 transitively by Proposition 1, there is a g ∈ G such that
g(A,B) = ((0, 0, 0, 1, 0), B′) for some B′ ∈ C2. Thus, if there is an h ∈
Stab{(0, 0, 0, 1, 0)} such that hB′ = (0, 0, 0,−1, 0), we are done. In particu-
lar, this reduces the problem to showing that for any A ∈ C2\{(0, 0, 0, 1, 0)},
there is a g ∈ Stab{(0, 0, 0, 1, 0)} such that gA = (0, 0, 0,−1, 0).

Thus, let A ∈ C2 \ {(0, 0, 0, 1, 0)} be an arbitrary point. If
A = (0, 0, 0,−1, 0), then we are already at the point we desire. Otherwise,
we have that A ∈ C2 \ {(0, 0, 0,±1, 0)}. Using Lemmas 1 and 2, we
may also assume that a1a3 6= 0 and a21 − 2a3 6= 0. Applying Φαt3 ∈
Stab{(0, 0, 0, 1, 0)} to A, we reach the point

A′ = (a1, a2 + (a1a3 +
1

2
a1(

a21
2

+ a3))α, a3,

a4 + (
a21a3
2

+
1

2
a3(

a21
2

+ a3))α,

a5 + (
3a21
2

+ a3)a4α+
1

4
a3(

3a21
2

+ a3)
2α2).
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Then we can calculate that

− 4a′31 a
′

2a
′

4 − 8a′1a
′

2a
′

3a
′

4 + a′41 a
′

5 + 4a′23 a
′

5 + 4a′21 a
′

3(a
′2
2 + a′5)

= 4a21a
2
2a3 − 4a31a2a4 − 8a1a2a3a4 + a41a5 + 4a21a3a5 + 4a23a5

+ (−a51a2a3 + 4a31a2a
2
3 − 4a1a2a

3
3 +

a61a4
2

− a41a3a4

− 2a21a
2
3a4 + 4a33a4)α+ (

a81a3
16

− a61a
2
3

2
+

3a41a
3
3

2
− 2a21a

4
3 + a53)α

2.

One can check that if the coefficient of the α2 term is zero, then either
a3 = 0 or a3 = a21/2. Since we know neither of these is true, it follows that
the last term is non-zero, and hence this is a non-zero polynomial in α.
Thus we can choose a α ∈ C such that this polynomial does not vanish.
Since this is the case, we can consider the polynomials

p(t) =
−a′4 + 1

a′1a
′

3

t2 =
−a′4 + 1

a1a3
t2

and

q(t) =
a′1a

′

3(2a
′

1a
′

2a
′

3 − a′21 (a
′

4 − 1)− 2a′3(a
′

4 − 1))

−4a′31 a
′

2a
′

4 − 8a′1a
′

2a
′

3a
′

4 + a′41 a
′

5 + 4a′23 a
′

5 + 4a′21 a
′

3(a
′2
2 + a′5)

t2.

These satisfy Φp(t),Ψq(t) ∈ Stab{(0, 0, 0, 1, 0)}, and we can calculate
that

(Ψq ◦ Φp)(a
′

1, a
′

2, a
′

3, a
′

4, a
′

5) = (b1, b2, 0,−1, 0),

for some b1, b2 ∈ C.

Case 1: b1b2 6= 0. Using λ = b1
b2

and µ =
b2
2

4b1
, we can apply the following

composition to get

(Ψλt ◦ Φµt2+λµ ◦Ψ−λt)(b1, b2, 0,−1, 0) = (0, 0, 0,−1, 0),

as desired. One can easily check that this composition is in
Stab{(0, 0, 0, 1, 0)}.

Case 2: b1b2 = 0. If b1 = b2 = 0, then we already have that
(b1, b2, 0,−1, 0) = (0, 0, 0,−1, 0). If not, we have that either b1 6= 0 or
b2 6= 0. In these cases we use the element Φt2− 4

3a′
1

t3 or Ψt2− 4

3a′
2

, respectively,

in order to map

(b1, 0, 0,−1, 0) 7→ (b1, b
2
1/6, 0,−1, 0),
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or
(0, b2, 0,−1, 0) 7→ (b22/6, b2, 0,−1, 0),

landing us back in Case 1.
Thus we have shown that all points in C2 \ (0, 0, 0, 1, 0) are in the same

orbit as (0, 0, 0,−1, 0) under the action of Stab{(0, 0, 0, 1, 0)}, so that G
acts 2-transitively on C2.

Proposition 3. The action of G on C2 is a 3-transitive group action.

Proof. Since the group G acts 2-transitively by Proposition 2, we can
reduce the problem to showing that for any A ∈ C2\{(0, 0, 0,±1, 0)}, there
is some g ∈ S = Stab{(0, 0, 0,±1, 0)} such that g(A) = (0, 0, 0,−1, 2).
A straightforward computation shows that all of the elements of
Stab{(0, 0, 0, 1, 0)} used in the proof of Proposition (2) also stabilize the
point (0, 0, 0,−1, 0), so that, using Lemmas 1 and 2, and then proceeding
analogously to the proof of Proposition 2, we are able to find some g ∈ S
such that g(A) = (b1, b2, 0,−1, 0).

We may assume that b1 and b2 are not simultaneously zero.
Case 1: b1 6= 0. For the polynomials p1(t) =

4(b1−4b2)
b3
1

t3 − 8(b1−3b2)
b4
1

t4

and q1(t) =
−b1
2 t2, we get that (Ψq1 ◦ Φp1) ∈ Stab{(0, 0, 0,±1, 0)} and

(Ψq1 ◦ Φp1)(b1, b2, 0,−1, 0) = (0, 0, 0,−1, 2),

as desired.
Case 2: b2 6= 0. Similarly, using the polynomials p2(t) = −b2

2 t2

and q2(t) = 4(b2−4b1)
b3
2

t3 − 8(b2−3b1)
b4
2

t4, we obtain that (Φp2 ◦ Ψq2) ∈
Stab{(0, 0, 0,±1, 0)} and

(Φp2 ◦Ψq2)(b1, b2, 0,−1, 0) = (0, 0, 2,−1, 0).

Then, we can apply (Ψt3 ◦ Φ 1

3
t2) ∈ Stab(0, 0, 0,±1, 0) to get to the point

(Ψt3 ◦ Φ 1

3
t2)(0, 0, 2,−1, 0) = (2/3, 2, 0,−1, 0),

landing us back in the case where b1 6= 0.

4. Stabilizer elements

While proving the base cases, we could easily check that the elements
of G being used were in the desired stabilizers; unfortunately it is not
as easy to do this as the sets of points we wish to stabilize get larger.
This section is concerned with determining which elements of G are in
the stabilizers of larger subsets of C2.
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Proposition 4. Let A = (0, 0, 0,±1, a5) be a point in C2. Then Φp stabi-
lizes A if and only if t2|p(t).

Proof. Let (X,Y ) be the pair of matrices in C2 that corresponds to the
point A, and recall that the action of Φp on A corresponds to the action
on (X,Y ) defined by Φp(X,Y ) = (X,Y + p(X)) in C2.

Assume t2|p(t) and let us show that Φp(A) = A. Since Φp ◦Φq = Φp+q,
it is enough to show that for any monomial αtn with n > 2 and α ∈ C,
we have that Φαtn stabilizes A. Since a1 = a3 = 0, we can conclude
that X is nilpotent, meaning that Xn = 0 for any n > 2. It follows that
p(X) = αXn ≡ 0, so that Φp(X,Y ) = (X,Y +p(X)) = (X,Y ), and hence
Φp(A) = A.

Conversely, suppose that t2 ∤ p(t). This implies that p has non-zero
linear or constant terms. Also, since a1 = a3 = 0, X is still nilpotent, so
that we can assume p(t) = αt + β where one of the parameters α, β is
nonzero. Then, using (3), we have that

Φp(A) = (0, 2β, 0,±1, a5 ± 2α),

so that Φp does not fix A, thus proving the contrapositive.

Now, consider the point A = (0, 0, 0,−1, 2k) for some k ∈ Z+. We
want to determine which q ∈ C[t] will satisfy Ψq(A) = A. Again, since

a1 = a3 = 0, X is nilpotent, and hence we may assume that X =

(

0 1
0 0

)

.

Also, Tr(Y ) = 0, so that we can write Y =

(

a b
c −a

)

.

Next, we note that Tr(XY ) = −1, which implies that c = −1. Now we

note that under the group action of GL2 by the matrix M =

(

1 a
0 1

)

, we

may assume that a = 0, since MXM−1 = X and MYM−1 =

(

0 b′

−1 0

)

.

Thus, we have that Y =

(

0 b
−1 0

)

in C2.

Lastly, consider the fact that Tr(Y 2) = 2k, we have b = −2k−1, giving

us Y =

(

0 −2k−1

−1 0

)

.

Now that we have nice formulas for X and Y , we can explicitly see
how our group action, defined by (X,Y ) 7→ (X + q(Y ), Y ), acts on this
specific pair of matrices. We wish to determine which q ∈ C[t] will satisfy
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X + q(Y ) = X, thus stabilizing the point (0, 0, 0,−1, 2k). We start with
q(t) =

∑n
i=1 α2it

2i. Then we have that

X 7→ X +
n
∑

i=1

α2i(2
k−1)iI2.

Thus, to stabilize the point, we must have that
∑n

i=1(2
k−1)iα2i = 0.

A similar argument shows that if q(t) =
∑n

i=1 α2i+1t
2i+1, then we

must have that
∑n

i=1(2
k−1)iα2i+1 = 0.

Therefore, concerning the set of points

{(0, 0, 0,±1, 0), (0, 0, 0,−1, 2), (0, 0, 0,−1, 4), · · · , (0, 0, 0,−1, 2k)}

for some k ∈ Z+, if we have that
∑n

i=1(2
j−1)iα2i = 0 and

∑n
i=1(2

j−1)iα2i+1 = 0 for all 1 6 j 6 k, then all the above points will be
stabilized under the action of Ψq. This brings us to the following Lemma,
which deals with finding solutions to this necessary system of equations
obtained from the previous discussion:

Lemma 3. The solution set to the system of equations given by



































a1 + a2 + . . .+ an = 0

2a1 + 22a2 + . . .+ 2nan = 0

4a1 + 42a2 + . . .+ 4nan = 0
...

2n−2a1 + (2n−2)2a2 + . . .+ (2n−2)nan = 0

can be expressed in terms of an as











































a1 = S(n− 1, n− 2)an

a2 = S(n− 2, n− 2)an

a3 = S(n− 3, n− 2)an
...

an−1 = S(1, n− 2)an

an = an

where S(i, j) is the ith symmetric sum on the set {−1,−2,−4, . . . ,−2j}.

Proof. The base of induction for n = 2 is straightforward.
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For our inductive hypothesis, assume the claim is true for n = k, and
let us consider the case n = k + 1. We begin by noting that for 1 6 i 6 k,
S(i, k − 1) = S(i− 1, k − 2)− 2k−1S(i, k − 2).

If (a1, a2, . . . , ak) is the solution set of the (k− 1)-dimensional system,
then by the inductive hypothesis we have that

ai = S(k − i, k − 2)ak 1 6 i 6 k − 1. (5)

Define bi for 1 6 i 6 k + 1 such that bi = ai−1 − 2k−1ai, where a0 and
ak+1 are defined to be 0. Substituting in (5), we get that

bi = S(k − i+ 1, k − 2)ak − 2k−1S(k − i, k − 2)ak = S(i, k − 1)ak

for 1 6 i 6 k. Furthermore, we get that bk+1 = ak. Thus, to prove the
claim, it suffices to show that

(b1, b2, . . . , bk+1) = (0− 2k−1a1, a1 − 2k−1a2, . . . , ai − 2k−1ai+1, . . . , ak)

is a solution to the system of k equations,


































x1 + x2 + . . .+ xk+1 = 0

2x1 + 22x2 + . . .+ 2nxk+1 = 0

4x1 + 42x2 + . . .+ 4nxk+1 = 0
...

2k−1x1 + (2k−1)2x2 + . . .+ (2k−1)nxk+1 = 0

.

For the equation

2ix1 + (2i)2x2 + . . .+ (2i)nxk+1 = 0,

we plug in bj for xj to get

2ib1 + (2i)2b2 + . . .+ (2i)nbk+1

= 2k−1(−2ia1 − 22ia2 − . . .− 2kiak) + 2i(2ia1 + 22ia2 + . . .+ 2kiak).

Now, for i < k − 1, by the inductive hypothesis,

2ia1 + 22ia2 + . . .+ 2jiaj + . . .+ 2kiak = 0

so both terms become 0. For i = k − 1, we have by direct substitution
that

2k−1(−2k−1a1 − 22(k−1)a2 − . . .− 2j(k−1)aj − . . .− 2k(k−1)ak)

+ 2k−1(2k−1a1 + 22(k−1)a2 + . . .+ 2j(k−1)aj + . . .+ 2k(k−1)ak) = 0.

Thus, we can conclude that (b1, b2, . . . , bk+1) satisfy the system of equations
for n = k+1, and since bi = S(i, k−1)ak = S(i, k−1)bk+1, we are done.
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From this and the preceding discussion, we immediately conclude that
if we wish to stabilize all the points

{(0, 0, 0,±1, 0), (0, 0, 0,−1, 2), (0, 0, 0,−1, 4), · · · , (0, 0, 0,−1, 2k)}

using a polynomial with only even powers, we can use

qEk (t) := αt2(k+1)+αS(1, k−1)t2k+ · · ·αS(k−1, k−1)t4+αS(k, k−1)t2.

Similarly, if we wish to use a polynomial with only odd powers, we can use

qOk (t) := αt2k+3+αS(1, k−1)t2k+1+· · ·αS(k−1, k−1)t5+αS(k, k−1)t3.

Notation. Let qEk (t) and qOk (t) be defined as above. We then define the
following notation: ΨE

k := ΨqE
k

and ΨO
k := ΨqO

k

.

From the above arguments, we can conclude that ΨE
k and ΨO

k will
stabilize the set

{(0, 0, 0,±1, 0), (0, 0, 0,−1, 2), (0, 0, 0,−1, 4), · · · , (0, 0, 0,−1, 2k)}.

Now, consider elements of the form Ψq ◦ Φp ◦Ψ−q and Φp ◦Ψq ◦ Φ−p,
which we will call conjugation by Ψq and Φp, respectively. We will use the
following four lemmas without proof, since the proofs are not difficult.

Lemma 4. The action Ψt ◦ Φp(t) ◦Ψ−t stabilizes the point (0, 0, 0, 1, a5)

if and only if t2 − a5−2
2 divides p(t) and it stabilizes (0, 0, 0,−1, a5) if and

only if t2 − a5+2
2 divides p(t).

Lemma 5. The action Φt ◦Ψq(t) ◦ Φ−t stabilizes the point (0, 0, 0, 1, a5)

if and only if t2 − a5−2
2 divides q(t) and it stabilizes (0, 0, 0,−1, a5) if and

only if t2 − a5+2
2 divides q(t).

Lemma 6. The action Ψ−t ◦ Φp(t) ◦ Ψt stabilizes the point (0, 0, 0, 1, a)

if and only if t2 − a+2
2 divides p(t) and it stabilizes (0, 0, 0,−1, b) if and

only if t2 − b−2
2 divides p(t).

Lemma 7. The action Φ−t ◦Ψq(t) ◦Φt stabilizes the point (0, 0, 0, 1, a) if

and only if t2 − a+2
2 divides q(t) and it stabilizes (0, 0, 0,−1, b) if and only

if t2 − b−2
2 divides q(t).

The following conjugations

Φt ◦ΨqC
k

◦ Φ−t; Ψt ◦ ΦpC
k

◦Ψ−t;

Φ−t ◦Ψq̃C
k

◦ Φt; Ψ−t ◦ Φp̃C
k

◦Ψt.
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will all stabilize the set

{(0, 0, 0,±1, 0), (0, 0, 0,−1, 2), · · · , (0, 0, 0,−1, 2k)} \ {(0, 0, 0,−1, 8)},
(6)

where

qCk (t) = α(t2 + 1)(t2 − 1)(t2 − 2)(t2 − 3)(t2 − 9) · · · (t2 − (2k−1 + 1)),

pCk (t) = α(t2 + 1)(t2 − 1)(t2 − 2)(t2 − 3)(t2 − 9) · · · (t2 − (2k−1 + 1)),

p̃Ck (t) = α(t2 − 1)(t2 + 1)t2(t2 − 7)(t2 − 15) · · · (t2 − (2k−1 − 1)),

q̃Ck (t) = α(t2 − 1)(t2 + 1)t2(t2 − 7)(t2 − 15) · · · (t2 − (2k−1 − 1)).

5. More details concerning Ψ
E

k

This section is still concerned with determining the structure of the
stabilizers. Specifically, we consolidate information about the element ΨE

k

that will be useful for the proof of n-transitivity presented in the next
section. We are especially interested in how this element acts on large
subsets of C2, which will appear later. The first result we need is the
following formula for 2× 2 matrices being raised to integer powers. It is
an easy calculation by induction, and so we omit the proof.

Proposition 5. Let M ∈ M2(C) be an arbitrary matrix with two distinct
eigenvalues. Let µ = Tr(M) and ν = − det(M). Then, for any k ∈ Z+,
Mk = µkM + νµk−1I, where

µk =
1

√

µ2 + 4ν

(

(
µ+

√

µ2 + 4ν

2
)k − (

µ−
√

µ2 + 4ν

2
)k
)

for any k ∈ Z+.

We can now use this result to determine how Ψγt2n will act on points
with a2 = 0:

Lemma 8. Applying Ψγt2n for any n ∈ Z+ to the point (a1, 0, a3, a4, a5),
we arrive at the point (a1 + γa5(

a5
2 )

n−1, 0, a3, a4, a5).

Proof. Let A = (a1, 0, a3, a4, a5). We note that by definition, a2, a5 are
fixed by the action of Ψ. Now consider a1. Again by definition of Ψ, we
know that

a′1 = Ψγt2n(a1) = a1 +Tr(γY 2n) = a1 + γTr(Y 2n). (7)
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If a5 6= 0, we can now use the formula in Proposition 5 to get that
Y 2n =

an
5

2n I. Plugging into (7), we get

a′1 = a1 + γTr

(

an5
2n

I2

)

= a1 +
γan5
2n−1

.

Next we consider the action of Ψγt2n on a3:

Ψγt2n(a3) = a3 + 2Tr(Aq(Y )) + Tr(q2(Y ))− 1

2
Tr2(q(Y ))

= a3 + 2Tr(A · γa
n
5

2n
I2) + Tr(γ2

a2n5
22n

I2)−
1

2
Tr2(γ

an5
2n

I2)

= a3 + γ2
a2n5
22n−1

− 1

2

(

γ
an5
2n−1

)2

= a3 + γ2
a2n5
22n−1

− 1

2
γ2

a2n5
22n−2

= a3,

as claimed. We lastly consider the action on a4:

Ψγt2n(a4) = a4 +Tr(Y · γ a
n
5

2n
I2) = a4 + γ

an5
2n

Tr(Y ) = a4.

Thus, we see that Ψγt2n(A) = (a1 + γ
an
5

2n−1 , 0, a3, a4, a5), as desired.

If a5 = 0, then we know that Y is nilpotent, and hence Y 2n ≡ 0 for all
n ∈ Z+. It follows that Ψγt2n(A) = A, so that the formula holds in this
case as well.

Lemma 9. Applying Ψγt2n+1 for any n ∈ Z+ to the point (a1, 0, a3, a4, a5),
we arrive at the point

(a1, 0, a3 + γ2
a2n+3
5

22(n+1)
, a4 + γ

an+2
5

2n+1
, a5).

Proof. The proof is analogous to that of Lemma 8.

Corollary 1. Let A = (a1, 0, a3, a4, a5). Then A′ = ΨE
k (A) (respectively,

A′ = ΨO
k (A)) satisfies a′1 ≡ a1 (respectively, a′3 ≡ a3) if and only if

a5 ∈ Rk
2 := {0, 2, 4, ..., 2k}.

Proof. The proof is a straightforward application of Vieta’s formula, using
Lemma 8 (respectively, Lemma 9) and the fact that Ψf ◦Ψg = Ψf+g.
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6. n-Transitivity

We now have everything we need in order to prove our main result:
infinite-transitivity. We start with two supporting lemmas, analogous to
Lemmas 1 and 2, and then proceed to the final theorem.
Notation. For any k ∈ Z+, we define the following notation:

Ck := {(0, 0, 0,±1, 0), . . . , (0, 0, 0,−1, 2k)} \ {(0, 0, 0,−1, 8)} ⊆ C2;

Sk := Stab[Ck] ⊆ G.

Lemma 10. Let A = (a1, a2, a3, a4, a5) ∈ C2 \Ck for some k ∈ Z+. Then
there is an element g ∈ Sk such that A′ = g(A) satisfies a′1a

′

3 6= 0.

Proof. Case 1: a1 6= 0. If a3 6= 0 as well, then we are done, so we assume
a3 = 0. Hence, the point is A = (a1, a2, 0,±1, a5). Applying Φ

−
2a2

a2
1

−
a2
1
4
β

to A, we arrive at the point (a1, 0, 0,±1,∓4a2
a1

+ a5 ± 1
2a

3
1β). Since a1 6= 0

we can choose the parameter β such that a5 /∈ Rk
2 . Then using Lemma

9 and Corollary 1, we know that after applying ΨO
k , we will have that

a′1 = a1 6= 0 and a′3 is non-constant polynomial in γ. Thus we can choose
some γ such that a′3 6= 0, as desired.
Case 2: a3 6= 0. Similarly to Case 1, we assume that a1 = 0, since otherwise
we are done. Then, we apply the element Φαt2 to arrive at the point

A′ = (0, a2 + αa3, a3, a4, a5).

We then see that
(

a′5 −
1

2

(

2− 3a′22 − 2
√

1− 2a′22 + 2a′42

))

·
(

a′5 −
1

2

(

2− 3a′22 + 2
√

1− 2a′22 + 2a′42

))

= −a22 +
a42
4

− 2a5 + 3a22a5 + a25 + (−a2a3 + a32a3 + 6a2a3a5)α

+ (−a23 +
3a22a

2
3

2
+ 3a23a5)α

2 + a2a
3
3α

3 +
a43α

4

4
.

Since a3 6= 0, we conclude that the coefficient of α4 is non-zero, and hence
this is a non-constant polynomial of α. We then choose α ∈ C such that

a′5 −
1

2

(

2− 3a′22 ± 2
√

1− 2a′22 + 2a′42

)

6= 0. (8)
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Then, we can apply the element Φt4−t2 to A′ to reach a point with

ã1 =
1

8

(

a′42 + 4(−2 + a′5)a
′

5 + 4a′22 (−1 + 3a′5)
)

.

This is zero if and only if a′5 =
1
2

(

2− 3a′22 ± 2
√

1− 2a′22 + 2a′42

)

, but by

equation (8), we know this is not the case. Hence we are at a point with
ã1 6= 0, so that we are back in Case 1.

Case 3: a1 = a3 = 0. Since a3 = 0, we know that a4 = ±1 and at least one
of a2, a5 6= 0, as otherwise the point would be nilpotent, and hence in Ck.

Case 3.1: a5 /∈ Rk
2. Recall from Corollary 1 that Rk

2 = {0, 2, 4, . . . , 2k}.
If a5 /∈ Rk

2 , then this same corollary tells us that we can apply ΨE
k for

some value of α to get that a′1 6= 0. Then we are back in Case 1.

Case 3.2: a5 ∈ Rk
2. This case requires the use of conjugation. For ease

of notation, let T = {(0, a2, 0,±1, a5)} be the set of points that satisfy
a1 = a3 = 0.

Case 3.2.1: a2 6= 0. Let T0 = {(0, a2, 0,±1, a5)} be the set of points
we are considering here, so that a2 6= 0 in T0. We want to show that, using
conjugation, we can move any element of T0 to a point outside of T (i.e.
a point A′ with a′1 or a′3 6= 0).

To do this, let A = (0, a2, 0,−1, a5) ∈ T be an arbitrary point, and
assume, for the sake of a contradiction, that none of the conjugations
defined in section 4 move A out of T . Then we have that for any choice
of α in the polynomials q̃Ck and p̃Ck , we must have that

(Φt ◦Ψq̃C
k

◦ Φt)(A) = (0, a′2, 0,±1, a′5) ∈ T

and

(Ψ−t ◦ Φp̃C
k

◦Ψt)(A) = (0, â2, 0,±1, â5) ∈ T.

Moving Φt and Ψt to the other side of the equations, we see that these
reduce to

Ψq̃C
k

(0, a2, 0,−1, a5 − 2) = (0, a′2, 0,±1, a′5 ± 2) (9)

Φp̃C
k

(a2, a2, a5 − 2,−1 + a5, a5) = (â2, â2, â5 ± 2,±1 + â5, â5). (10)

We will use these equations to prove the following claim:

Claim 1. Let CY (t) denote the characteristic polynomial of Y . Then we
have that CY (t)|q̃Ck (t).
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For now, we will assume this claim is true. This implies, since p̃Ck (t) =
q̃Ck (t), that the eigenvalues of X and Y are roots of p̃Ck (t).

We now consider the element ΨE
k . We know from Lemma 8 and

Corollary 1 that ΨE
k fixes the point A. Thus, using the definition of

the action by Ψq, we see that Tr(qEk (Y )) = ΨE
k (a1) = 0 and 2Tr(A ·

qEk (Y )) + Tr(qEk (Y )2) = ΨE
k (a3) = 0. This is true for all α, and hence,

since 2Tr(A · qEk (Y )) is linear in α while Tr(qEk (Y )2) is quadratic in α, we
must have that their coefficients are 0 separately. In particular, we get
that Tr(qEk (Y )) = 0 and Tr(qEk (Y )2) = 0, so that qEk (Y ) is nilpotent, and
hence the eigenvalues of qEk (Y ) are both 0. If we denote the eigenvalues
of Y by λ1, λ2, then we obtain the fact that qEk (λ1) = 0 = qEk (λ2) for all
α ∈ C, so that λ1 and λ2 are roots of qEk /α.

Then, combining this with the preceding statement, we see that the
eigenvalues λ1 and λ2 are roots of both

qEk (t)/α = t2(k+1) + S(1, k−1)t2k + · · ·+ S(k−1, k−1)t4 + S(k, k−1)t2;

p̃Ck (t)/α = (t2 − 1)(t2 + 1)t2(t2 − 7)(t2 − 15) · · · (t2 − (2k−1 − 1)).

The only roots these equations share are given by 0 and ±1, and since p̃Ck
has no double roots, we know that λ1 6= λ2. Additionally, since λ1 + λ2 =
Tr(Y ) = a2 6= 0 by the case assumption, we also know that λ1 6= −λ2.
Thus we can conclude that if both (Φ−t ◦Ψq̃C

k

◦ Φt)(A) ∈ T and (Ψ−t ◦
Φp̃C

k

◦Ψt)(A) ∈ T , then A satisfies a2 = ±1.

Running the same argument with Φt ◦ΨqC
k

◦ Φ−t and Ψt ◦ ΦpC
k

◦Ψ−t,

we get that if both (Φt ◦ΨqC
k

◦Φ−t)(A) ∈ T and (Ψt ◦ΦpC
k

◦Ψ−t)(A) ∈ T ,

then A must satisfy a2 ∈ {1±
√
2,−1±

√
2}.

Since, by assumption we have that all of these conjugations land A
back in T , we thus conclude that a2 ∈ {±1} and a2 ∈ {1±

√
2,−1±

√
2},

so that a2 ∈ {±1}∩{1±
√
2,−1±

√
2} which is a contradiction. Thus, we

must have that at least one of the conjugations moves the point A out of
the set T , thus landing us back in a previous case where a1 6= 0 or a3 6= 0.
An analogous argument gives the same result if we start with a point A
where a4 = 1.

Case 3.2.2: a2 = 0. Since we also have that a1 = a3 = 0, in order
for our point A to not be Ck, we see that we are reduced to considering
the set of points

{(0, 0, 0, 1, 2), (0, 0, 0, 1, 4), (0, 0, 0,±1, 8),

(0, 0, 0, 1, 16), . . . , (0, 0, 0, 1, 2k)}.
(11)
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We will now show that using the element Ψ−t ◦Φp̃C
k

◦Ψt, we can move all
of these points out of this set. To do this, we first note that applying any
number of times repeatedly gives a conjugation with Φnp̃C

k

in the middle.

Now let A be a point in (11), and assume that (Ψ−t ◦Φnp̃C
k

◦Ψt)(A) is in

(11) for all n ∈ Z+. Then, since there are only finitely many points in (11),
this means that there must be some n,m ∈ Z+ with m > n such that
(Ψ−t ◦Φnp̃C

k

◦Ψt)(A) = (Ψ−t ◦Φmp̃C
k

◦Ψt)(A) = ((Ψ−t ◦Φ(m−n)p̃C
k

◦Ψt) ◦
(Ψ−t ◦Φnp̃C

k

◦Ψt))(A). In particular, we see that Ψ−t ◦Φ(m−n)p̃C
k

◦Ψt fixes

the point (Ψ−t ◦Φnp̃C
k

◦Ψt)(A) in (11). However, this is a contradiction to

Lemma 6, which guarantees that no points in (11) are fixed by conjugation
of the form Ψ−t ◦Φnp̃C

k

◦Ψt for n ∈ Z+. Thus we must have that successive

usage of the element Ψ−t ◦ Φp̃C
k

◦Ψt will move any point in (11) out of
this set and into a previous case.

To finish the proof, we need to prove Claim 1.

Proof of Claim 1 We start by showing that a2 = a′2 = â2 and a5 = a′5 =
â5. To do this, we first consider equation (9). Since Ψ fixes a2 and a5,
this equation tells us immediately that a2 = a′2. Thus we only need to
consider a5. There are two cases:

Ψq̃C
k

(0, a2, 0,−1, a5 − 2) = (0, a′2, 0, 1, a
′

5 + 2);

Ψq̃C
k

(0, a2, 0,−1, a5 − 2) = (0, a′2, 0,−1, a′5 − 2).

If the first of these is true, then we must have, by examining the 4th term,
that Tr(B · q̃Ck (Y )) = 2 for that specific choice of α, and if the second is true
we must have that, for those specific α ∈ C, that Tr(B · q̃Ck (Y )) = 0. We
easily see from the definition of q̃Ck that if α = 0, then Tr(B · q̃Ck (Y )) = 0.
This implies either that, as a function of α, we have that Tr(B · q̃Ck (Y )) ≡ 0
or Tr(B · q̃Ck (Y )) is non-constant. If the second of these options is true,
then we can choose some α ∈ C such that Tr(B · q̃Ck (Y )) 6= 0, 2. However,
for such an α, we then have that a′4 6= ±1, which contradicts the fact that
we must have a′3a

′

5 + a′24 = 1. Thus we must have that Tr(B · q̃Ck (Y )) ≡ 0,
so that a5 − 2 = a′5 − 2 for all α ∈ C. Thus we conclude that a5 = a′5, as
claimed. An analogous argument using equation (10) gives that a2 = â2
and a5 = â5.

Thus, using the second equation above that we have found to be the
case, we must have that

Ψq̃C
k

(0, a2, 0,−1, a5 − 2) = (0, a2, 0,−1, a5 − 2),
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so that Ψq̃C
k

fixes the point (0, a2, 0,−1, a5 − 2). We can then write that

q̃Ck (t) = CY (t)f(t) + r(t), where r(t) has degree 6 1, since CY (t) has
degree 2. However, since Cayley-Hamilton guarantess that CY (Y ) = 0,
we conclude that q̃Ck (Y ) = r(Y ), so that Ψq̃C

k

= Ψr, and hence Ψr fixes

the point (0, a2, 0,−1, a5 − 2). However, it is easy to see that the only
polynomial of degree less than or equal to 1 that fixes this point is the
zero polynomial, and hence r(t) ≡ 0. This shows that CY (t)|q̃Ck (t), as
claimed.

We now move onto the second lemma that will be necessary in proving
infinite-transitivity.

Lemma 11. Let A ∈ C2 \ Ck for some k ∈ Z+ satisfy a1a3 6= 0. Then
there is a g ∈ Sk ⊆ G such that A′ = g(A) satisfies both a′1a

′

3 6= 0 and
a′41 − 4a′23 6= 0.

Proof. We may assume that a21 − 4a23 = 0, since otherwise we are done.
Case 1: a21 = −2a3. Applying the element Φγt2+βt4 with β = −2a2

a4
1

we

have that a′2 = 0 and

a′5 = a5 + a1γ(2a4 −
a31γ

2
) = a5 + 2a1a4γ − a41γ

2

2
,

while a1, a3 stay fixed. We note that since a1 6= 0, the coefficient of γ2 is
non-zero, and hence a′5 is a non-constant polynomial in γ, so that we can
choose some γ ∈ C such that a′5 /∈ {0, 2, 4, . . . , 2k}. Let Ã = ΨE

k (A
′). Using

Lemma 8 and Corollary 1, we know that ã1 is a non-constant polynomial

in α while ã3 = a3 =
a2
1

2 is non-zero and constant. Thus ã21 ± 2ã3 will be a
non-constant polynomials in α, since a constant function cannot cancel
higher order non-constant terms. Thus we can choose some α ∈ C such
that ã1ã3 6= 0 and ã21 ± 2ã3 6= 0, as desired.

Case 2: a21 = 2a3. We start at the point A = (a1, a2,
a2
1

2 , a4, a5). Con-
sider the polynomial

q(t) = t2(t2 − 1)(t2 − 2)(t2 − 4) . . . (t2 − 2k−1)

= t2(k+1) + S(1, k − 1)t2k + · · ·S(k − 1, k − 1)t4 + S(k, k − 1)t2

and recall that, by construction, Ψαq(t) will stabilize Ck for any α ∈ C.
First, using Φ ε−a2

a2
1

t2
we also stabilize the points in Ck and sendA to C =

(a1, ε,
a2
1

2 , a
′

4, a
′

5), where a′4 = a4+
ε−a2
2 a1 and a′5 = a5+

(ε−a2)2

2 + 2a4(ε−a2)
a1

.
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Now, for Ψαq(t)(C) = (a1,α, a2,α, a3,α, a4,α, a5,α), we calculate the fol-
lowing (keep in mind that this family of automorphisms fixes points
in Ck):

a1,α = α · Tr(q(Y )) + a1,

a3,α = α2 ·
(

Tr(q2(Y ))− 1

2
Tr2(q(Y ))

)

+ 2α · Tr(Aq(Y )) +
a21
2

Our goal is to show that there exists a nonzero α such that a3,α = −1
2a

2
1,α

with a1,α 6= 0, since we will then be back in Case 1. Let f(α) = a3,α+
1
2a

2
1,α.

We now need to find the roots of f(α).

f(α) = α2 · Tr(q2(Y )) + α
(

2Tr(Aq(Y )) + a1Tr(q(Y ))
)

+ a21.

Let α1 and α2 be roots of f(α). Then both of them are not zero since
a1 6= 0. Since Tr(Y ) = ε and Tr(Y 2) = Tr(B2) + 1

2Tr
2(Y ) = a′5 +

1
2ε

2 we

find the eigenvalues of Y to be given by µ1 = ε
2 +

√
2a′

5

2 and µ2 = ε
2 −

√
2a′

5

2 .
We also have that

Tr(q(Y )) = q(µ1) + q(µ2) and Tr(q2(Y )) = q2(µ1) + q2(µ2),

so we can calculate that

Tr(q(Y )) = q(µ1) + q(µ2)

= µ1
2(k+1) +

k
∑

i=1

αiµ1
2i + µ2

2(k+1) +
k

∑

i=1

αiµ2
2i

= µ1
2(k+1) + µ2

2(k+1) +
k

∑

i=1

αi(µ1
2i + µ2

2i)

= (
ε

2
+

√

2a′5
2

)2(k+1) + (
ε

2
−

√

2a′5
2

)2(k+1)

+

k
∑

i=1

αi((
ε

2
+

√

2a′5
2

)2i + (
ε

2
−

√

2a′5
2

)2i)

=
1

2k+1

(

ε2 + 2ε
√

2a′5 + 2a′5)
(k+1) + (ε2 − 2ε

√

2a′5 + 2a′5)
(k+1)

)

+
k

∑

i=1

αi

22i
((ε2 + 2ε

√

2a′5 + 2a′5)
i + (ε2 − 2ε

√

2a′5 + 2a′5)
i).

From this we know Tr(q(Y )) is a polynomial in ε of degree 2(k + 1); call
it g(ε).
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Similarly, we get that

Tr(q2(Y )) =
1

4k+1

(

(ε2+2ε
√

2a′5+2a′5)
2(k+1)+(ε2−2ε

√

2a′5+2a′5)
2(k+1)

)

+
2k+1
∑

i=1

βi
42i

((ε2 + 2ε
√

2a′5 + 2a′5)
i + (ε2−2ε

√

2a′5+2a′5)
i).

This implies that Tr(q2(Y )) is a polynomial in ε of degree 4(k + 1), say
h(ε).

Let us show that for either α = α1 or α = α2, we must have that
a1,α 6= 0. If a1,α is zero in both cases, it implies that

0 = −(2Tr(Aq(Y )) + a1Tr(q(Y )))Tr(q(Y )) + 2a1Tr(q
2(Y )).

This shows that the discriminant of f(α) (say D) is zero, i.e. D = 0. Since
we can choose ε such that g(ε)h(ε) 6= 0, we then get that

(2Tr(Aq(Y )) + a1Tr(q(Y ))) =
2a1Tr(q

2(Y ))

Tr(q(Y ))
,

0 = D =
4a21Tr(q

2(Y ))(Tr(q2(Y ))− Tr2(q(Y )))

Tr2(q(Y ))

We have

Tr(q2(Y ))− Tr2(q(Y ))) = −2q(µ1)q(µ2)

= (µ1
2(k+1) +

k
∑

i=1

αiµ1
2i)(µ2

2(k+1) +
k

∑

i=1

αiµ2
2i)

= (µ1µ2)
2(k+1) +

k
∑

i=1

αiµ1
2iµ

2(k+1)
2 +

k
∑

i=1

αiµ2
2iµ

2(k+1)
1

+

k
∑

i=1

αiµ1
2i

k
∑

i=1

αiµ2
2i.

From this it is not difficult to see that this is a polynomial in ε, which
we will denote x(ε). Taking ε such that g(ε)h(ε)x(ε) 6= 0, we reach a
contradiction. Thus, using the above actions, we can arrive at the point

(b1, ε,− b2
1

2 , b4, b5) with b1 6= 0; we then use the proof of Case 1 to achieve
the desired result.

Finally, we can prove infinite transitivity:

Theorem 1. The action of G on C2 is a n-transitive group action for all
n ∈ Z+, and hence infinitely transitive.
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Proof. Let A ∈ C2 \ Ckbe an arbitrary point. To prove the theorem, it is
sufficient to show that there is a g ∈ Sk such that g(A) = (0, 0, 0,−1, 2k+1).
Using Lemmas 10 and 11, we may assume that a1a3 6= 0 and a21± 2a3 6= 0.
Then, since Φp ∈ Sk when p(t) = αt2 + βt3, we can let

α =
2

a3(a21 + 2a3)(a21 − 2a3)4

(

3a81a2a3 − 4a61a2a
2
3 − 16a41a2a

3
3 + 16a21a2a

4
3

+ 16a2a
5
3 − a91a4 − 4a71a3a4 + 16a51a

2
3a4 + 16a31a

3
3a4 − 48a1a

4
3a4

+ (a31 + 6a1a3)
√

(a21 − 2a3)4(a21 + 2a3)2(1 + 2k+1a3)

)

and

β =
4

a3(a21 − 2a3)4

(

2a51a2a3 − 8a31a2a
2
3 + 8a1a2a

3
3 − a61a4 + 2a41a3a4

+ 4a21a
2
3a4 − 8a33a4 +

√

(a21 − 2a3)4(a21 + 2a3)2(1 + 2k+1a3)

)

to move A to the point

A′ = Φp(A) = (a1, 0, a3, a
′

4, 2
k+1) = (a1, 0,

a′24 − 1

2k+1
, a′4, 2

k+1).

Then, letting q(t) =
∑m

i=2 βit
i, we will show that Ψq ∈ Sk.

We first write q(t) =
∑[m

2
]

i=2 β2it
2i+

∑[m
2
]−1

i=1 β2i+1t
2i+1. Then by Lemma

8 and Lemma 9 we get that































































































Ψq(0, 0, 0, 1, 0) = (0, 0, 0, 1, 0),

Ψq(0, 0, 0,−1, 0) = (0, 0, 0, 1, 0),

Ψq(0, 0, 0,−1, 2j) = (

[m
2
]

∑

i=2

2i(j−1)+1β2i, 0,

[m
2
]−1

∑

i=1

β2
2i+12

2i(j−1)+3j−2,

[m
2
]−1

∑

i=1

β2i+12
i(j−1)+2j−1, 2j), j = 1, k, j 6= 3,

Ψq(a1, 0,
a′24 − 1

2k+1
, a4, 2

k+1) = (a1 +

[m
2
]

∑

i=2

2ki+1β2i, 0,

a′24 − 1

2k+1
+

[m
2
]−1

∑

i=1

β2
2i+12

2k(i+1)+k+1, a′4 +

[m
2
]−1

∑

i=1

β2i+12
k(i+2), 2k+1).
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From these we obtain the following systems:

{

∑[m
2
]

i=2 2
i(j−1)β2i = 0 j = 1, k, j 6= 3

∑[m
2
]

i=2 2
ki+1β2i = −a1

(12)

{

∑[m
2
]−1

i=1 β2i+12
i(j−1)+2j−1 = −1 j = 1, k, j 6= 3

∑[m
2
]−1

i=1 β2i+12
k(i+2) = −1− a′4

(13)

We need to show the systems (12) and (13) have solutions. For the systems
(12) and (13) we have the following matrix:



















1 1 1 1 . . . 1
1 2 22 23 . . . 2k−1

1 23 26 29 . . . 23(k−1)

1 24 28 212 . . . 24(k−1)

...
...

...
...

. . .
...

1 2k 22k 23k . . . 2k(k−1)



















The determinant of this matrix is Vandermonde’s determinant and is
not zero. Thus we can choose coefficients so that Ψq ∈ Sk, and applying
this element to A′, we get that Ψq(A

′) = (0, 0, 0,−1, 2k+1). Therefore, all
elements in C2 \ Ck are in the same orbit as (0, 0, 0,−1, 2k+1) under the
action of Sk, and hence G acts n-transitively on C2, as desired.

Conclusion

While Berest–Eshmatov–Eshmatov’s conjecture has been recently
proved, our approach for the case n = 2 brings more clarity of the action
on C2, which could be useful for future studies.
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