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Infinite transitivity
on the Calogero-Moser space Cy*
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ABSTRACT. We prove a particular case of the conjecture of
Berest—Eshmatov-Eshmatov by showing that the group of unimod-
ular automorphisms of Clx,y] acts in an infinitely-transitive way
on the Calogero-Moser space Cs.

1. Introduction

Let M,, be the C-algebra of n x n matrices over C. The group GL, (C)
acts on the direct product M,, x M,, in the natural way:

g-(X,Y)=(9Xg™ ", g¥g™ "), g€ GL,(C). (1)
For an integer n > 0, let én be the subset of M, x M, defined as
{(X,Y) e M, x M, : rank([X,Y]+1,) =1},

where I, is the n x n identity matrix. The action of (1) on M, x M,
restricts to an action on C,, and we can then define the n-th Calogero-
Moser space C, to be the quotient én//GLn. These spaces were studied in
detail by Wilson [4], where it was shown, among other things, that C, is a
smooth, affine, irreducible, complex, symplectic variety of dimension 2n.
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The group of unimodular automorphisms of C[z,y] acts on C,, and
it is proved in [1] that this action is doubly transitive. Additionally, a
conjecture that this action is infinitely transitive is stated. Recently, in
[3], this conjecture was proved.

The goal of this paper is to give another proof of infinite transi-
tivity for the case n = 2. The proofs here are more constructive and
shed more light on the action on Co. We do this inductively by first
choosing distinct points x1,..., 2, Zn+1 € Co. Then, for any tuple of
distinct elements (y1, ..., Yn, Ynt1), we use the inductive hypothesis to
move (Y1, ..., YnsYn+1) t0 (1, ..., Tn, Ynt1). If we can then find elements
of G that stabilize x1, ..., x, while acting transitively on the rest of the
elements of Cy, we can then move the element 1,11 to the predetermined
element x,1, while keeping x1,...,x, fixed. This will show that any
tuple (y1,...,Yn+1) is in the same orbit as (z1,...,Zp41), thus establish-
ing (n + 1)—transitivity. For this approach to work, we see that we will
require information about the stabilizers of specific elements in Cy, which
we collect in future sections.

In general, an explicit representation for the coordinate ring, C|C,], of a
Calogero-Moser space is not known. However, for n = 2, it is not difficult to
find. Let A= X — 1Tr(X)I and B =Y — 3Tr(Y) I, be traceless matrices
associated to X and Y, respectively. In this case, using the generators
{Tr(X), Tr(Y), Tr(X?), Tr(XY), Tr(Y?)} of C[(Ms x Ms)//GLs] found
in |2], we define the following generators of C[Ca]:

a1 = Tr(X), ag = Tr(Y), a3 = Tr(A?), ay = Tr(AB), a5 = Tr(B?).

Using the fact that a non-zero 2 x 2 matrix is of rank one if and only
if its determinant is zero, we find that

ClCq] = Clay, ag, a3, a4, a5]/(a?1 —azas — 1).

Note that there is a one to one correspondence between a point (X,Y) € Cy
and a point (ay,...,as) € C® such that a3 — agas = 1, given by

(X,Y) — (Tr(X), Te(Y), Tr(A?), Tr(AB), Tr(B?)). (2)

2. Preliminaries

Denote by G the group generated by the following two kinds of auto-
morphisms of M,, X M,:
(i) @, : (X,Y) — (X,Y 4+ p(X)), where p € Ct],
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(i) Uy: (X,Y) = (X +¢(Y),Y), where q € C[t].
It is known [5], G is isomorphic to

SAwt(Clz, y]) = {f = (f1, f2) € Aut(Clz,y]) | Jac(f1, f2) = 1},

where Jac(f1, f2) is the determinant of the Jacobian matrix of the map
(f1, f2). Note that Aut(Clz,y]) is isomorphic to a semidirect product
SAut(C[z,y]) X Gy, where G, is a multiplicative group of the field C
which acts on C[x, y] by scalar multiplication on variables = and y. From
the correspondence given in (2), we obtain an easy way of computing the
action of the above group, GG, using the following component-wise rules:

®p(ar) :=ax

O, (az) :=as + Tr(p(X))

(I)p(aZi) =as (3)
®p(a) i=as + Te(Ap(X))

@y(a5) i=as + Tr(pA(X)) + 2T(B - p(X)) - 2 Tr(p(X)).

3

The action of ¥, on Cs is similar, and is symmetric to (3).

A
Oy : Co — Co defined by

For a matrix M = <a ﬁ) € SLs (so that ap — X = 1) consider

(X,Y) = (aX + BY, AX + pY).

One can easily find that the action ©); is a composition of the au-
tomorphisms of type (i) and (ii) using some linear polynomials p and q.
Under this action, a point will change as follows:

On(a1) =aay + Pasg

On(az) =Aa1 + pag

Onr(az) =a’az + 2afay + [as (4)
Onr(as) =araz + (oap + ﬁA)a4 + Buas

Onr(as) =N%az + 2 pay + plas

We now remind the following definitions concerning group actions on sets.
To do this, let G be a group acting on a set S.

Definition 1. We say the group G acts transitively, or that the action is
transitive, if for every pair of elements s, € S, there is a g € G such that
g-s=r.
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Definition 2. The group G acts n-transitively, or the action is n-transitive,
if it can map any n-tuple of distinct points of the set to any other n-tuple
of distinct points. In other words, if (s1,...,s,) and (r1,...,7,) are n-
tuples of distinct elements in S, then there is some g € G such that
g (81,..y80) =(g-S1,-..,98p) = (T1,-..,Tn)-

Definition 3. Lastly, we say that the action of G on S is infinitely
transitive if it is n-transitive for every positive integer n.

We now claim that the action of G on Cy defined above is infinitely-
transitive.

3. Basecases:n=1,2,3

As stated previously, we plan to prove this main result by induction,
and so we begin by proving the base cases for n = 1,2, 3. We start with
n=1:

Proposition 1. The action of G on Cs is a transitive group action.

Proof. Let A = (a1, a9, as,a4,as) € Cy be an arbitrary point. Note that
this proof does not require us to stabilize any elements, and so we may
use p(t) = —% and q(t) = —%-, to get that

(\Ijq 0 (I)p)(A) = (07 07 az, a4, CL5).

From here we use the action of ©yy, defined in (4), with either the matrix

__a 1 __a 1
M, = | 2lastl) 2 op the matrix M_ := | 2(@=1) 2] to reach the
as +1 as as — 1 as

point
@M(Oa Oa agz, a4, CL5) = (07 0> 0, 17 0)

More specifically, if a3 = 0 or a5 = 0, then, since ai —aszas = 1, we
must have that ay = £1. If a4 = 1, then we use the matrix M. If ag = —1,
we use the matrix M_. If agas # 0, then either matrix My or M_ will
suffice. Thus we have that all elements A € Cy are in the orbit of the point
(0,0,0,1,0) € Ca. O

Next, we prove 2- and 3-transitivity, since they differ from the general
n case by requiring us only to focus on stabilizing nilpotent points. We
will need the following two lemmas:

Lemma 1. Let A € C2\ {(0,0,0,£1,0)}. Then there is a g €
Stab{(0,0,0,+1,0)} such that A" = gA satisfies a}ay # 0, where A" =
(%, ay, a3, ay, az).
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Proof. We may assume at least one of aq,as, as, as is nonzero. We will
proceed by case work.

Case 1: a1 # 0. If ag # 0 we are already done, so suppose ag = 0.
Without loss of generality, we may assume that ao # 0, since if ag = 0, we
may apply @2 to arrive at the point (b, ba, b3, by, bs) with by = a; # 0.
Additionally, since ag = 0, we must have a4 is non-zero, so that there exists
an « € C such that aag(aagas+2ay4) # 0 and such that a(a5+az—§)+a1 =0,
since this is a non-zero polynomial in . We now apply ¥ 2 to arrive at
A" where dafafy # 0.

Case 2: a1 = 0. From here, we will show that we can move into case
one. ,

Case 2.1: as + %2 % 0. We can calculate explicitly that applying W2

2
gives ay = as + %2 # 0, so that we are back in Case 1.
2
Case 2.2: a5+ F = 0.

/C'cQLse 2.2.1: ag # 0. We can map ag and as to a) and af such that
ag + % # 0 by ®py2, since ab = az + a3 and aj = as. This moves us
back to Case 2.1. )

Case 2.2.2: a3 = 0. Since a; = 0 and a5 + (12—2 = 0 with ag # 0 after

2
—a3

we are at the point (0,az,0,%1, —2). By applying ¥;s, we can send a;
3

to %, thus showing that we can send a; to a nonzero value, returning

us to Case 1 and completing the proof. It is easy to check that all of the

elements of G used above are indeed in Stab{(0,0,0,+1,0)}. O

Lemma 2. Let A € Cy with ajas # 0. Then there is a g €
2
Stab{(0,0,0,+1,0)} such that A’ = gA satisfies ajal # 0 and af # 5.

Proof. Let A = (ay,a2,as,a4,as) with ajas # 0 be given. We also assume
a2 :
az = 5, since otherwise we are done.

Case 1: asas # 0. Then we can apply W2 to get

2 2
a a a
1 2 1 2 9
U2 (a,as, 5 yag,a5) =(a1 + ( 5 + as)a, as, 5 + 2a2a400 + azasa”,

a4 + agasa, as).

From this we can see that af, a% are non-zero polynomials of «, so that
there are at most finitely many values of v such that @ a§ = 0. Additionally,
plugging into a? — 2a}, we obtain the polynomial

(—4agay + 2a1(a3/2 + as))a + (—2a3a5 + (a3/2 + as)?)a’.
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We claim this is a non-zero polynomial in «. To see this, assume that
it is the zero polynomial, so that —4asay + 2a;1(a3/2 + a5) = 0 and

)
—2a3as + (a2/2 + a5)? = 0. This implies that a5 = %f“m and

as = ? Setting these equal means that we must have ay = *42. (Note
that this is where we have used the assumption that acas # 0, so that we
can actually solve for a4 in this way.) It leads to a contradiction. Thus we
have that a7 — 2a4 is a non-zero polynomial in «, and hence, since there
are uncountably many « € C, we can choose an « such that aja% # 0 and
a? — 2a} # 0, as desired.

Case 2: asas = 0. We again assume that ag = a—; Applying P2, we
get

2 2 3 42
a a ajo ajo
(I)at2 (ala az, ?17 a4, CL5) = (ala az + a%a, ?17 a4+ 17, as +2ajaq0+ )
From this, since a; # 0, we can conclude that @), and af are non-zero
polynomials in «, and hence we can choose some « € C such that abaf, # 0,
landing us back in the Case 1. (Again, it is easy to check that all elements
of G used in the above proof are elements of Stab{(0,0,0,4+1,0)}.) O

We are now able to prove 2- and 3- transitivity:
Proposition 2. The action of G on Cs is a 2-transitive group action.

Proof. Let (A, B) € Cy x Cy be a pair of distinct points. Then, since
G acts on Cs transitively by Proposition 1, there is a ¢ € G such that
g9(A,B) = ((0,0,0,1,0), B") for some B’ € Co. Thus, if there is an h €
Stab{(0,0,0,1,0)} such that hB" = (0,0,0, —1,0), we are done. In particu-
lar, this reduces the problem to showing that for any A € C2\{(0,0,0,1,0)},
there is a g € Stab{(0,0,0,1,0)} such that gA = (0,0,0,—1,0).

Thus, let A € Cy\ {(0,0,0,1,0)} be an arbitrary point. If
A =1(0,0,0,—1,0), then we are already at the point we desire. Otherwise,
we have that A € Cy \ {(0,0,0,4+1,0)}. Using Lemmas 1 and 2, we
may also assume that ajaz # 0 and a? — 2a3 # 0. Applying @3 €
Stab{(0,0,0,1,0)} to A, we reach the point

1 2
A" = (a1, a2 + (a1a3 + 2a1(?1 as))a, as,
2 a2
ajaz 1 01
ay +( 9 + 2 ( 5 +a ))
3a? 1 3a?
as -+ (71 + ag)a4a + ZCL;},(71 -+ a3)2a2).
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Then we can calculate that
/. !/ AW ASN SN | / / / / / !/ / /
— 4dBabal, — 8alahaha!, + altal + 4afal + 4aPal(af + db)

= 4a%a%a3 — 4a§a2a4 — 8ajasazay + a‘llag) + 4a%a3a5 + 4a§a5

6
ayaq 4
+ (—ai’agag + 4a:{’a2a§ — 4a1a2a§ + 17 — ajagay
8 6,2 4 3
ajas  aija 3aja
—2d%a%a4 + dadag)a + (=2 — L3 L23 _ 9a2a3 + a3)a?
1%3 3 16 2 2 1%3 3

One can check that if the coefficient of the o term is zero, then either
a3 =0oraz = a% /2. Since we know neither of these is true, it follows that
the last term is non-zero, and hence this is a non-zero polynomial in «.
Thus we can choose a a € C such that this polynomial does not vanish.
Since this is the case, we can consider the polynomials

—a, +1 —ay, +1
plt) =~ = g
and
ajay(2ayayaly — afP(a) — 1) — 2a4(ay — 1)) >

t) =
a(t) —daPayaly — 8d)dyalal + atal + dafal + daPal(a + al)
These satisfy @), ¥y € Stab{(0,0,0,1,0)}, and we can calculate
that
(\Ilq © (I)p)(allv a/27 a’/37 aﬁl? a’,5) = (b17 b27 05 _1) 0);

for some by, by € C.
2

Case 1: biby # 0. Using A = Z—; and p = 4%21, we can apply the following
composition to get

(\IIAt © @Mtz-i-/\,u © \II—)\t)(bh b27 07 _17 0) = (07 07 07 _17 0)7

as desired. Omne can easily check that this composition is in
Stab{(0,0,0,1,0)}.

Case 2: bijbo = 0. If by = by = 0, then we already have that
(b1,b2,0,—1,0) = (0,0,0,—1,0). If not, we have that either by # 0 or

by # 0. In these cases we use the element ®,5 4 43 OF V,,__a_,respectively,
3a 3al’
1 2
in order to map

(blyo’()? 717 0) = (bla b%/67 07 *]-a 0)7
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or

(0,b2,0,—1,0) — (b3/6,b2,0, —1,0),

landing us back in Case 1.

Thus we have shown that all points in Co \ (0, 0,0, 1,0) are in the same
orbit as (0,0,0,—1,0) under the action of Stab{(0,0,0,1,0)}, so that G
acts 2-transitively on Cs. O

Proposition 3. The action of G on Cy is a 3-transitive group action.

Proof. Since the group G acts 2-transitively by Proposition 2, we can
reduce the problem to showing that for any A € C3\ {(0,0,0,+1,0)}, there
is some g € S = Stab{(0,0,0,4+1,0)} such that g(4) = (0,0,0,—1,2).
A straightforward computation shows that all of the elements of
Stab{(0,0,0,1,0)} used in the proof of Proposition (2) also stabilize the
point (0,0,0,—1,0), so that, using Lemmas 1 and 2, and then proceeding
analogously to the proof of Proposition 2, we are able to find some g € S
such that g(A) = (b1, b2,0,—1,0).

We may assume that b; and by are not simultaneously zero.

Case 1: by # 0. For the polynomials p;(t) = Abr— 4b2)t3 (b1;{3b2)t4

and ¢1(t) = bl t2, we get that (W aoPp) € Stab{(0,0,0,il,O)} and
(\Ilfh © @Pl)(b17b2707 _170) = (070707_172)7

as desired.
Case 2: by # 0. Similarly, using the polynomials po(t) = _TthQ
and qo(t) = 22 4b1)t3 (b2;43b1)t4, we obtain that (@, o Uy, ) €

2

Stab{(0,0,0, 1 0)} and
(®p, 0 Wy, )(b1,b2,0,—1,0) = (0,0,2,-1,0).

Then, we can apply (V3 o <I>%t2) € Stab(0,0,0,+£1,0) to get to the point
(U3 0 <1>%t2)(0, 0,2,-1,0) = (2/3,2,0,—1,0),

landing us back in the case where by # 0. O

4. Stabilizer elements

While proving the base cases, we could easily check that the elements
of G being used were in the desired stabilizers; unfortunately it is not
as easy to do this as the sets of points we wish to stabilize get larger.
This section is concerned with determining which elements of G are in
the stabilizers of larger subsets of Cs.
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Proposition 4. Let A= (0,0,0,%1,as5) be a point in Ca. Then ®,, stabi-
lizes A if and only if t*|p(t).

Proof. Let (X,Y) be the pair of matrices in Cy that corresponds to the
point A, and recall that the action of ®, on A corresponds to the action
on (X,Y) defined by ®,(X,Y) = (X,Y + p(X)) in Co.

Assume #2|p(t) and let us show that ®,(A) = A. Since &, 0P, = &,
it is enough to show that for any monomial ot with n > 2 and « € C,
we have that ®,m stabilizes A. Since a1 = a3 = 0, we can conclude
that X is nilpotent, meaning that X" = 0 for any n > 2. It follows that
p(X) =aX™ =0,sothat ¢,(X,Y) = (X,Y +p(X)) = (X,Y), and hence
o,(A) = A

Conversely, suppose that t? { p(t). This implies that p has non-zero
linear or constant terms. Also, since a1 = az = 0, X is still nilpotent, so
that we can assume p(t) = at + 8 where one of the parameters «, 3 is
nonzero. Then, using (3), we have that

®,(A) = (0,25,0,+£1, a5 + 2c),
so that ®, does not fix A, thus proving the contrapositive. ]

Now, consider the point A = (0,0,0, —1,2%) for some k € Z,. We
want to determine which ¢ € C[t] will satisfy ¥,(A) = A. Again, since
a1 = a3z = 0, X is nilpotent, and hence we may assume that X = (8 (1)>
Also, Tr(Y) = 0, so that we can write Y = (Z _ba

Next, we note that Tr(XY') = —1, which implies that ¢ = —1. Now we

1
note that under the group action of GLy by the matrix M = <0 Cf), we

/
may assume that a = 0, since MXM-'=X and MYM~! = (_01 %)

Thus, we have that Y = <_01 8) in Cs.

Lastly, consider the fact that Tr(Y?) = 2¥, we have b = —2F~1, giving

0 —2kt
us.Y—<_1 0 )

Now that we have nice formulas for X and Y, we can explicitly see
how our group action, defined by (X,Y) — (X +¢(Y),Y), acts on this
specific pair of matrices. We wish to determine which ¢ € C[t] will satisfy
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X 4+ q(Y) = X, thus stabilizing the point (0,0,0, —1,2%). We start with
q(t) = Y1 | agit*. Then we have that

n
X=X+ ZO{Qi(Qk_l)iIQ.
=1

Thus, to stabilize the point, we must have that > I, (2871)lag; = 0.

A similar argument shows that if ¢(t) = Y1 | agip1t* "1, then we
must have that 1" (28 "1)iag; 1 = 0.

Therefore, concerning the set of points

{(0,0,0,+1,0),(0,0,0,—1,2),(0,0,0,—1,4),- -, (0,0,0, —1,2%)}

for some k € Zy, if we have that Y& (27Yay = 0 and
S (277 g4 = 0 for all 1 < j < k, then all the above points will be
stabilized under the action of ¥,. This brings us to the following Lemma,
which deals with finding solutions to this necessary system of equations
obtained from the previous discussion:

Lemma 3. The solution set to the system of equations given by

(al—f—ag—l—...—l—an:()
2a1—|—22a2+...+2"an:0
day +42a9+ ... +4"a, =0

2" 2a1 + (2" 2)2ay + ... + (2" 2)%q,, =0

can be expressed in terms of a, as

(

ap=S(n—1,n-2a,
az=9S(n—2,n—2)ay,
a3 =S(n—3,n—2)a,

an—1=95(1,n—2)a,

Ap = Qp

where S(i, ) is the it symmetric sum on the set {—1,—2,—4,...,—27}.

Proof. The base of induction for n = 2 is straightforward.
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For our inductive hypothesis, assume the claim is true for n = k, and
let us consider the case n = k£ + 1. We begin by noting that for 1 <7 < k,
S(i,k—1)=8> -1,k —2) —2F18(i, k — 2).

If (a1, as,...,ax) is the solution set of the (k — 1)-dimensional system,
then by the inductive hypothesis we have that
a;=Sk—-i,k—2)a, 1<i<k-—1 (5)

Define b; for 1 < i < k + 1 such that b; = a;_1 — 2 1a;, where a¢ and
ap+1 are defined to be 0. Substituting in (5), we get that

bi=S(k—i+1,k—2)ar —2"1S(k — i,k — 2)ar = S(i, k — 1)ay

for 1 < i < k. Furthermore, we get that b1 = aj. Thus, to prove the
claim, it suffices to show that

(b1,b2, .. bg1) = (0— 2" Lag a1 — 25 tag, ..o yay — 28 Lagan, L ap)
is a solution to the system of k£ equations,

($1+.7}2—|—...+$k+1:0
221 + 2220 + ...+ 2241 =0
4x1+42x2+...+4”xk+1 =0

(25 + (M) 4+ + () e = 0
For the equation
2x + (2920 + ...+ (29 gy = 0,
we plug in b; for x; to get
2y 4+ (20)%by + ... + (29)"b1
= 2F 19l — 2%ay — ... — 2May) 4+ 2820y + 2%ag + ... + 2May).
Now, for ¢ < k — 1, by the inductive hypothesis,
2ay +2%ag + ...+ 2la; 4+ ...+ 2Map =0

so both terms become 0. For ¢« = k — 1, we have by direct substitution
that

ok=l(ok=lgy — 92Uy — 2=l 9kl
2kt ok gy 4 92Ny 4y 2N 2kl — o,

Thus, we can conclude that (b1, be, ..., bgt1) satisfy the system of equations
for n = k+1, and since b; = S(i, k—1)ar = S(i,k—1)by1, we are done. [J
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From this and the preceding discussion, we immediately conclude that
if we wish to stabilize all the points

{(0,0,0,%+1,0),(0,0,0,—-1,2),(0,0,0,—1,4),---,(0,0,0, —1,2%)}
using a polynomial with only even powers, we can use
aF (1) == at®* D) L o0S(1, k=)t +. . aS(k—1, k=1t +aS(k, k—1)t%.
Similarly, if we wish to use a polynomial with only odd powers, we can use
@2 t) = at* B raS1, k-1t 4 aS(k—1,k— 1)t +aS(k, k—1)t3.

Notation. Let ¢ (t) and ¢ (t) be defined as above. We then define the
following notation: W := \Ilq{;; and \Ilko = \I/ql?.

From the above arguments, we can conclude that \I/kE and \I/g will
stabilize the set

{(0,0,0,+1,0), (0,0,0,—1,2),(0,0,0,—1,4),--- , (0,0,0, —1,2%)}.

Now, consider elements of the form ¥ 0 ®,o0W¥_, and ®,0 ¥, 0d_,,
which we will call conjugation by ¥, and ®,,, respectively. We will use the
following four lemmas without proof, since the proofs are not difficult.

Lemma 4. The action Wy o @,y 0 W_y stabilizes the point (0,0,0,1,as)
if and only if t* — % divides p(t) and it stabilizes (0,0,0,—1,as5) if and
only if t* — “F2 divides p(t).

Lemma 5. The action ®; 0 W,y 0 &y stabilizes the point (0,0,0,1,as)

if and only if t* — a52_2 divides q(t) and it stabilizes (0,0,0,—1,as5) if and

only if t* — %32 djvides q(t).

Lemma 6. The action W_; 0 @, o Wy stabilizes the point (0,0,0,1,a)
if and only if t* — %2 divides p(t) and it stabilizes (0,0,0,—1,b) if and
only if t? — 13—72 divides p(t).

Lemma 7. The action ®_; o V) o ®; stabilizes the point (0,0,0,1,a) if
and only if t* — “TH divides q(t) and it stabilizes (0,0,0,—1,b) if and only
if 2 — 252 divides q(t).

The following conjugations
@toﬁ/qco@_t; U, 00 coW_y;
k Py
<I>,to\I/cho<I>t; \Il,toq)ﬁgo\llt.
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will all stabilize the set

{(0,0,0,+1,0),(0,0,0,—-1,2),---,(0,0,0,—1,2%)} \ {(0,0,0,—1,8)},

(6)
where

g€ (1) = a(t® + 1) — 1) —2)(12 = 3)(> — 9) - (1 — (2" + 1),
P = o+ 1 =1 ~2)( ~5)( =9 (- (27 +1)),
() = a( — 1) + VP - 1)~ 15)--- (2 — (21— 1)),
£(0) = ot = D + DA = )2~ 15)- (12— (25~ 1)),

5. More details concerning ¥y

This section is still concerned with determining the structure of the
stabilizers. Specifically, we consolidate information about the element \IlkE
that will be useful for the proof of n-transitivity presented in the next
section. We are especially interested in how this element acts on large
subsets of Cy, which will appear later. The first result we need is the
following formula for 2 x 2 matrices being raised to integer powers. It is
an easy calculation by induction, and so we omit the proof.

Proposition 5. Let M € Ms(C) be an arbitrary matriz with two distinct
eigenvalues. Let yp = Tr(M) and v = —det(M). Then, for any k € Z,
MF = M + vu,_1I, where

1 A e A S VA Ll LAY
i = —e () — (B 00
\ e+ 4v

forany k € Z.

We can now use this result to determine how W2, will act on points
with ag — 0:

Lemma 8. Applying V. 2n for any n € Z, to the point (a1,0, a3, a4, as),
we arrive at the point (al +yas(%)" 1.0,a3,a4,as).

Proof. Let A = (a1,0, a3, a4,as). We note that by definition, ag, a5 are
fixed by the action of W. Now consider a;. Again by definition of ¥, we
know that

ay =W 2n(ar) = a1 + Tr(yY?") = a1 +yTr(Y?"). (7)
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If as ;énO, we can now use the formula in Proposition 5 to get that
Yy = ;—?LI. Plugging into (7), we get

a’l’b n

a
a’1:a1+7Tr<2?51]2> :a1+;fl.

Next we consider the action of W_,2n on as:

W, o (ag) = ag + 2Tr(Ag(Y)) + Tr(g(V)) — 2Tr((Y))

2
r}/an a?n 1 (ln
= ag +2Tr(4- 27;)[2) + TT(VQQ%Q) - §T1"2(72%—72)
2n n 2
_ 2 05 1 as
=a3+y 922n—1 o 5 <’72n1>
=a3+72 agn _1 2 agn

92n—1 9 92n—2

= asz,
as claimed. We lastly consider the action on ay:

ap ap
U on(ag) = ag + Tr(Y - 72—2[2) =a4+ yz%Tr(Y) = a4.
Thus, we see that W_n(A) = (a1 + 72;?—?17 0, as, a4, as), as desired.
If a5 = 0, then we know that Y is nilpotent, and hence Y2 = 0 for all
n € Zy. It follows that W, ,2.(A) = A, so that the formula holds in this
case as well. ]

Lemma 9. Applying V. 2n+1 for any n € Zy to the point (a1,0, a3, a4, as),
we arrive at the point
2n+3 n+2
5 @ a
(a1,0,a3 +~ ma ag + ’Yﬁ, as).

Proof. The proof is analogous to that of Lemma 8. [

Corollary 1. Let A= (a1,0,a3,a4,as5). Then A" = WE(A) (respectively,
A = WP(A)) satisfies ay = a1 (respectively, ay = a3) if and only if
as € RS :={0,2,4,...,2F}.

Proof. The proof is a straightforward application of Vieta’s formula, using
Lemma 8 (respectively, Lemma 9) and the fact that W po W, =W . O
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6. n-Transitivity

We now have everything we need in order to prove our main result:
infinite-transitivity. We start with two supporting lemmas, analogous to
Lemmas 1 and 2, and then proceed to the final theorem.

Notation. For any k € Z, we define the following notation:

Cr :=1{(0,0,0,£1,0),...,(0,0,0, —1, Qk)} \ {(0,0,0,—1,8)} C Co;
S = Stab[C’k] C @G.

Lemma 10. Let A = (a1, a2, a3, a4,as5) € Co \ Ck for some k € Z.. Then
there is an element g € Sy, such that A" = g(A) satisfies a}jaly # 0.

Proof. Case 1: a1 # 0. If az # 0 as well, then we are done, so we assume
az = 0. Hence, the point is A = (aj,a2,0,+1,a5). Applying ®

2a9 a%
T2 T4
@1

to A, we arrive at the point (ag, 0,0, +1, :F4“2 + a5+ 1 a3p). Since a; # 0
we can choose the parameter S such that as ¢ Rk T hen using Lemma
9 and Corollary 1, we know that after applying \Il , we will have that
a} = a; # 0 and df is non-constant polynomial in ~. Thus we can choose
some 7 such that af # 0, as desired.

Case 2: az # 0. Similarly to Case 1, we assume that a; = 0, since otherwise
we are done. Then, we apply the element ®,,2 to arrive at the point

’
A" =(0,a2 + aa3,a3,a4,a5).

We then see that
1
<a'5 -3 <2 —3a% — 24/1 — 2a% +2a’24>>
, 1
\a5 5 2 — 3a% +24/1 — 2a? + 2al}

4
a
= —a3 + —2 — 2a5 + 3adas + a2 + (—agaz + asaz + 6azazas)o

4
3a3 ajot
+ (—a + 2 3+3a sas)a® + agaja® + 34

Since a3 # 0, we conclude that the coefficient of a* is non-zero, and hence
this is a non-constant polynomial of o. We then choose a € C such that

ag—;< —3a? £2,/1 — 2a22 —|—2a>7é0. (8)
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Then, we can apply the element ®,4_,2 to A’ to reach a point with

(a'24 + 4(=2 + ab)ak + 4aP(—1 + 3ay)) .

ool =

a; =

This is zero if and only if a = 3 (2 —3a2 £2/1—2d7 + 2a’24>, but by
equation (8), we know this is not the case. Hence we are at a point with
a1 # 0, so that we are back in Case 1.

Case 3: a1 = az = 0. Since ag = 0, we know that a4 = 41 and at least one
of as,as # 0, as otherwise the point would be nilpotent, and hence in C}.

Case 3.1: a5 ¢ RE. Recall from Corollary 1 that RS = {0,2,4,...,2~}.
If as ¢ R’g, then this same corollary tells us that we can apply \IIE for
some value of « to get that a) # 0. Then we are back in Case 1.

Case 3.2: a5 € RS. This case requires the use of conjugation. For ease
of notation, let 7' = {(0,a2,0,+1,as5)} be the set of points that satisfy
ar = a3z = 0.

Case 3.2.1: az # 0. Let Ty = {(0,a2,0,£1,a5)} be the set of points
we are considering here, so that as # 0 in Ty. We want to show that, using
conjugation, we can move any element of Ty to a point outside of T (i.e.
a point A’ with @} or af # 0).

To do this, let A = (0,a2,0,—1,a5) € T be an arbitrary point, and
assume, for the sake of a contradiction, that none of the conjugations
defined in section 4 move A out of T". Then we have that for any choice
of a in the polynomials (j,g and ﬁg, we must have that

(ProWso0®y)(A) = (0,a5,0,+1,a5) €T

and
(\If_t o (I)ﬁkc o \Ilt)(A) = (O, as,0,+1, d5) eT.

Moving ®; and W; to the other side of the equations, we see that these
reduce to

\I/qg(O,ag,O, —1,a5 —2) = (0,a5,0, %1, af £+ 2) 9)

Dyc(ag, az, a5 — 2, =1+ as,a5) = (a2, 42,05 £ 2, £1 + a5, a5).  (10)
We will use these equations to prove the following claim:

Claim 1. Let Cy(t) denote the characteristic polynomial of Y. Then we
have that Cy (t)|G< (t).



J. KESTEN, S. MATHERS, Z. NORMATOV 243

For now, we will assume this claim is true. This implies, since ;ﬁkc(t) =
< (t), that the eigenvalues of X and Y are roots of pf (t).

We now consider the element \Ilf . We know from Lemma 8 and
Corollary 1 that \I/kE fixes the point A. Thus, using the definition of
the action by ¥,, we see that Tr(¢F(Y)) = ¥F(a1) = 0 and 2Tr(4 -
P (Y)) + Tr(¢F (Y)?) = UE(a3) = 0. This is true for all o, and hence,
since 2Tr(A - ¢F (Y)) is linear in « while Tr(¢Z (Y')?) is quadratic in «, we
must have that their coefficients are 0 separately. In particular, we get
that Tr(¢Z (Y)) = 0 and Tr(¢Z(Y)?) = 0, so that ¢Z(Y) is nilpotent, and
hence the eigenvalues of ¢ (V') are both 0. If we denote the eigenvalues
of Y by A1, A2, then we obtain the fact that ¢ (A1) = 0 = ¢Z()\2) for all
a € C, so that A1 and Ao are roots of q,f/a.

Then, combining this with the preceding statement, we see that the
eigenvalues A1 and Ao are roots of both

af(t))a = > 1 S, k—1)t% - 4+ S(k—1,k—1)t* + S(k, k—1)t
pY() o= (t2 = D)2+ D22 = 7) (2 —15)--- (£ — (21 = 1)).

The only roots these equations share are given by 0 and £1, and since ﬁg
has no double roots, we know that A; # Ao. Additionally, since Ay + Ay =
Tr(Y) = ag # 0 by the case assumption, we also know that A\; # — .
Thus we can conclude that if both (®_; o Wge 0 ®,)(A) €T and (V_; 0
Pjc o U,)(A) € T, then A satisfies ay = £1.

Runmng the same argument with &, o ¥ o ©° ® ;,and V;0d G © Uy,
we get that if both (0 W,c o ®_ t)(A) eT and (WyodycoW. )(A) er,

then A must satisfy ag € {1 £v/2,—14v/2}.

Since, by assumption we have that all of these conjugations land A
back in T', we thus conclude that az € {1} and as € {1 ++/2, —1++/2},
so that ap € {1} N{14+/2, —14+/2} which is a contradiction. Thus, we
must have that at least one of the conjugations moves the point A out of
the set T', thus landing us back in a previous case where a1 # 0 or ag # 0.
An analogous argument gives the same result if we start with a point A
where a4 = 1.

Case 3.2.2: ao = 0. Since we also have that a; = a3 = 0, in order
for our point A to not be C}, we see that we are reduced to considering
the set of points

{(0,0,0,1,2),(0,0,0,1,4), (0,0,0, +1,8),

11
(0,0,0,1,16),...,(0,0,0,1,2%)}. 1
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We will now show that using the element ¥_; o <I)~c o WU;, we can move all
of these points out of this set. To do this, we first hote that applying any
number of times repeatedly gives a conjugation with @, ;¢ in the middle.
Now let A be a point in (11), and assume that (¥_; o (b”ﬁkc oWy)(A) is in
(11) for all n € Z,. Then, since there are only finitely many points in (11),
this means that there must be some n,m € Z, with m > n such that

(Uoyo®, 5000 )(A) = (Vpo®, 500 W) (A) = (Voyo P, 50 0 V)0
(V_40@, 5C © Uy))(A). In partlculan we see that W_yo D, s 0 Uy fixes

the point (\Il 1o®, 500 U, )(A) in (11). However, this is a contradiction to
Lemma 6, which guarantees that no points in (11) are fixed by conjugation
of the form W_; o @nﬁf oW, for n € Z. Thus we must have that successive
usage of the element ¥_; o %g o U; will move any point in (11) out of
this set and into a previous case.

To finish the proof, we need to prove Claim 1.

Proof of Claim 1 We start by showing that as = a, = a2 and as = af =
as. To do this, we first consider equation (9). Since W fixes as and as,
this equation tells us immediately that as = a. Thus we only need to
consider as. There are two cases:

\qu(O,ag,O, —1,a5 —2) = (0,d5,0,1, a5 + 2);
\I/q-kc((),ag,o, —1,a5 —2) = (0,a5,0,—1,a5 — 2).

If the first of these is true, then we must have, by examining the 4th term,
that Tr(B-4¢ (Y)) = 2 for that specific choice of a, and if the second is true
we must have that, for those specific & € C, that Tr(B - ¢ (Y)) = 0. We
easily see from the definition of ¢¢ that if « = 0, then Tr(B - ¢ (Y)) = 0.
This implies either that, as a function of a;, we have that Tr(B-g% (Y)) =0
or Tr(B - G¢(Y)) is non-constant. If the second of these options is true,
then we can choose some « € C such that Tr(B - §¢(Y)) # 0, 2. However,
for such an «, we then have that a/, # +1, which contradicts the fact that
we must have ajal + aff = 1. Thus we must have that Tr(B - ¢ (Y)) =0,
so that a5 — 2 = af — 2 for all & € C. Thus we conclude that as = af, as
claimed. An analogous argument using equation (10) gives that ag = aq
and a5 = as.

Thus, using the second equation above that we have found to be the
case, we must have that

\Ijch(()’a%oa —1,a5 — 2) = (0,(12,0, —1,a5 — 2)7
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so that \I/ch fixes the point (0, az,0,—1,a5 — 2). We can then write that
qo(t) = Oy (t)f(t) + r(t), where 7(t) has degree < 1, since Cy (¢) has
degree 2. However, since Cayley-Hamilton guarantess that Cy (Y) = 0,
we conclude that ¢¢'(Y) = r(Y), so that Vse =¥y, and hence W, fixes
the point (0, a2,0,—1,a5 — 2). However, it is easy to see that the only
polynomial of degree less than or equal to 1 that fixes this point is the
zero polynomial, and hence r(¢) = 0. This shows that Cy (¢)|g% (t), as
claimed. 0

We now move onto the second lemma that will be necessary in proving
infinite-transitivity.

Lemma 11. Let A € C3 \ Cy for some k € Z4 satisfy ajaz # 0. Then

there is a g € S, € G such that A" = g(A) satisfies both a}ja # 0 and
/4 2

ay —4ay # 0.

Proof. We may assume that a? — 4a3 = 0, since otherwise we are done.
Case 1: a3 = —2a3. Applying the element 424 ga with 3 = — Lt we
have that af, = 0 and

3 4,2
a a
as = a5 + a1y(2a4 — %) = a5 + 2ar1a4y — %,

while a1, a3 stay fixed. We note that since a; # 0, the coefficient of ~? is
non-zero, and hence af is a non-constant polynomial in 7, so that we can
choose some v € C such that af ¢ {0,2,4,...,2"}. Let A= \IIE(A'). Using
Lemma 8 and Corollar%/ 1, we know that a; is a non-constant polynomial

in a while ag = a3z = %1 is non-zero and constant. Thus EL% 4 2a3 will be a
non-constant polynomials in «, since a constant function cannot cancel
higher order non-constant terms. Thus we can choose some « € C such

that @jas # 0 and a3 + 2ag # 0, as desired.

2
Case 2: a? = 2a3. We start at the point A = (a1, az, %1, a4, as). Con-
sider the polynomial

qt) =22 1) -2)(t2 —4)... (> -2
=20 L Sk — 1)t 4 Sk — 1,k — 1)t* + S(k, k — 1)22

and recall that, by construction, W, will stabilize Cy for any a € C.

First, using ®-—a, ,, we also stabilize the points in Cj and send A to C' =
a2

1
)2 2a4(a—a2).

+=a

2
a — E—a
(a1,€, 3, d}, af), where a) = ag + 52 a1 and af = a5 + ( 5
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Now, for W, (C) = (1,0, 42,0, 43,05 @4,a,a5,4), We calculate the fol-
lowing (keep in mind that this family of automorphisms fixes points
in Cf):

ata =a-Tr(gY)) + a1,
1 af
as,o = =a? <Tr( (Y)) — 2Tr2(q(Y))> +2a - Tr(Aq(Y)) + ?1

Our goal is to show that there exists a nonzero « such that a3, = —%aia
with a1 o # 0, since we will then be back in Case 1. Let f(a) = ag,a—I—%aia.

We now need to find the roots of f(«).
fla) = a? Tr((Y)) + a(2Tr(Aq(Y)) + alTr(q(Y))) +al.

Let a7 and ag be roots of f(a). Then both of them are not zero since
a1 # 0. Since Tr(Y) = € and Tr(Y?) = Tr(B?) + 3 Tr*(Y) = af + 32 we
£+ V2 a5
2 2

find the eigenvalues of Y to be given by u; =
We also have that

Tr(q(Y)) = q(p1) + q(pz) and  Tr(¢*(Y)) = ¢*(1) + ¢* (p2),
so we can calculate that

Tr(q(Y)) = q(p1) + q(p2)

k k
= 2D 4 Z aipn® 4 pp? ) 4 Z g
i=1 i=1
k . .
_ Ml?(kJrl) + M22(k+1) + Zai(ulm + /1’22Z)
i=1
€ V205 0001y 8 V205 94040
=(5+ %) +( )
2 2 2 2
k
€ \/ﬁ 2i e V/2a5.o
+Zaz((§+T) +(§ T) )

=1
1 K k
= oo <e + 2e4/2ak + 2a5)* Y 4 (62 — 26 /2ak + 2aL) +1)>
k o . .
+ Z 2—22 €2 4 2e4/2ak + 2al)" + (€2 — 264/ 2ak + 2a%)").
=1

From this we know Tr(¢(Y")) is a polynomial in € of degree 2(k + 1); call
it g(e).
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Similarly, we get that

1
Tr(¢*(Y)) = 4k+1<(£ +2¢e/2a} +2a5) 2+ 1 (62 —2¢ 2a’5+2ag)2(k+1)>

2k+1
+Z421 % + 261 /2d} + 2a5)" + (2 —2¢/ 2aL +2d5)").

This implies that Tr(¢?(Y)) is a polynomial in € of degree 4(k + 1), say
h(e).

Let us show that for either @ = a1 or a = a9, we must have that
a1,o 7 0. If a1 o is zero in both cases, it implies that

0= —(2Tr(Aq(Y)) + a1 Tr(q(Y))) Tr(g(Y)) + 201 Te(¢*(Y))-

This shows that the discriminant of f(«a) (say D) is zero, i.e. D = 0. Since
we can choose ¢ such that g(e)h(e) # 0, we then get that

201 Tr(¢*(Y))

(2Tr(Aq(Y)) + a1 Tr(q(Y))) = T(g(v)
0= D 403 Tr(¢* (V) (Tr(¢2(Y)) — Tr*(q(Y)))
2
Tr(q(Y))

We have
Tr(q*(Y)) — Tr*(q(Y))) = —2q(p1)q(pi2)

k k
12(l~c-i-1) + Z ai’u12i)(ﬂ22(kz+1) + Z Oéilmzi)
=1 ;

k

i 2(k 2(k+1)

- <M1M2)2(k+1) + E aiﬂlzlﬂz( +1) + E CMZ/LQQZ *
=1

k k

21 21

+ § afir” E Qg™
=1 =1

From this it is not difficult to see that this is a polynomial in &, which
we will denote z(g). Taking € such that g(e)h(e)z(e) # 0, we reach a
contradiction. Thus, using the above actions, we can arrive at the point
(b1,e, —g, by, bs) with by # 0; we then use the proof of Case 1 to achieve
the desired result. O

Finally, we can prove infinite transitivity:

Theorem 1. The action of G on Co is a n-transitive group action for all
n € Zy, and hence infinitely transitive.
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Proof. Let A € Co \ Cibe an arbitrary point. To prove the theorem, it is
sufficient to show that there is a g € Sy, such that g(A) = (0, 0,0, —1,2F+1).
Using Lemmas 10 and 11, we may assume that ajaz # 0 and a? +2a3 # 0.
Then, since ®,, € S when p(t) = at? + 5t3, we can let

2
ag(a? + 2a3)(a? — 2a3)
+ 16a2ag — asl)a4 — 4aIa3a4 + 16a‘;’a§a4 + 16a§’a§a4 — 48a1a§a4

1 (3@?&2@3 4aSaza3 — 16a1a2a3 + 16a1a2a§

+ (a3 + 6a1a3)\/(a% — 2a3)*(a? + 2a3)%(1 + 2’“+1a3)>

and

4
b= —s——— 2a§’a2a3 — 8a§a2a§ + 8a1a2a§ - a?a4 + 2a‘11a3a4
as(a? — 2az)*
3\ 3

+ 4a%a3ay — Sajay + \/(a% — 2a3)*(a? + 2a3)%(1 + 2k+1a3)>

to move A to the point

12_1

a
A= ®,(A) = (a1,0,a3,ay, 28 = (41,0, 2 —~ ETT al, 2511

Then, letting ¢(t) = Zl 2 Bit', we will show that ¥, € Sk.

We first write ¢(t) = ZZ 9 [3 t2’+2[ 2 1= B2y 121, Then by Lemma
8 and Lemma 9 we get that

v,(0,0,0,1,0) = (0,0,0,1,0),
\Ijq(0>0707 _17 O) = (0701 Oa 17 0)7

5] [3]-1
W,y(0,0,0,-1,27) = (Y 20=D+1g,, 0, N 3, 220~ D=2,
=2 1=1

m

2
Zﬁ2+12” Drmlod), G =Tk, §#3,

(3]
a/2 -1 2 .
\Ilq(alv 0’ ;kﬁ’ a4, 2k+1) = (al + Z 2kz+1ﬁ2iv 07
[2]-1 ]

12 2

a;i —1

4 E 2k(i+1)+k+1 7 § : k(i+2) ok+1

2k+1 + 62@ ) (i4+1)+k+ ,a) i +12 (i+2) 2 + )
=1
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From these we obtain the following systems:

SUE 2Ny =0 =Tk, j#3 )
ZEZ; kit B = —ay
mil_1q L. . . - )
Sui B 20D = 1 =Tk, j#3 (13)
ZEZH Boiy12F0H2) = 1 — ¢,

We need to show the systems (12) and (13) have solutions. For the systems
(12) and (13) we have the following matrix:

11 1 1 ... 1

1 22 93 . 9kl
1 23 926 929 . 23(k-1)
1 24 928 9212 od(k-1)

The determinant of this matrix is Vandermonde’s determinant and is
not zero. Thus we can choose coefficients so that ¥, € S, and applying
this element to A’, we get that W,(A") = (0,0,0, —1,2%"1). Therefore, all
elements in Cy \ Cy are in the same orbit as (0,0, 0, —1,2**!) under the
action of Si, and hence G acts n-transitively on Co, as desired. 0J

Conclusion

While Berest—Eshmatov—Eshmatov’s conjecture has been recently
proved, our approach for the case n = 2 brings more clarity of the action
on Csy, which could be useful for future studies.
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