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Categorical properties of some algorithms

of differentiation for equipped posets

I. D. M. Gaviria and A. M. Cañadas
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Abstract. In this paper it is proved that the algorithms
of differentiation VIII-X (introduced by A.G. Zavadskij to classify
equipped posets of tame representation type) induce categorical
equivalences between some quotient categories, in particular, an
algorithm Az is introduced to build equipped posets with a pair of
points (a, b) suitable for differentiation VII such that the subset of
strong points related with the weak point a is not empty.

Introduction

The theory of representation of partially ordered sets or posets was
introduced and developed by Nazarova, Roiter and their students in the
1970s in Kiev. According to Simson such theory allowed to Nazarova and
Roiter to give a solution to the second Brauer-Thrall conjecture [14,20].
We recall that one of the main goals of the theory of representation of
posets consists of giving a complete description of the indecomposable
objects and irreducible morphisms of the category of representations repP

over a őeld k of a given poset P.
Perhaps the most useful tool to classify posets are the algorithms of

differentiation [13,20]. For instance, Nazarova and Roiter introduced an
algorithm known as the algorithm of differentiation with respect to a
maximal point which allowed to Kleiner in 1972 to obtain a classiőcation

2020 MSC: 16G20, 16G60, 16G30.
Key words and phrases: algorithm of differentiation, Auslander-Reiten quiver,

categorical equivalence, equipped poset, poset representation.

https://doi.org/10.12958/adm1647


I . D. M. Gaviria, A. M. Cañadas 39

of posets of őnite representation type [12]. The categorical properties of
such an algorithm were given by Gabriel in 1973 [11]. Soon afterwards
between 1974 and 1977, Zavadskij deőned the more general algorithm I
(also named DI) with respect to a suitable pair of points, this algorithm
was used in 1981 by Nazarova and Zavadskij in order to give a criterion for
the classiőcation of posets of őnite growth representation type [16, 17, 22].
Actually, several years later Zavadskij himself described the structure of
the Auslander-Reiten quiver of this kind of posets, to do that, it was
established that such an algorithm I together with a completion algorithm
are in fact categorical equivalences between some quotient categories [23].

The theory of representation of posets with additional structures was
developed in the 1980s and 1990s, for instance, posets endowed with an
equivalence relation in particular with an involution were introduced and
classiőed by Nazarova and Roiter in [15], and Bondarenko and Zavadskij
in [1] whereas the theory of representation of equipped posets was intro-
duced by Zabarilo and Zavadskij in [30] and [31]. Posets with involution
were classiőed by using DI and some algorithms of differentiation named
DII-DV together with some additional (more simple) algorithms, such
collection of algorithms is currently called the apparatus of differentiation
DI-DV [9].

A tameness criterion for equipped posets with and without involution
was given by Zavadskij. It was obtained by using both the apparatus
of differentiation DI-DV and some additional differentiations VII-XVII
[24ś26]. In particular, algorithms of differentiation I, VII VIII and IX
allowed to classify equipped posets of őnite growth representation type.
In fact, according to Zavadskij [25] the use of algorithms of differentiation
makes of the classiőcation problems for posets a fairly easy task based
only on combinatorial methods.

Since algorithms of differentiation are additive functors it is necessary
to establish the behavior of the objects and morphisms involved in the
process, in this direction Gabriel proved that the algorithm of differentia-
tion with respect to a maximal point induces a categorical equivalence
and the same was proved by Zavadskij, Cañadas et al for the algorithms
of differentiation I-V, and VII, actually advances on the subject have been
proposed for algorithms of differentiation VIII and IX [2ś4,6, 7, 9, 11,23].

We recall that according to Zavadskij the main problem regarding the
theory of the algorithms of differentiation consists of proving that they
induce categorical equivalences between appropriated quotient categories [5].
In this paper, we address this problem by proving that algorithms of
differentiation Az (introduced in this paper by the authors), VIII, IX and
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X satisfy this property. Actually, we will establish the following theorem 1
bearing in mind that when Zavadskij introduced algorithms VII-XVII for
equipped posets he was focused on the behavior of the objects under the
action of functors of type DJ

S , in fact, he proved the denseness property
of such algorithms without pay attention to its faithfulness and fullness
properties [25,28].

Theorem 1. Let (P,Φ) be an equipped poset endowed with an involution
∗ and with a set of points S, J-suitable. Then if J is one of the symbols Az,
VIII, IX, X the corresponding differentiation functor ′ = DJ

S : repP −→
repP′

S deőned by one of the formulas (19), (20), (21), (27), (31) induces
an equivalence between quotient categories:

repP/I
∼
→ repP

′
S/I

′

in particular the functor DJ

S induces mutually inverse bijections between
indecomposable representations of the form

Ind repP \ [I(I)] ⇄ Ind repP
′
S = Ind repP

′
S \ [I′(I)].

In Theorem 1 we let [I] ([I′(I)]) denote a suitable ideal (collection of
isomorphic classes of indecomposable representations) deőned by the action
of the corresponding functor. Generally such ideal consists of morphisms
that pass through sums of some suitable indecomposable representations
in [I(I)] and [I′(I)]. Moreover, for two representations or representatives
U, V ∈ [I(I)] it holds that U ′ = V ′ ∈ [I′(I)]. Besides, it is considered
that the involution ∗ is trivial (i.e., x∗ = x for all x ∈ P) for each of the
differentiations Az, VIII and IX.

The following lemma proved by Zavadskij for differentiations VII-XVII
in [25, 28] establishes that each of these functors is dense. In this case, Y
denotes a suitable representation of the category of representations of an
equipped poset with a set of points S suitable for differentiation J, P′

S

is a corresponding derived poset and P
′
S stands for the derivative of a

completed poset with an additional strong relation.

Lemma 1. For each representation W ∈ repP
′
S, there exists a represen-

tation W ↑ ∈ repP such that (W ↑)′ ≃W ⊕ Y m, for some m ⩾ 0.

This paper is organized as follows; in section 1 basic notation and deő-
nitions regarding the category of representations of posets with additional
structures are included. In section 2, we recall some categorical properties
of the algorithms of differentiation, I, completion, and VII. We prove the
main result by describing in section 3 the algorithms of differentiation Az,
VIII-X.
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1. Preliminaries

In this section, for the sake of better understanding, we introduce main
notation and deőnitions regarding equipped posets and its category of
representations [2ś4,6, 7, 25,26,30,31].

1.1. Category of representations of posets
with additional structures

In this section, we recall the deőnition of equipped posets and posets
with involution and their corresponding category of representations as
Zavadskij et al have described in [3, 4, 6, 7, 25, 26]. Worth noting that
although equipped posets were introduced and classiőed in [25, 26, 30, 31]
over the pair of őelds (R,C), in this paper, we consider notation and deő-
nitions adopted by Zavadskij and Rodriguez in [19] where representations
of equipped posets are deőned over a pair of őelds (F,G) with G = F (ξ)
a quadratic extension of F associated with a minimal polynomial of the
form t2 + αt+ β, α, β ∈ F , β ̸= 0 and ξ ∈ G such that

ξ2 + αξ + β = 0. (1)

Equipped posets. A poset (P,⩽) is called equipped if all the order
relations between its points x ⩽ y are separated into strong (denoted
x⊴ y) and weak (denoted x ⪯ y) in such a way that

x ⩽ y ⊴ z or x⊴ y ⩽ z implies x⊴ z, (2)

i.e., a composition of a strong relation with any other relation is strong.
In general relations ⊴ and ⪯ are not order relations. These relations are

antisymmetric but not reŕexive. In particular ⪯ is not reŕexive (meanwhile
⊴ is transitive) [19].

We let x ⩽ y denote an arbitrary relation in an equipped poset (P,⩽).
The order ⩽ on an equipped poset P gives rise to the relations ≺ and ◁

of strict inequality : x ≺ y (respectively, x◁ y) in P if and only if x ⪯ y
(respectively, x⊴ y) and x ̸= y.

A point x ∈ P is called strong (weak) if x⊴ x (respectively, x ⪯ x).
These points are denoted ◦ (respectively, ⊗) in diagrams. We also denote
P◦ ⊆ P (respectively, P⊗ ⊆ P) the subset of strong points (respectively,
weak points) of P. If P⊗ = ∅ then the equipment is trivial and the poset
P is ordinary.

Remark 1. Note that if x ⪯ y in an equipped poset (P,⩽) and there
exists t ∈ P such that x ⩽ t ⩽ y then x, y ∈ P⊗, x ⪯ t and t ⪯ y.
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Otherwise, if x⊴t or t⊴y then by deőnition it is obtained the contradiction
x⊴ y.

If P is an equipped poset and a ∈ P then the subsets of P denoted
a∨, a∧, a▽, a△, a▼, a▲, a⋎ and a⋏ are deőned in such a way that:

a∨ = {x ∈ P | a ⩽ x} , a∧ = {x ∈ P | x ⩽ a} ,

a▽ = {x ∈ P | a◁ x} , a△ = {x ∈ P | x◁ a} ,

a▼ = a∨ \ a, a▲ = a∧ \ a,

a⋎ = {x ∈ P | a ⪯ x} , a⋏ = {x ∈ P | x ⪯ a} .

Subset a∨ (a∧) is called the ordinary upper (lower) cone, associated
with the point a ∈ P and subset a▽ (a△) is called the strong upper (lower)
cone associated with the point a ∈ P. Whereas subsets a▼ and a▲ are
called truncated cones (upper and lower) associated with the point a ∈ P.

In general, subsets a⋎ and a⋏ are not cones. Note that, if x ∈ P◦ then
x⋎ = x⋏ = ∅.

For an equipped poset (P,⩽) and A ⊂ P, we deőne the subsets, A▽,
A⋎ and A∨ in such a way that

A▽ =
⋃

a∈A

a▽, A⋎ =
⋃

a∈A

a⋎, A∨ =
⋃

a∈A

a∨

Subsets A△, A⋏ and A∧ are deőned in the same way.

If P is an equipped poset then a chain C = {ci ∈ P | 1 ⩽ i ⩽

n, ci−1 < ci if i ⩾ 2} ⊆ P is a weak chain if and only if ci−1 ≺ ci for each
i ⩾ 2. If c1 ≺ cn then we say that C is a completely weak chain. Moreover,
a subset X ⊂ P is completely weak if X = X⊗ and weak relations are the
only relations between points of X. Often, we let {c1 ≺ c2 ≺ · · · ≺ cn}
denote a weak chain which consists of points c1, c2, . . . , cn. An ordinary
chain C is denoted in the same way (by using the corresponding symbol
<).

The diagram of an equipped poset (P,⩽) may be obtained via its
Hasse diagram (with strong (◦) and weak points (⊗)). In this case, a new
line is added to the line connecting two points x, y ∈ P with x ◁ y if
and only if such relation cannot be deduced of any other relations in P.
Figure 1 shows an example of this kind of diagrams.

In this case if A = {4, 6}, then A▽ = {6, 7}, A⋎ = {4, 5}, A∨ =
{4, 5, 6, 7}, A△ = {1, 2, 3, 6, 8, 9}, A∧ = {1, 2, 3, 4, 6, 8, 9} and A⋏ =
{1, 2, 3, 4}. Note that A ≠ A⊗, subsets C1 = {9 < 8 < 3 < 4 < 5}
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1
⋎
= {1, 2, 3, 4}

2
⋎
= {2, 3, 4}

3
⋎
= {3, 4}

4
⋎
= {4, 5}

5
⋎
= {5}

6
⋎
= ∅

7
⋎
= ∅

8
⋎
= ∅

9
⋎
= ∅

1
▽
= {5, 6, 7}

2
▽
= {5, 6, 7}

3
▽
= {5, 6, 7}

4
▽
= ∅

5
▽
= ∅

6
▽
= {6, 7}

7
▽
= {7}

8
▽
= {3, 4, 5, 6, 7, 8}

9
▽
= {3, 4, 5, 6, 7, 8, 9}

Figure 1. The diagram of an equipped poset and some of its subsets.

and C2 = {1 ≺ 2 ≺ 3 ≺ 4} constitute a chain and a completely weak
chain, respectively.

For an equipped poset P and A,B ⊂ P we write A < B if a < b for
each a ∈ A and b ∈ B. Notations A ≺ B and A ◁ B are assumed in the
same way.

Equipped posets endowed with an involution. An equipped poset
with involution is an equipped poset (P,⩽,⪯,⊴) with an involution ∗
satisfying the following two additional conditions:

(i) on the set of all points P, it is given an involution ∗ : P −→ P

which preserves strong and weak points and independent of the
relation ⩽. Hence, strong points are divided into small (x = x∗) and
big (x ̸= x∗), and weak points are partitioned into weak (x = x∗)
and biweak (x ̸= x∗);

(ii) to each biweak point x it is assigned the number g(x) = g(x∗) ∈ {±1}
called its genus (or genus of the pairs x, x∗).

In the case x ̸= x∗, we called the points x and x∗ equivalents and write
x ∼ x∗. The involution ∗ is said to be primitive if it leaves őxed all weak
points (i.e. there are no biweak points).

In diagrams of equipped posets with involution, symbols ◦, •, ⊗, ⊙
depict small, big, weak and biweak points, respectively. All order relations
with a participation of at least one strong point, as well as all weak relations
between weak points, are pictured by a single line. But all strong relations
between weak points, which are not consequences of some other relations,
are pictured by a double line (or by an additional line) [25].

If some group of points is encircled by a contour connected by some
(single or double) line with some other points, it means that all points
located inside the contour have the same order relations with the mentioned
other points (determined by the type of the line).

Note that in Figure 2, a ∼ a∗, c ∼ c∗; q = q∗; b = b∗; c∗ ⊴ b, a⊴
a∗ ⊴ q, a⊴ c ⪯ b, a⊴A, B ⊴ b; b, c, c∗, q ∈ P⊗.
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Figure 2. The diagram of an equipped poset with involution.

1.2. Complexiőcation

In this section, we give deőnitions of complexiőcation and reelliőcation
of a vector space and its respective extension to complexiőcation of linear
transformations [2, 3, 21]. Some particular subspaces whose properties are
useful in the theory of representation of equipped posets are described as
well [25].

Let F ⊂ G be an arbitrary quadratic őeld extension with G = F (ξ)
for some őxed element ξ ∈ G. Then each element x ∈ G can be written
uniquely in the form α + ξβ with α, β ∈ F in this case (analogously
to the case (F,G) = (R,C)) α is called the real part of x and β is the
corresponding imaginary part of x.

Complexiőcation of F -spaces. The complexiőcation of a real vector
space U0 is the complex vector space Ũ0 = U0 × U0 = U2

0 in which the

addition + : Ũ0×Ũ0 −→ Ũ0 and the scalar multiplication · : C×Ũ0 −→ Ũ0

are deőned by
(
v
w

)
+

(
v′

w′

)
=

(
v + v′

w + w′

)
and (a+ ib)

(
v
w

)
=

(
av − bw
bv + aw

)
. (3)

If we identify the space U0 with the real subspace U0 × {0} of Ũ0 and

write simply v instead of (v, 0)t then an arbitrary element z ∈ Ũ0, may
be written in the following form

z =

(
v
w

)
=

(
v
0

)
+ i

(
w
0

)
= v + iw, v, w ∈ U0.

Therefore the complexiőcation of a real vector space U0 has the form
Ũ0 = U0 + iU0. Thus, if W ⊂ Ũ0 is a R-subspace of Ũ0 then the real part
of W denoted ReW and its corresponding imaginary part denoted ImW
are deőned in such a way that if W = R{xt+iyt | xt, yt ∈ U0, t ∈ A} ⊂ Ũ0

for a őxed basis then

ReW = span{xt | t ∈ A} ⊂ U0, ImW = span{yt | t ∈ A} ⊂ U0.
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In this case, if k is a őeld and T = {e1, e2, . . . , en} is a set of generators of
a k-vector space V then k{e1, e2, . . . , en} denotes the subspace generated
by T .

In [21] it is proved that every basis in a real vector space V is also a basis
(over C) of the complex vector space Ṽ consequently dimC Ṽ = dimR V .

If W is a complex vectorial space then the reelliőcation WR of W is
the real vector space which is obtained from W by restricting the scalar
multiplication to R ×W , (Sloppily, this is just W considered as a real
vector space). Thus, if {wt | t ∈ A} is a basis of WR over C then

{wt | t ∈ A} ∪ {iwt | t ∈ A}

is a basis of WR over R and dimRWR = 2dimCW [21].
A real subspace V ofWR is called a real form ofW ifW = Ṽ = V +iV ,

therefore dimR V = dimCW . In [21] it is also proved that if V is a

R-space then (Ṽ )R ≃ V ⊕ V . Thus, if W is a C-subspace of Ũ0 with

W = C{xt + iyt | xt, yt ∈ U0, t ∈ A} ⊂ Ũ0 then
WR = R{xt + iyt,−yt + ixt | xt, yt ∈ U0, t ∈ A}, therefore ReWR =

ImWR = span{xt | t ∈ A}+ span{yt | t ∈ A} = span{xt, yt | t ∈ A}.
The complexiőcation of a real vector space may be generalized to

the case (F,G) where G = F (ξ) is a quadratic extension of F . In this
case, we assume that ξ is a root of the minimal polynomial t2 + αt+ β,
β ≠ 0, (α, β ∈ F ). In particular if U0 is a F -space then the corresponding

complexiőcation is the G-vector space also denoted U2
0 = Ũ0 with a scalar

product of the form (see identity (1)):

(a+ ξb)

(
v
w

)
=

(
av − βbw

bv + (a− αb)w

)
, v, w ∈ U0. (4)

As in the case (R,C), we write U2
0 = U0 + ξU0 = Ũ0.

To each G-subspace W of Ũ0 it is possible to associate the following
F -subspaces of U0, W

+ = ReWF = ImWF and W− = span{x ∈ U0 |
(x, 0)t ∈W} ⊂W+.

W̃+ = F (W ) is called the F -hull of W such that W ⊂ F (W ). (5)

If Y is a F -subspace of U0 and X = Ỹ then X+ = X− = Y . Therefore,
Y is a F -form of X. For example, if we consider F = R, G = C and
U0 = R2 = R{e1, e2} then Ũ0 = C2, in this case, we can assume ξ = i.
Thus, if W is a C-subspace of C2 such that W = C{e1 + ie2} then

W+ = R2 and W− = 0.
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If R3 = R{e1, e2, e3}, and W = C{e1, e2 + ie3} ⊂ C3 = R̃3 then

W+ = R3, F (W ) = W̃+ = C3 and W− = R{e1}.

Remark 2. Any G-subspace W of Ũ0 can be written as a direct sum

of G-subspaces, W = W̃− ⊕H where H is a complement of W̃− in W .
Therefore, H+ ≃W+/W−. If X ⊂ Ũ0 is a G-subspace with a F -hull such
that F (X) = X then we say that X is a strong space. Therefore any

G-subspace X ⊂ Ũ0 always has a strong direct summand of the form X̃−.

1.3. Representation of equipped posets

In this section, we recall the deőnition given by Zavadskij et al. of
the category of representations of equipped posets with and without an
involution deőned on its set of points. It should be noted that Zavadskij
gave a generalization of equipped posets over a pair of őelds (F,G), where
G is a Galois extension of the ground őeld F [29].

A representation of an equipped poset over the pair (F,G) is a system
of subspaces of the form

U = (U0;Ux | x ∈ P), (6)

where U0 is a őnite dimensional F -space; and for each x ∈ P, Ux is a
G-subspace of Ũ0, such that, if x ⪯ y then Ux ⊂ Uy, and if x ⊴ y then
F (Ux) ⊂ Uy (see (5)).

We let repP denote the category whose objects are the representations
of an equipped poset P over a pair of őelds (F,G). In this case, a morphism
φ : (U0;Ux | x ∈ P) −→ (V0;Vx | x ∈ P), between two representations U
and V is a F -linear map φ : U0 −→ V0 such that φ̃(Ux) ⊂ Vx, for each

x ∈ P, where φ̃ : Ũ0 −→ Ṽ0 is the complexiőcation of φ (φ̃ = φ + ξφ).
The composition between morphisms of repP is deőned in a natural way.

Two representations U, V ∈ repP are said to be isomorphic if and
only if there exists an F -isomorphism φ : U0 −→ V0 such that φ̃(Ux) = Vx,
for each x ∈ P

The sum U ⊕ V ∈ repP is deőned as in the classical way, that is, the
sum U⊕V of two representations of a given equipped poset P is deőned in
such a way that U ⊕V = (U0⊕V0;Ux⊕Vx | x ∈ P). Therefore, repP is a
Krull-Schmidt category. A representation U ∈ repP is indecomposable if
U ̸= 0 and there is not a direct sum decomposition of U into two non-zero
representations. Often, we let IndP denote a set of representatives of the
isomorphism classes of all the indecomposable objects of a category repP.
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Let P be an equipped poset and U, V ∈ repP. Then U is a sub-
representation of V if and only if the spaces U0, V0, Ux and Vx satisfy
the inclusions U0 ⊂ V0 and Ux ⊂ Vx, for each x ∈ P.

For each x ∈ P, we let Ux denote the radical subspace of Ux, that is,
Ux =

∑
z◁x

F (Uz) +
∑
z≺x

Uz.

Let P be an equipped poset. The dimension of a representation U ∈
repP is the vector d = dimU = (d0; dx | x ∈ P), where d0 = dimF U0

and dx = dimG Ux/Ux. A representation U ∈ repP is sincere if d0 ̸= 0
and dx ̸= 0, for each x ∈ P. In other words, the vector d of a sincere
representation U has not null coordinates.

Let X ⊂ P and U ∈ repP. The subspaces of U0, denoted respectively

by UX , U+
X ,

⌢

UX and
⌢

(UX)−, are deőned as follows:

UX =
∑

x∈X

Ux, U+
X =

∑

x∈X

U+
x ,

⌢

UX =
⋂

x∈X

Ux,
⌢

(UX)− =
⋂

x∈X

U−
x .

Note that U+
∅ = 0,

⌢

U∅ = U0, and if x, y ∈ P with x◁ y then U+
x ⊂ U−

y .
Let P be an equipped poset with involution ∗ which naturally induces

an equivalence relation on the points of P, let Φ be the set of all equivalence
classes on P respect to such an involution. Then classes κ ∈ Φ consist
either of one or two points, in the second case it holds that x ̸= x∗ and
κ = (x, x∗).

Now, we recall the deőnition of a representation of an equipped poset
with involution as given by Zavadskij in [25]. In this case, we let (P,Φ)
denote an equipped poset with an involution inducing a set of classes Φ
over P, if there is not doubt with the order ⩽ and the corresponding
equipment, we will write simply P to denote an equipped poset with
involution.

Let (P,Φ) be an equipped poset with involution. A representation U
of (P,Φ) is a system of vector spaces of the form

U = (U0;Uκ | κ ∈ Φ), (7)

where U0 is a őnite dimensional F -vector space and Ũ0 is its corresponding
complexiőcation, which is a G-vector space, such that,

if x is a small point =⇒ Ux ⊂ U0;

if x is a weak point =⇒ Ux ⊂ Ũ0;
if x is a big point =⇒ U(x,x∗) ⊂ U0 ⊕ U0;

if x is a biweak point =⇒ U(x,x∗) ⊂ Ũ0 ⊕ Ũ0;

if x < y =⇒ U+
x ⊂ U−

y .
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A morphism φ : (U0;Uκ | κ ∈ Φ) −→ (V0;Vκ | κ ∈ Φ) between two
representations U and V , is an F -linear map φ : U0 −→ V0 such that:
φκ(Uκ) ⊂ Vκ, for each κ ∈ Φ. In the natural sense, if z = (z1, z2) ∈ Uκ,
then φκ(z) = (φ(z1), φ(z2)).

1.4. Examples of some indecomposable objects

In this section, we give some examples of indecomposable objects in
the category repP, where P is an equipped poset. The matrix problem of
these kind of posets and the matrix presentations of the indecomposable
objects were deőned by Zavadskij in [25].

Later on a subset X ⊂ P will be called small (big, weak,...) if all its
points are small (big, weak,...). A subset consisting of two (three, four)
mutually incomparable points is called a dyad (triad, tetrad).

we often write a ∥ b to denote that points a, b in a poset P are
incomparable and if there is not confusion hereinafter P denotes an
equipped poset unless otherwise stated.

If P is an equipped poset and A ⊂ P then we denote by P (A)
an indecomposable representation of the equipped poset P such that
P (A) = P (minA) = (P0 ; Px | x ∈ P), where P0 = F and Px = G if
x ∈ A∨, Px = 0 otherwise. In particular, P (∅) = (F ; 0, . . . , 0).

If a, b ∈ P with a ∥ b then P (a, b) denotes an indecomposable object
such that P (a, b) = (P0;Px | x ∈ P) with P0 = F and Px = G if
x ∈ a∨ ∪ b∨, Px = 0 otherwise.

If a, b, p ∈ P⊗, c ∈ P◦, with a ≺ b, a ∥ p, a ∥ c then T (a), T (a, b),
T (a, p) G1(a, c) and G2(a, c) denote indecomposable objects with matrix
presentation of the following form (T0 = G0 = F 2 in each case):

1

ξ

a

T (a)

1

ξ

a

T (a, b)

0

1

b

1

ξ

a

T (a, p)

1

ξ

p

1

ξ

a

G1(a, c)

0

1

c

1

ξ

a

G2(a, c)

0

1

1

0

c

If P is an equipped poset with a primitive involution ∗, and a ∈ P•,
b ∈ P⊗, with a ∥ b, then G1(b, a) and G2(b, a) denote indecomposable
representations with the matrix presentations described below (G0 = F 2

in each case):

1
ξ

0
1

0
0

0
0

b a a∗

G1(b, a) =
1
ξ

1
0

0
1

0
0

0
0

b a a∗

G2(b, a) =
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Remark 3. Zavadskij proved in [25] that P (∅), P (ci), T (ci) and T (ci, cj)
for 1 ⩽ i < j ⩽ n, are the only indecomposable representations (up to
isomorphisms) over the pair (R,C) of a completely weak chain C = {c1 ≺
· · · ≺ cn}. In fact, if U = (U0;Uci | 1 ⩽ i ⩽ n) is a representation of
C over (R,C), then in the corresponding matrix representation to each
block Uci , 1 ⩽ i ⩽ n, can be reduced via admissible transformations to
the following standard form:

Uci = ,I
iI

I

where the columns consist of generators of Uci modulo its radical subspace
Uci = Uci−1

with respect to a őxed basis of U0 (in this case, empty cells
indicate null coordinates). This result can be generalized in a natural way
to the case (F,G) by using a suitable scalar ξ ∈ G instead of the constant
i ∈ C in the matrix presentation of Uci shown above.

1.5. (A,B)-cleaving and the Zavadskij symbol

In this section, we recall the notion of a cleaving pair of subspaces in
the sense of Zavadskij [25] and the deőnition of the Zavadskij symbol as
Cañadas and Cifuentes described in [9].

Henceforth, the disjoint union of subsets X, Y ∈ P will be called a
sum and it will be denoted by X + Y . A sum X + Y is called cardinal
(ordinal) if there is no order relations between points x ∈ X and y ∈ Y (if
x < y for all x ∈ X and y ∈ Y , or conversely). By (p̃1, . . . , p̃k, q1, . . . , ql)
we denote an analogous cardinal sum in which l chains are ordinary with
q1, . . . , ql points, and k chains are completely weak with p1, . . . , pk points,
respectively.

The following lattice allows deőning a cleaving pair of subspaces as
Zavadskij described in [27].

The order relation in this poset is given by the natural inclusion of
subspaces, E0 is a complementary subspace of A ∩B in A, and W0 is a
complementary subspace of A+B in U0. Let U0 be an F -vector space and
E0, W0, A, B ⊂ U0. The pair of subspaces (E0,W0) is an (A,B)-cleaving
of U0 if the poset of subspaces described in Figure 3 is a lattice (with the
obvious meets ∧ = ∩ and sums ∨ = +). In other words, (E0,W0) is an
(A,B)-cleaving pair of U0 if and only if

U0 = E0 ⊕W0, A = E0 + (A ∩B) and B =W0 ∩ (A+B). (8)
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❅
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❅
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❅
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�
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�

0

A ∩B

B

W0

E0

A

A+B

U0

Figure 3. The diagram of an (A,B)-cleaving of U0.

Set U0, V0 be two arbitrary őnite-dimensional F -vector spaces. For any
subspaces X ⊂ U0 and Y ⊂ V0, the Zavadskij symbol [X,Y ] associated
with X and Y is a subspace of HomF (U0, V0) such that φ ∈ [X,Y ] if

X ⊂ Ker φ and Im φ ⊂ Y.

Note that, if X ′ ⊂ X and Y ⊂ Y ′ then [X,Y ] ⊂ [X ′, Y ′] [27].

If U = X ⊕ Y is a vector space decomposition then we let eX denote
the idempotent iπ in End (U), where π : U → X and i : X → U are the
natural projection and injection, respectively.

For a category R, we let ⟨Ui | i ∈ I⟩R denote the ideal consisting of
all morphisms passing through őnite direct sums of the objects Ui. That
is, if φ : U → V ∈ ⟨Ui | i ∈ I⟩R, then there exist morphisms f, g ∈ R

such that φ = U
f
−→

⊕
i

Umi

i

g
−→ V with mi = 0 for almost all i.

1.6. Auslander-Reiten quiver

The Gabriel’s quiver ∆(K) of a Krull-Schmidt category K is a directed
graph whose vertices are the isomorphism classes [U ] of the indecompos-
able objects U in K and there is an arrow [U ] → [V ] if Irr(U, V ) ̸= 0
with Irr(U, V ) = Rad(U, V )/Rad2(U, V ). A component of K is the class
objects generated by the indecomposable objects belonging to a connected
component of ∆(K) [18].

The Auslander-Reiten quiver Γ(K) of a Krull-Schmidt category K is
the Gabriel’s quiver of K in which it is deőned a particular translation
denominated the Auslander-Reiten translation (τ).
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2. Some preliminary algorithms

In this section, for the sake of clarity, we recall some categorical prop-
erties of the algorithms of differentiation, I (section 2.1), completion
(section 2.2) and VII (section 2.3).

2.1. Algorithm of differentiation I

The following is the deőnition of the algorithm of differentiation I (DI)
with respect to a suitable pair of points [26].

A pair of incomparable points (a, b), of a poset P is called I- suitable
or suitable for differentiation I, if P = a▽ + b△ + C

where C = {c1 < · · · < cn} is an ordinary chain incomparable with
points a, b. The derived poset of the set P with respect to the pair (a, b) is
a poset P′ = P′

(a,b) = (P\C)+C++C−, where C− = {c−1 < · · · < c−n }

and C+ = {c+1 < · · · < c+n } are new ordinary chains, replacing the chain
C, with the relations c−i < c+i ; a < c+i and c−i < b for all 1 ⩽ i ⩽ n.

The differentiation functor DI

(a,b) : repP −→ repP′ assigns to each

representation U = (U0;Ux | x ∈ P) of P the derivative representation
U ′ = (U ′

0;U
′
x | x ∈ P′) accordingly to the formulae:

U ′
0 = U0,

U ′
c+i

= Ua + Uci , for 1 ⩽ i ⩽ n,

U ′
c−i

= Ub ∩ Uci , for 1 ⩽ i ⩽ n,

U ′
x = Ux for the remaining points x ∈ P

′
(a,b),

φ′ = φ for all F linear map-morphism, φ : U0 → V0.

(9)

P′
(a,b) can be considered as a subposet of the free lattice generated

by P. Figure 4 shows the Hasse diagram for this differentiation.

a
❝✄✄
✄
✄
✄

❝
c1
��

❝
c2
��

❝��
❝cn ❝b

✄
✄
✄
✄
✄

I
−→
(a,b)

❝✄
✄
✄
✄
✄

❝
❅❅

��
❝
❅❅ ❝

❅❅��
❝��

❝ ❝
✄
✄
✄
✄
✄

�� ❝��
��

❝��
❅❅ ❝

b

��

a c−1

c−2

c−n

c+1

c+2

c+n

Figure 4. Hasse diagrams of an equipped poset P and its corresponding
derived poset P′

(a,b).
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Since usually the derived representation U ′ is decomposable and con-
tains trivial summands P (a), it is convenient to consider (besides U ′) the
reduced derived representation U↓ such that U ′ ≃ U↓ ⊕ Pm(a), where
m ⩾ 0 and U↓ is free of direct summands P (a). There exist an alternative
deőnition of U↓, namely, U↓ =W = (W0;Wx | x ∈ P), where W0 is any
subspace in U0 satisfying the conditions Ua+W0 = U0, (Ua+Ub)∩W0 = Ub

and Wx = U ′
x∩W

m(x)
0 for all x ∈ P (here m(x) = lx is the multiplicity of

a point x). The representation U↓ does not depend (up to isomorphism),
on the choice of W0.

The inverse (in some sense) operation ↑, called integration, assigns to
each representation W of the set P′ the primitive representation W ↑ of
the initial set P such that (W ↑)↓ ≃W as soon as W contains no direct
summands P (a).

Zavadskij proved the following result in [22], [23] and [27].

Theorem 2. Let P be a poset with a pair of points (a, b) I-suitable. Then:
(a) The functor DI

(a,b) : repP −→ repP′
(a,b), deőned by formulas (9)

induces an equivalence of the quotient categories

repP/⟨P (a), P (a, c1), . . . , P (a, cn)⟩
∼
→ repP′

(a,b)/⟨P (a)⟩.

(b) The operations ↓ and ↑ induce mutually inverse bijections

IndP \ [P (a), P (a, c1), . . . , P (a, cn)] ⇄ IndP′
(a,b) \ [P (a)].

Remark 4. It should be noted that Zavadskij proved numerals (a) and (b)
of Lemma 2 in [22,23] for the algorithm of differentiation I and completion,
whereas for algorithms Az, VII-X he only proved numeral (b) [25].

2.2. Completion algorithm

In this section, we present the algorithm of completion as Zavadskij
deőned in [23,25,26].

A pair of weak points a, b weakly comparable a ≺ b of an equipped
poset P will be called special if P = a▽ + b△ +Σ, where Σ is the interior
of the interval [a, b].

The following is the deőnition of the completion algorithm which is a
differentiation with respect to a special pair of points (a, b) of an equipped
poset.

The completion of P with respect to such special pair (a, b) is a
transition from P to a slightly different equipped poset P = P(a,b)

obtained from P by strengthening the relation between the points a and
b for which we have the following two situations:
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(a) P = a▽ + b△, where a, b are incomparable strong points,
(b) P = a▽ + b△ + Σ, where a, b are weak points, a ≺ b and Σ is the

interior of the segment [a, b].
In both cases the completed equipped poset P is obtained from P by
adding the only one strong relation a ◁ b. In the case (a) this is in fact
the classical completion of an ordinary poset (see, [23]). In the case (b)
the completion a ◁ b of P conforms to a pair of mutually symmetric
completions of the evolvent P̂ (i.e., the ordinary poset associated to P)
with respect to ordinary special pairs (a′, b′′) and (a′′, b′).

⊗

⊗

�
�

�
�

♠
♠

♠
a

A

Σ

b

B

completion
−−−−−−−→

(a,b)

⊗

⊗

�
�

�
�

♠
♠

♠
a

A

Σ

b

B

Figure 5. The diagrams of an equipped poset P and its corresponding
completed poset P(a,b).

Let D(a,b) : repP −→ repP(a,b) be the functor induced by the algo-
rithm of completion. This functor is deőned as follows: for U = (U0;Ux |
x ∈ P) ∈ repP,

D(a,b) (U) := U = (U0;Ux | x ∈ P) ∈ repP(a,b),

where

U0 = U0,

U b = Ub + F (Ua),

Ux = Ux, for the remaining points x ∈ P(a,b),

φ = φ, for all F linear map-morphism φ : U0 −→ V0.

(10)

It is clear that repP is a full subcategory of the category repP.
Moreover, the following statement holds, see [23, 25].

Lemma 2. The category repP coincides with the full subcategory of the
category repP formed by the objects without direct summands of type P (a)
in the case (a), and of type T (a) in the case (b). Therefore

IndP(a,b) =

{
IndP \ {P (a)} in the case (a),
IndP \ {T (a)} in the case (b).

Regarding the completion functor Cañadas and Zavadskij proved the
following results in [2] and [27] respectively.
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Lemma 3. The completion functor D(a,b) induces the following categorical
equivalence of quotient categories.

repP/⟨T (a), T (a, b)⟩
∼
→ repP/⟨T (a)⟩.

As a consequence of Lemmas 2 and 3, the following corollary is obtained
giving an isomorphism (≃) between Gabriel quivers of the corresponding
categories.

Corollary 1. Let Γ(R) and Γ(R) be, respectively, the Gabriel’s quivers
of the categories R = repP and R = repP, then

Γ(R) \ [T (a), T (a, b)] ≃ Γ(R) \ [T (a)].

2.3. Categorical properties of the algorithm
of differentiation VII for equipped posets

The differentiation VII is one of the seventeen differentiations devel-
oped by Zavadskij to classify (in particular) equipped posets of tame and
of őnite growth representation type [25, 26].

Let P be an equipped poset then a pair of points (a, b) of the poset
P is said to be VII-suitable or suitable for differentiation VII, if a ∈ P⊗,
b ∈ P◦, a ∥ b and P = a▽ + b△ + C, where {c1 ≺ · · · ≺ cn} is a

completely weak chain (possibly empty) incomparable with the point
b, and a ≺ c1 (note that automatically a ≺ cn).

The derived poset P′
(a,b) of an equipped poset P with respect to a pair

(a, b) of points VII-suitable is an equipped poset deőned in such a way
that

P
′
(a,b) = (P \ {a+ C}) +

{
a− < a+

}
+ C− + C+,

where a− ∈ (P′
(a,b))

⊗, a+ ∈ (P′
(a,b))

◦, C− =
{
c−1 ≺ · · · ≺ c−n

}
and C+ ={

c+1 ≺ · · · ≺ c+n
}

are completely weak chains, c−i ≺ c+i for all i; a− ≺ c−1 ;
a+ < c+1 ; c−n < b, and the following conditions hold:

(1) each of the points a−, a+, (c−i , c
+
i ) inherits all the previous order

relations of the point a (ci) with the points of the subset P\{a+ C};
(2) the order relations in P′

(a,b) are induced by the relations in its subset

P \ {a+ C}, and by the relations described above (note that, in
particular, a− ≺ c−n ).

The following functor DVII

(a,b) was given by Zavadskij in [25], soon

afterwards, it was updated by Rodriguez and Zavadskij in [19] by using
some short versions of this algorithm via representations of posets with
additional lattice relations.
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Figure 6. Diagrams of an equipped poset P and its derivative poset P′

(a,b).

LetP be an equipped poset with a pair of points (a, b), VII-suitable, the
following formulas deőne the differentiation functor DVII

(a,b) : rep P −→

rep P′
(a,b), induced by the algorithm of differentiation VII. Thus for a

given representation U = (U0;Ux | x ∈ P) ∈ rep P, we get the derived
representation U ′ = (U ′

0;U
′
x | x ∈ P′

(a,b)), if 1 ⩽ i ⩽ n, where:

U ′
0 = U0, U ′

a− = Ua ∩ Ub, U ′
a+ = F (Ua),

U ′
c−i

= Uci ∩ Ub, U ′
c+i

= Uci + F (Ua),

U ′
x = Ux for the remaining points x ∈ P

′
(a,b),

φ′ = φ, for all F linear map-morphism φ : U0 −→ V0.

(11)

Note that, P ′(a) = P (a+) and T ′(a) = T ′(a, ci) = P 2(a+). A represen-
tation of P, containing no direct summands of the form P (a), T (a) and
T (a, ci), will be called reduced. Obviously, P ↓(a) = T ↓(a) = T ↓(a, ci) = 0,
for all 1 ⩽ i ⩽ n. By construction of the reduced derivative representation.

The following results were proved by Cañadas, Zavadskij and Zavadskij
et al in [2], [19] and [25].

Lemma 4. For each object W ∈ repP
′
(a,b) there exists an object U =

W ↑ ∈ repP such that U ′ ≃W ⊕ Pm(a+), for some m ⩾ 0.

Zavadskij proved that (W ↑)↓ ≃ W , (U↓)↑ ≃ U for each reduced
representation U of P and each representation W of P′ where W ≃
U↓ [25].

Lemma 5. Let P be an equipped poset with a pair of points (a, b) VII-
suitable. Then:
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(a) The functor DVII

(a,b) : repP −→ repP′
(a,b), deőned by formulas (11)

induces an equivalence of the quotient categories

repP/⟨T (a), T (a, ci), P (a) | 1 ⩽ i ⩽ n⟩
∼
→ repP

′
(a,b)/⟨P (a

+)⟩.

(b) The operations ↓ and ↑ induce mutually inverse bijections

IndP \ [T (a), T (a, ci), P (a) | 1 ⩽ i ⩽ n] ⇄ IndP
′
(a,b) =

IndP′
(a,b) \ [P (a

+)].

The following result holds as a consequence of Lemma 5.

Corollary 2. If Γ(R) and Γ(R′) are the Gabriel’s quivers of the categories
R = repP and R′ = repP′, then

Γ(R) \ [T (a), T (a, ci), P (a) | 1 ⩽ i ⩽ n] ≃ Γ(R′) \ [P (a+)].

Remark 5. Henceforth, if X is an F -subspace of a vector space U0 then,
we let λX denote a linear combination of the form λi1x1+λi2x2+· · ·+λikxk
for a őxed basis {xi} ⊂ X with λij ∈ F .

3. Proof of Theorem 1

In this section, we prove that algorithms Az, VIII-X induce categorical
equivalences between quotient categories of equipped posets.

3.1. Some remarks regarding the algorithm of differentiation
VII for equipped posets

In this section, it is deőned an algorithm Az which in some sense can
be considered as a generalization of the algorithm of differentiation VII
deőned by the structure of a chain of (F,G) subspaces of a given F -vector
space U0. Actually, algorithm Az is a way to obtain equipped posets with
a pair of points (a, b), VII-suitable for which the set (a▽)◦ ̸= ∅.

Let us consider the following chain of G-subspaces of a vector space Ũ0.

Uc0 ⊆ Uc1 ⊆ Uc2 ⊆ · · · ⊆ Ucn−1
⊆ Ucn , n ⩾ 1,

which are incomparable with a G-subspace Ub such that:

F (Ub) = Ub.

We also consider that, for any i, 1 ⩽ i ⩽ n,

Uci ⊊ F (Uci).
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Moreover, each G-subspace Uci can be seen as a sum of subspaces of the
form

Uci = Uci−1
⊕Hi, Hi = H̃−

i ⊕ Si,

H̃−
i = H̃−

i ∩ Ub ⊕ Y −
i , Si = Si ∩ Ub ⊕ Si,

(12)

where Si is a complementary subspace of H̃−
i in Hi, as well as, Y −

i

and Si are complementary subspaces of H̃−
i ∩ Ub and Si ∩ Ub in H̃−

i and
Si, respectively.

Another őnest way to express Uci as a sum of subspaces goes as follows:

Uci = Ucn−1
⊕ H̃−

i ∩ Ub ⊕ Si ∩ Ub ⊕ Y −
i ⊕

∑

i<j⩽n

T
cj
ci ⊕Ni. (13)

In (13) the spaces
∑

i<j⩽n T
cj
ci andNi are subspaces of Si. In particular,

for j őxed

T
cj
ci ≃ T k1(ci, cj), for some k1 ⩾ 0,

Ni ≃ T k2(ci), for some k2 ⩾ 0.
(14)

The corresponding subspace T (ci) associated with an indecomposable
representation T (ci, cj) will be denoted T (ij) = (T1(i

j), T2(i
j)), thus,

T1(i
j), T2(i

j) ⊆ Ũ−
cj .

We assume that

T (ij) = (T1(i
j) ∩ Ub, T2(i

j)) + (X1(i
j), X2(i

j)),

T1(i
j) = T1(i

j) ∩ Ub ⊕ T1(i
j)⊕X1(i

j),

T2(i
j) = T2(i

j) ∩ Ub ⊕ T2(i
j)⊕X2(i

j),

(15)

with T2(i
j) ∩ Ub = 0 = T1(i

j) = Xk(i
j) ∩ Ub, k ∈ {1, 2}.

Ni = (Ni(1), Ni(2)) = (Pi(1)b, Pi(2)) + (Qi(1), Qi(2)),

Pi(1)b ⊆ Ub, Qi(1) ∩ Ub = Pi(2) ∩ Ub = Qi(2) ∩ Ub = 0.
(16)

The algorithm Az (adding a subspace F (Uz)). In this subsection,
it is described the way that a subspace Uci changes when adding a subspace
F (Uz), z ⩾ 0.

Firstly, we note that for 0 ⩽ i ⩽ n− 1 and z őxed 0 ⩽ z ⩽ i,

Uci + F (Ucz) ⊆ Uci+1
+ F (Ucz),

Uci ∩ Ub + F (Ucz) ⊆ Uci+1
∩ Ub + F (Ucz).

(17)
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and that under these circumstances, the subspaces T1(k
i), T2(k

i)Xh(k
i) ⊆

Ũ−
ci (see identities (15)), h ∈ {1, 2}.

The following lattice arises for each i, 0 ⩽ i ⩽ n− 1.
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❅
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�
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�
�
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Uci ∩ Ub

Uci + F (Ucz) Uci+1
∩ Ub

Uci+1
+ F (Ucz)

Figure 7. The diagram of subspaces associated with Ucz and Ub.

Then, the subspaces Uci , Uci ∩ Ub, Ub and Uci + F (Ucz) build (F,G)-
representations of the following equipped posets:
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⊗
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❅
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P′
(cz ,b)

✲Az

Figure 8. The diagram of the algorithm Az.

We let
.

P(cz ,b) denote the equipped poset obtained from the derived

poset P′
(cz ,b)

= (c+0 )
▽ + b△ + (c+z−1)⋏ by adding a lattice relation of the

form (c+0 + c+1 + c+2 + · · ·+ c+z−1)b = c+z−1b ⊂ c−z , sometimes it is written

as
.

P(cz ,b) = (P′
(cz ,b)

|
∑

(cz ,b)
) where

∑
(cz ,b)

consists only of the lattice

relation c+z−1b ⊂ c−z , and as in [2,19] it means that rep
.

P(cz ,b) is the full
subcategory of repP′

(cz ,b)
whose objects W satisfy the condition

W(c+z−1
)⋏

∩Wb ⊆Wc−z
. (18)
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Actually, any representation of
.

P(cz ,b) is obtained via the following assign-

ments of subspaces of Ũ0 to the points of P and
.

P(cz ,b):

Ub to the point b,

Uci to each point ci, 0 ⩽ i ⩽ n,

Uci ∩ Ub to each point c−i , z ⩽ i ⩽ n,

Uci + F (Ucz) to each point c+i , z ⩽ i ⩽ n,

Uc+z−1

∩ Ub ⊆ Uc−z
.

(19)

Keeping without changes the other subspaces or points in the chain, i.e.,
Uch = Uc+

h
, 0 ⩽ h ⩽ cz−1.

Note that by deőnition P ′(cz) = P (c+z ), T
′(cz, ci) = T ′(cz) = P 2(c+z )

in repṖ(cz ,b), i > z. Therefore the algorithm Az transforms the poset P

in the new poset
.

P(cz ,b). Also note that the case z = 0 corresponds to the
algorithm of differentiation VII (see identities (11)).

If we denote Az(U) = DAz

(cz ,b)
(U) = U ′, for z őxed, the output under

the algorithm Az of the representation U ∈ repP [2,19], then Az becomes
a functor which acts on objects and morphisms of category repP as
follows:

′ = D(cz ,b) : repP −→ rep
.

P(cz ,b)

U ′
0 = U0

U ′
c+i

=

{
Uci + F (Ucz) if i ⩾ z,

Uci if 0 ⩽ i < z.

U ′
c−i

= Uci ∩ Ub, for i ⩾ z,

φ′ = φ, for all F linear map-morphism φ : U0 → V0 ∈ repP.

(20)

By construction, we can see that D(cz ,b) induces a categorical equivalence
between quotient categories. In fact, we have the following results for
algorithm Az.

Lemma 6. Let U and V be two őxed objects in the category repP, R :=
repP(U, V ) = HomF (U, V ), R′ := repṖ(cz ,b)(U

′, V ′) = HomF (U ′, V ′)
and let I and I′ be the ideals

I(U, V ) = I = ⟨{P (cz), T (cz, cj), T (cz), z < j ⩽ n}⟩ ⊆ repP,

I
′(U ′, V ′) = I

′ = ⟨{P (cz)}⟩ ⊆ rep
.

P(cz ,b).

Then, the following poset of subspaces is a lattice:
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❅
❅❅

❅
❅❅

�
��

�
��

I

I′R

R′

Proof. Firstly, we prove that R′ = R + I′. To do that, we choose a
morphism ψ ∈ R′. Then

ψ̃(Ub) ⊆ Vb,

ψ̃(Ux) ⊆ Vx, for any point x /∈ c⋎z ,

ψ̃(F (Ux)) ⊆ F (Vx), for any point x ∈ P
′
(cz ,b)

,

ψ̃(Ũ−
x ) ⊆ Ṽ −

x , for any point x ∈ P
′
(cz ,b)

.

Note that, in general ψ̃(Ux) ⊈ Vx, for any x ∈ P, thus in general
ψ /∈ R.

Let us now to deőne correction morphisms w0, w1, w2, . . . , wn such
that ψ −

∑n
i=0wi ∈ R. To do that, we note that, if λ ∈ Y −

z then ψ̃(λ) =
λ
Ṽ −

cz

+ λF (Hz). Throughout the proof, we assume the same notation for

subspaces of Ũ0 and Ṽ0 (if not confusion). Thus, if w0 : U0 −→ V0 is a
linear map-morphism such that

w̃0(x) =

{
λF (Hz) if x ∈ Y −

z ,

0 otherwise,

then w0 ∈ [(Ub + Ucz−1
)+, V +

cz ] and (ψ̃ − w̃0)(Hj) = ψ̃(Hj), for any j > z.

Suppose now that λ = (λ1, λ2) ∈
∑

z<j⩽n T
j
z ⊕Nz. Then

ψ̃(λ) = (ψ(λ1), ψ(λ2)), where

ψ(λ1) = λ1Vcz−1
+ λ1

H̃−

z ∩Vb

+ λ1Sz∩Vb
+ λ1

Y −

z
+ λ1∑

i<j⩽n T
j
i

+ λ1Nz
,

ψ(λ2) = λ2Vcz−1
+ λ2

H̃−

z ∩Vb

+ λ2Sz∩Vb
+ λ2

Y −

z
+ λ2∑

i<j⩽n T
j
i

+ λ2Nz
.

Note that, for any subspace L ∈ {Tk(z
j), Xk(z

j), Ni(k), Pi(k), Qi(k), k ∈
{1, 2}}, λ1L and λ2L have real and imaginary parts, thus, λ1L and λ2L can
be written in the form:

λ1L = (λ1,1L , λ1,2L ), λ2L = (λ2,1L , λ2,2L ).
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Hence, if w1 : U0 −→ V0 is a linear map-morphism such that

w1(x) =

{
(λ2,1L + 1

β
λ1,2L , λ2,2L − λ1,1L − α

β
λ1,2L ) ifx ∈

∑
j>z T2(z

j) +Nz(2)

0 otherwise.

then w1 ∈ [(Ub + Ucz)
− + U+

cz−1
, V +

cz ] ⊆ [(Ub + Ucz)
−, V +

cz ]. And

(ψ̃ − w̃1)(x) ∈ Nz, for any x ∈ Pz,

(ψ̃ − w̃1)(x) ∈ Nz, for any x ∈ Qz,

(ψ̃ − w̃1)(x) ∈ Sz, for any x ∈
∑

z<j

T (zj),

(ψ̃ − w̃1)(x) = ψ̃(x), if x ∈ Ũ−
cz .

Therefore
(ψ̃ − w̃0 − w̃1)(x) ∈ Ṽ −

cz if x ∈ Ũ−
cz .

For each i > z, deőne now a linear map-morphism wi : U0 −→ V0 such
that w̃i(Hi) = λF (Vcz )

, w̃i = 0, otherwise. Then wi ∈ [(Ub + Ucz+i−2
)− +

U+
cz+i−3

, V +
cz ]. Thus, if w =

∑n+1
i=0 wi then (ψ̃−w̃)(Uci) ⊆ Vci , for 0 ⩽ i ⩽ n

(ψ̃ − w̃)(Ub) ⊆ Vb, (ψ̃ − w̃)(Ux) ⊆ Vx. Therefore ψ − w ∈ R with

I
′ = [U−

b + U+
cz−1

, V +
cz ] +

n−z+2∑

i=2

[(Ub + Ucz+i−2
)− + U+

cz+i−3
, V +

cz ].

In order to prove that R ∩ I′ = I, we note that I ⊆ I′ and I ⊆ R by
deőnition. Therefore I ⊆ R ∩ I′. On the other hand, we also note that
in R

⟨P (cz)⟩ = [U+
cz−1

+ U−
b , V

+
cz ],

⟨T (cz)⟩ = [U+
cz−1

+ (Ub + Ucn)
−, V +

cz ],

⟨T (cz, cj)⟩ = [U+
cz−1

+ (Ub + Ucj−1)
−, V +

cz ],

then
R ∩ I = [U+

cz−1
+ U−

b , V
+
cz ] ⊇ I

′ = [U−
b + U+

cz−1
, V +

cz ].

Since Zavadskij proved the following lemma for DVII (case, z = 0)
in [25]. It is enough to establish that the integration procedure holds for
any other case (i.e., for z ̸= 0), but this is guaranteed by the integration
process of its short version VIIs, see [2, 19].
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Lemma 7. For each representation W ∈ rep
.

P(cz ,b) there exists a repre-

sentation W ↑ ∈ repP, such that (W ↑)′ ≃W ⊕ Pm(c+z ), for some m ⩾ 0.

Lemmas 6 and 7 prove the following result for the algorithm Az.

Lemma 8. Let P be an equipped poset with a pair of points (cz, b) Az-
suitable (as described in Figure 2.9 and assignments (19)). Then the
functor of differentiation

DAz

(cz ,b)
: repP −→ rep

.

P(cz ,b),

deőned by formulas (20) induces an equivalence between quotient categories

repP/⟨P (cz), T (cz), T (cz, ci) | 1 ⩽ i ⩽ n⟩ ≃ rep
.

P(cz ,b)/⟨P (c
+
z )⟩.

Lemmas 5, 7 and 8 establish the following corollary regarding the
Gabriel quiver of the corresponding categories involved in the differentia-
tion Az.

Corollary 3. If Γ(R) and Γ(R′) are the Gabriel’s quivers of the categories

R = repP and R′ = rep
.

P(cz ,b), then

Γ(R) \ [P (cz), T (cz), T (cz, ci) | 1 ⩽ i ⩽ n] ≃ Γ(R′) \ [P (c+z )].

Remark 6. Note that, algorithm Az can be also deőned for equipped
posets with a VII-suitable pair of points. Due that it can be deőned in
such a way that no action is allowed for the functor on the subspaces
Ux associated with points x ∈ a▽ + b△ in a representation U ∈ rep P.
However, the interesting case happens whenever a▼ = ∅.

3.2. Categorical properties of the algorithm of differentiation
VIII for equipped posets

In this section, we recall the deőnition of the algorithm of differentiation
VIII and some of its categorical properties are proved [25].

A pair of weakly comparable points a ≺ b of an equipped poset P is
suitable for differentiation VIII if P can be written in the form:
P = a▽ + b△ +Σ+ {c, a, b},

where Σ is the interior of the completely weak interval [a, b] and c is a
strong point incomparable with [a, b].

The derived poset of the set P with respect to such a pair (a, b) is the
equipped poset P′ = P′

(a,b),

which is obtained from P by replacing the point c for a three-point
chain c− < c0 < c+, where c−, c0 are weak points and c+ is a strong point,
a ≺ c0 ≺ b and the following conditions are satisőed:
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1) each of three points c−, c+ and c0 inherits all the previous order
relations of the point c with the points of P \ {c};

2) the order relations in the whole set P′
(a,b) are induced by the initial

relations in the subset P \ {c} and by the aforementioned relations.

The diagram in Figure 9 shows an equipped poset with a pair of
points (a, b), VIII-suitable and its corresponding derived poset, in this
case A = a▼ and B = b▲:

�
�

�
�
⊗A♠

♠
⊗
a

Σ

b

❞

♠B
c VIII

−−−→
(a,b)

�
�

�
�
⊗A♠

♠
⊗
a

Σ

⊗

b

⊗

♠B

c+

c0

c−❞

❞

✏✏✏✏✏✏✏✏
❅

❅❅

Figure 9. Diagrams of an equipped poset P and its corresponding derived
poset P′

(a,b).

Let P be an equipped poset with a pair of points (a, b), VIII-suitable.
The following formulas deőne the differentiation functor DVIII

(a,b) : rep P −→

rep P′
(a,b), induced by the algorithm of differentiation VIII. Thus, for a

representation given U = (U0;Ux | x ∈ P) ∈ rep P, we get the derived
representation U ′ = (U ′

0;U
′
x | x ∈ P′

(a,b)), where:

U ′
0 = U0, U ′

c− = Uc ∩ Ũ
−
b ,

U ′
c+ = Uc + F (Ua), U ′

c0 = Ua + Uc ∩ Ub,

U ′
x = Ux, for the remaining points x ∈ P

′,

φ′ = φ, for all F linear map−morphism φ : U0 → V0.

(21)

Note that, the following identities hold for indecomposable representations
of an equipped poset with a pair of points (a, b) VIII-suitable.

T ′(a) = G′
1(a, c) = G′

2(a, c) = T (a).

Lemmas 9 and 10 below were proved by Zavadskij in [25].
Let U↓ be a reduced (i.e., without direct summands of type T (a),

G1(a, c), G2(a, c)) representations of a poset P′
(a,b) for which U ′ = U↓ ⊕

Tm(a), where 2m = dim(U+
a + U−

b )/U−
b . In this case, if (E0,W0) is a

(U+
a , U

−
b )-cleaving pair, then U↓ =W , where Wx = U ′

x ∩ W̃0. In this case,
U↓ is a representation of the completed (by the relation a ◁ b) derived

poset P
′
(a,b). Obviously, T ↓(a) = G↓

1(a, c) = G↓
2(a, c) = 0.
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Lemma 9. For each representation W ∈ repP
′
(a,b) there exists a repre-

sentation W ↑ ∈ repP, such that (W ↑)′ ≃W ⊕ Tm(a), for some m ⩾ 0.

Lemma 10. In the case of the differentiation VIII, the operations ↓ and
↑ induce mutually inverse bijections IndP \ [T (a), G1(a, c), G2(a, c)] ⇄

IndP
′
(a,b) = IndP′ \ [T (a)].

The following lemma characterizes the ideal I = ⟨T (a), G1(a, c),
G2(a, c)⟩ ⊂ repP, where P is an equipped poset with a pair of points
(a, b), VIII-suitable.

Lemma 11. If U = (U0;Ux | x ∈ P) and V = (V0;Vx | x ∈ P) are
representations of an equipped poset P with a pair of points (a, b), VIII-
suitable, then the following equivalences hold for a linear map φ : U0 → V0:

1) φ ∈ ⟨T (a)⟩ if and only if φ ∈ [(Ub + Uc)
−, V +

a ], φ̃(Ub) ⊂ Va.
2) φ ∈ ⟨G1(a, c)⟩ if and only if φ ∈ [U−

b , V
+
a ], φ̃(Ub) ⊂ Va, φ̃(Uc)

⊂ Vc.

3) φ ∈ ⟨G2(a, c)⟩ if and only if φ ∈ [U−
b , V

−
a ∩V −

c ], Imφ̃ ⊂ Ṽ −
a ∩ Ṽ −

c .

Proof. It is enough to assume U+
b = U0 ̸= 0. We also assume V +

a ≠ 0
throughout the proof. Furthermore, we adopt the following partitions of

spaces Ub and Va: Ub = Ũ−
b ⊕Nb; Va = Ṽ −

a ⊕Ma ⊕Na, where Ma = {v =

eα + ξeβ ∈ Va | v ∈ Ṽ −
b }.

If φ ∈ [(Ub + Uc)
−, V +

a ] with φ̃(Ub) ⊆ Va, then: φ̃(Ux) ⊆ F (Va) ⊆ Vx,
if x ∈ a▽; φ̃(Ux) ⊆ φ̃(Ub) ⊆ Va ⊆ Vx, for any point x ∈ a⋎.

Since φ̃(Uc) = 0, the arguments described above allow us to conclude
that φ ∈ repP.

This part of the proof can be őnished by considering the cases for
which U−

b = 0 or Nb = 0.

If Ũ−
b = 0 and Nb ̸= 0, then U0 = N+

b and dimG Nb = m. Therefore,
it is possible to deőne a representation W ∈ repP such that W0 = N+

b .

Wx =





F (Nb) if x ∈ a▽,

Nb if x ∈ a⋎,

0 otherwise.

We also deőne linear maps f0 : N+
b → W0, f1 : W0 → V0 such that:

f0(v) = v for all v ∈ N+
b and f1 = φ. Since W ≃ Tm

a then φ1 =

U
f0
−→W

g0
−→ Tm(a) ∈ repP, φ2 = Tm(a)

g−1
0−−→W

f1
−→ V ∈ repP and

φ2φ1 = φ, where g0 :W → Tm(a) is an isomorphism.
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In the case Nb = 0, we observe that φ = 0. Thus φ ∈ [(Ub +Uc)
−, V +

a ]
and φ̃(Ub) ⊆ Va imply φ ∈ ⟨T (a)⟩.

On the other hand, if φ ∈ ⟨T (a)⟩ then there exist morphisms φ1 :
U → Tm(a) ∈ repP and φ2 : T

m(a) → V ∈ repP, such that φ = φ2φ1.
Since, φ̃1(Ub) ⊆ Tm

a (a) then φ1((Ub + Uc)
−) ⊆ (Tm

a (a))−, in particular,
φ1(U

+
c ) = φ1(U

−
b ) = 0. Therefore, φ((Ub + Uc)

−) = 0 thus (Ub + Uc)
− ⊆

Ker φ. Furthermore, since Tm
a (a) = Tm

b (a) with (Tm
a (a))+ = F 2m it

follows φ̃2(T
m
b ) ⊆ Va. Therefore, φ̃(Ub) = φ̃2(φ̃1(Ub)) ⊆ φ̃2(T

m
b ) ⊆ Va,

thus, Im φ ⊆ V +
a . With this argument, we conclude φ ∈ [(Ub + Uc)

−, V +
a ]

and φ̃(Ub) ⊆ Va if and only if φ ∈ ⟨T (a)⟩.
Arguments used above with the additional condition φ̃(Uc) ⊆ Vc allow

us to conclude the second item, i.e., φ ∈ [U−
b , V

+
a ] and φ̃(Ub) ⊆ Va if and

only if φ ∈ ⟨G1(a, c)⟩.
The following arguments prove the third item.
If φ ∈ ⟨G2(a, c)⟩ then there exist morphisms φ1 : U → Gm

2 (a, c) ∈
repP and φ2 : Gm

2 (a, c) → V ∈ repP, such that φ = φ2φ1. Therefore,
φ2φ1(U

−
b ) = φ2(φ1(U

−
b )) = 0, due that φ1(U

−
b ) ⊆ ((Gm

2 (a, c))b)
− = 0.

Furthermore, φ̃(Nb) = φ̃2φ̃1(Nb) ⊆ Va ∩ Ṽ −
c = Ṽ −

a ∩ Ṽ −
c thus Imφ ⊆

V −
a ∩ V −

c .

On the other hand, if φ ∈ [U−
b , V

−
a ∩ V −

c ] and Imφ̃ ⊆ Ṽ −
a ∩ Ṽ −

c , then

φ̃(Ux) ⊆ Ṽ −
a ∩ Ṽ −

c ⊆ F (Va) ⊆ Vx if x ∈ a▽.

φ̃(Ux) ⊆ Ṽ −
a ∩ Ṽ −

c ⊆ Vx if x ∈ a⋎.

Finally, φ̃(Uc) ⊆ Ṽ −
a ∩ Ṽ −

c ⊆ Vc, therefore, φ ∈ repP.
Now we can use arguments as above to őnd out morphisms φ1 : U →

Gm
2 (a, c), φ2 : Gm

2 (a, c) → V ∈ repP, such that φ = φ2φ1. Note that, the
representation W ≃ Gm

2 (a, c) deőned for the case U−
b = 0, Nb ̸= 0 has the

form (W0;Wx | x ∈ P), where W0 = N+
b and

Wx =





F (Nb) if x ∈ a▽ + c▽,

Nb if x ∈ a⋎,

0 otherwise.

Therefore, φ ∈ [U−
b , V

−
a ∩ V −

c ] and Imφ̃ ⊆ Ṽ −
a ∩ Ṽ −

c if and only if
φ ∈ ⟨G2(a, c)⟩.

The following lemma can be proved by using arguments described in
the proof of Lemma 11.
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Lemma 12. If U ′ and V ′ are representations of a poset P′
(a,b) and φ :

U0 → V0 is a linear morphism, then φ ∈ [U−
b , V

+
a ] and φ̃(Ub) ⊆ Va if and

only if φ ∈ ⟨T (a)⟩ in repP′.

Remark 7. Denote by R = repP and R′ = repP′ the categories
of representations associated with the equipped posets P and P′

(a,b),

respectively. Due to the fact that φ′ = φ, we obtain the natural inclusions
R(U, V ) ⊂ R′(U ′, V ′) for all objects U, V ∈ R. I denotes the ideal in
the category R consisting of morphisms which pass through the objects
T (a), G1(a, c) and G2(a, c). I′ denotes the ideal in the category R′

consisting of morphisms which pass through the object T (a). Taking into
account that T ′(a) = G′

1(a, c) = G′
2(a, c) = T (a), we get also inclusions

I(U, V ) ⊂ I′(U ′, V ′) for all objects U, V ∈ R. Thus, for each pair of
representations U, V ∈ R it is possible to obtain the lattice of subspaces
shown in Figure 10.

❅
❅❅

❅
❅❅

�
��

�
��

I(U, V )

I′(U ′, V ′)R(U, V )

R′(U ′, V ′)

Figure 10. The lattice associated with the ideals I, I′ and categories R,
R′ deőned by the differentiation VIII.

Lemma 13. Let U, V be an arbitrary pair of representations in R. Then,
the following identity holds.

R(U, V ) ∩ I
′(U ′, V ′) = I(U, V ).

Proof. The Remark 7 allows us to conclude I(U, V )⊆R(U, V )∩I′(U ′, V ′).
So, it is enough to prove R(U, V ) ∩ I′(U ′, V ′) ⊆ I(U, V ) in order to
obtain the identity proposed. To do that, we suppose that a morphism
ψ : U0 → V0 ∈ R(U, V )∩I′(U ′, V ′) and deőne the following partition for
the space U0:

U0 = (U+
c ∩ U−

b )⊕ T−
b ⊕ (U+

c ∩N+
b )⊕ T+

b ⊕ T+
c ⊕W0,

where T−
b ⊆ U−

b , T−
b ∩ U+

c = 0, T+
b ⊆ N+

b , T+
b ∩ U+

c = 0, T+
c ∩ U+

b = 0
and W0 is a complementary subspace in U0.
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Since by Lemma 11, Imψ ⊆ V +
a , we can assume V +

a = V0 and deőne
a partition of the form:

V +
a = (V −

a ∩ V −
c )⊕ T−

a ⊕ (V +
c ∩N+

a )⊕ T+
a ,

where T−
a ⊆ V −

a , T−
a ∩ V +

c = 0, T+
a ⊆ N+

a and T+
a ∩ V +

c = 0.

Lemma 12 allows building the following linear maps induced by ψ,
and by the partition of the spaces U0 and V +

a :

ψ1 = e(V −

a ∩V −

c )ψe(U+
c ∩N+

b
), ψ2 = e(V −

c ∩N+
a )ψe(U+

c ∩N+

b
), (22)

ψ3 = e(V −

c ∩V −

a )ψe(T+

b
), ψ4 = e(T−

a )ψe(T+

b
),

ψ5 = e(V −

c ∩N+
a )ψe(T+

b
), ψ6 = e(T+

a )ψe(T+

b
),

(23)

ψ7 = e(V −

c ∩V −

a )ψe(T+
c ), ψ8 = e(T−

a )ψe(T+
c ),

ψ9 = e(V −

c ∩N+
a )ψe(T+

c ), ψ10 = e(T+
a )ψe(T+

c ),
(24)

ψ11 = e(V −

c ∩V −

a )ψe(W0), ψ12 = e(T−

a )ψe(T+
c ),

ψ13 = e(V −

c ∩N+
a )ψe(W0), ψ14 = e(T+

a )ψe(W0),
(25)

Then Lemma 11 allows concluding that ψ1, ψ3, ψ7, ψ8, ψ11 ∈ ⟨G2(a, c)⟩,
ψ2, ψ5, ψ9, ψ10 ∈ ⟨G1(a, c)⟩, and ψ4, ψ6, ψ12, ψ13, ψ14 ∈ ⟨T (a)⟩. As I =

⟨T (a), G1(a, c), G2(a, c)⟩R, thus ψ =
14∑
i=1
ψi ∈ I(U, V ). Therefore,

R(U, V ) ∩ I
′(U ′, V ′) = I(U, V ).

Lemma 14. Let U, V be an arbitrary pair of representations in R. Then,
the following identity holds.

R(U, V ) + I
′(U ′, V ′) = R

′(U ′, V ′).

Proof. The Remark 7 allows us to conclude that R(U, V ) + I′(U ′, V ′) ⊆
R′(U ′, V ′). In order to prove the equality, we proceed as follows:

From deőnition of the functor DVIII

(a,b), we can note that for φ′ ∈

R′(U ′, V ′), and for x ∈ {A ∪ B ∪ Σ ∪ {a, b}} ⊂ P, φ̃′(Ux) ⊂ Vx, then
φ̃(Ux) ⊂ Vx. Therefore, for x ∈ P \ {c} and φ ∈ R, φ̃(Ux) ⊂ Vx, and
φ̃(Uc) ⊂ Vc + F (Va) ⊈ Vc, then in general φ /∈ R and R′(U ′, V ′) ⊈
R(U, V ).
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The following procedure allows obtaining a morphism φ ∈ R(U, V )
from a morphism ψ ∈ R′(U ′, V ′). To get this morphism, we need to do a
partition of the vector space U0, as follows.

U0 = U−
b ∩ U+

c ⊕N+
b ∩ U+

c ⊕ T+
c ⊕ T−

b ⊕ T+
b ⊕W0,

where T−
b ⊆ U−

b , T−
b ∩ U+

c = 0, T+
b ⊆ N+

b , T+
b ∩ U+

c = 0, T+
c ⊆ U+

c ,
T+
c ∩U+

b = 0, W0 is a complementary subspace of T+
c in U0. Actually, this

partition is induced by the (U+
c , U

+
b )-cleaving pair (T+

c ,W0). Furthermore,
T+
b = T+

b1
⊕ T+

b2
.

We assume eγ ∈ T+
b1

, if there exists eδ ∈ N+
b ∩U+

c , such that eγ+ξeδ ∈

Nx for some x ∈ Ub⋏\{b}. In this case, T+
b2

is a complementary subspace.

The following partition of the space V0 is induced by the (V +
c , V

+
a )-

cleaving pair (X+
c , Y0).

V0 = V −
a ∩ V +

c ⊕X−
a ⊕X+

c ⊕N+
b ∩ V +

c ⊕X+
a ⊕ Y0,

where X−
a ⊆ V −

a , X+
c ⊆ V +

c , X+
a ⊆ N+

a and Y0 is a complementary
subspace.

Note thatX+
a = (X+

a )1⊕(X+
a )2, where ifNa = G{v = eγj+ξeδj}1⩽j⩽k,

for some positive integer k, then (N+
a )1 = F{eγj}, (N

+
a )2 = F{eδj}.

We use the same notation for any subspace Nx associated with a point
x ∈ P⊗. Furthermore, if X is a subspace of a F -vector space with a őxed
basis {e1, e2, . . . , et}, then a vector of the form γ1e1 + γ2e2 + · · · + γtet
will be denoted {γr}X , 1 ⩽ r ⩽ t. Therefore, if v = eγ + ξeδ ∈ Ũ0 and
ψ : U0 → V0 ∈ R′(U ′, V ′), then ψ(eγ) and ψ(eδ) can be written in the
following form for suitable sets of indexes:

ψ(eγ) = {γi}V −

a ∩V −

c
+ {δj}X−

a
+ {γk}X+

c
+ {δl}N+

a ∩V +
c
+ {ε1m}(X+

a )1

+ {ε2m}(X+
a )2

+ {ηn}Y0
,

ψ(eδ) = {γ′i}V −

a ∩V −

c
+ {δ′j}X−

a
+ {γ′k}X+

c
+ {δ′l}N+

a ∩V +
c
+ {ε′1m}(X+

a )1

+ {ε′2m}(X+
a )2

+ {η′n}Y0
,

with ε1m, ε
′1
m, ε

2
m, ε

′2
m ∈ F .

Let w1, w2 : U0 → V0 be linear maps induced by ψ, deőned in such a
way that:

If eγ is a vector of a őxed basis of N+
b ∩ U+

c , then:

w1(eγ) = {δj}X−

a
+ {ε1m}(X+

a )1
+ {ε2m}(X+

a )2
.
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If v = eγ + ξeδ belongs to a őxed basis of Nb, with eδ ∈ T+
b1

, then:

w1(eδ) = {δ′j}X−

a
+ {ε′1m}(X+

a )1
+ {ε′2m}(X+

a )2
,

where if ξ2 + αξ + β = 0, then

ε′1m = −
1

β
ε2m, for eachm,

ε′2m = ε1m +
α

β
ε2m, for eachm,

(26)

w1(t) = 0 for the other basic vectors t ∈ U0.
w2(eγ) = {δj}X−

a
+ {ε1m}(X+

a )1
+ {ε2m}(X+

a )2
if eγ is a vector of a őxed

basis of T+
c ,

w2(t) = 0 for the other basic vectors t ∈ U0.
Note that, w1, w2 : U0 → V0 ∈ [U−

b , V
+
a ], with w̃1(Ub) ⊆ Va and

w̃2(Ub) ⊆ Va. Thus, w = w1 + w2 ∈ ⟨T (a)⟩R′ , therefore, by Lemma 12,
w ∈ I′(U ′, V ′).

If U = (U0;Ux | x ∈ P) is a representation of an equipped poset P,
then:

if x ∈ a▽ then (ψ̃ − w̃)(Ux) = ψ̃(Ux)− w̃(Ux) ⊆ Vx + F (Va) = Vx;
if x ∈ a⋎ then (ψ̃ − w̃)(Ux) = ψ̃(Ux)− w̃(Ux) ⊆ Ux + Va = Vx;
if x ∈ b△ then w̃(Ux) = 0 and (ψ̃ − w̃)(Ux) = ψ̃(Ux) ⊂ Vx.
(ψ̃ − w̃)(Uc) = (ψ̃ − w̃)(U+

c ∩ Ub ⊕N+
b ∩ U+

c ⊕ T+
c ) ⊆ Vc. Therefore,

φ = ψ − w ∈ R(U, V ), and ψ = φ + w ∈ R(U, V ) + I′(U ′, V ′), hence
R′(U ′, V ′) = R(U, V ) + I′(U ′, V ′).

Lemma 15. Let P be an equipped poset with a pair of points (a, b), VIII-
suitable. Then, the functor DVIII

(a,b) : repP → repP′
(a,b), deőned by formulas

(21), induces an equivalence between quotient categories:

R/I
∼
→ R

′/I′,

where R = repP, R′ = repP′
(a,b), I = ⟨T (a), G1(a, c), G2(a, c)⟩R and

I′ = ⟨T (a)⟩R′ .

Proof. The density of the functorDVIII

(a,b) is guaranteed by Lemmas 9 and 10.

Besides, Lemmas 13 and 14 allow us to conclude that the functor DVIII

(a,b)
is faithful and full, respectively.

The following result holds as a direct consequence of Lemmas 9, 10
and 15.

Corollary 4. If Γ(R) and Γ(R′) are the Gabriel’s quivers of the categories
R and R′, then Γ(R) \ [T (a), G1(a, c), G2(a, c)] ≃ Γ(R′) \ [T (a)].
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3.3. Categorical properties of the algorithm of differentiation
IX for equipped posets

In this section, we present the deőnition of the algorithm of differenti-
ation IX giving a proof of some of its categorical properties [25].

A pair of comparable weak points a ≺ b of an equipped poset P is
called IX-suitable if P can be written in the form:

P = a▽ + b△ +Σ+ {p, a, b},

where Σ is the interior of the completely weak interval [a, b] and p is a
weak point incomparable with a, and p ≺ b [25].

The derived poset of the set P, with respect to the pair (a, b), is the
equipped poset P′ = P′

(a,b), obtained from P by replacing the point p by

a weak two-point chain p− ≺ p+ with the additional relations a ≺ p+ ≺ b
and p− ◁ b (plus all the induced relations). The points p−, p+ inherits all
the previous order relations of the point p with the points in P \ {p}.

The following diagram shows an equipped poset with a pair of points
(a, b), IX-suitable, and its corresponding derived poset:

♠
♠

♠⊗

⊗

⊗

�
�

�
��

❅
❅

❅
A

Σ

B
a

b

p
IX

−−−→
(a,b)

♠
♠

♠⊗

⊗

⊗

⊗�
�

�
��

❅
❅

❅
A

Σ

B
a

b

p+

p−

❏
❏
❏
❏❏✘✘✘✘✘✘✘✘

Figure 11. Diagrams of an equipped poset P and its corresponding derived
poset P′

(a,b).

LetP be an equipped poset with a pair of points (a, b), IX-suitable. The
following formulas deőne the differentiation functor DIX

(a,b) : rep P −→

rep P′
(a,b) induced by the algorithm of differentiation IX. Thus for a

given representation U = (U0;Ux | x ∈ P) ∈ rep P, we get the derived
representation U ′ = (U ′

0;U
′
x | x ∈ P′

(a,b)):

U ′
0 = U0, U ′

p− = Up ∩ Ũ
−
b , U ′

p+ = Up + Ua,

U ′
x = Ux, for the remaining points.

φ′ = φ, for all F linear map-morphism φ : U0 → V0.

(27)

Note that, for the functor DIX

(a,b) and for indecomposable representa-

tions T (a) and T (a, p), we have T ′(a) = T ′(a, p) = T (a). The following
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arguments were used by Zavadskij in order to describe the integration
procedure for the algorithm IX [25].

Representations U in repP without direct summands T (a) and T (a, p)
will be called reduced. A reduced representation U↓, for which U ′ =
U↓ ⊕ Tm(a), is deőned evidently, analogously to the previous cases. Take
some complementing pair of subspaces (E0,W0) in U0, with respect to the

pair (U+
a , U

−
b ), and set U↓ =W , where Wx = U ′

x ∩W0 (Wx = U ′
x ∩ W̃0)

for a strong (weak) point x ∈ P′. Obviously, T ↓(a) = T ↓(a, p) = 0.
The representation U↓ does not depend, up to isomorphism, on the

choice of E0 and W0 and, due to the inclusion W+
a ⊂W−

b , is a represen-

tation of the set P
′
(a,b) completed by the relation a ◁ b.

Lemma 16. For each representation W ∈ repP
′
(a,b) there exists a repre-

sentation W ↑ ∈ repP such that (W ↑)′ ≃W ⊕ Tm(a), for some m ⩾ 0.

Lemma 17. In the case of the differentiation IX, the operations ↓ and ↑
induce mutually inverse bijections

IndP \ [T (a), T (a, p)] ⇄ IndP
′
(a,b) = IndP

′ \ [T (a)].

The following lemma characterizes morphisms which pass through
the objects from the ideal I = ⟨T (a), T (a, p)⟩ ⊂ repP, where P is
an equipped poset with a pair of points (a, b), IX-suitable. In Lem-
mas 18, 19, 20, and 21, we assume the following partitions for the subspaces
Ux, x ∈ a⋎:

Ux = Ũ−
x ⊕Mx⊕Nx, for all x ∈ a⋎ \ {b}, Mx ⊂ Ũ−

b , Mx ∩U
−
x = 0,

for all x ∈ a⋎ \{b}, Mb =
∑

x∈a⋎\{b}

Mx, Ũ−
b = H̃b⊕Mb, Nx∩U

−
b = 0,

for all x ∈ a⋎.

Lemma 18. If U = (U0;Ux | x ∈ P) and V = (V0;Vx | x ∈ P) are
representations of an equipped poset P with a pair of points (a, b), IX-
suitable, then the following equivalences hold for a linear map φ : U0 → V0:

1) φ ∈ ⟨T (a)⟩ if and only if φ ∈ [Hb, V
+
a ], φ̃(Ub) ⊂ Va;

2) φ ∈ ⟨T (a, p)⟩ if and only if φ ∈ [Hb, V
+
a ∩ V +

p ], φ̃(Ub) ⊂ Va ∩ Vp.

Proof. In order to prove the őrst item, it is enough to adapt arguments
used to prove the őrst item of Lemma 11. In fact, the same arguments
can be used if Mb = 0.

For the second item, we assume U+
b = U0 ̸= 0.

If φ ∈ [Hb, V
+
a ∩ V +

p ], with φ̃(Ub) ⊆ Va ∩ Vp then:
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φ̃(Ux) ⊆ F (Va) ∩ F (Vp) ⊆ F (Va) ⊆ Vx, if x ∈ a▽;

φ̃(Ux) ⊆ φ̃(Ub) ⊆ Va ∩ Vp ⊆ Va ⊆ Vx, for any point x ∈ a⋎.

Since φ̃(Up) ⊆ φ̃(Ub) ⊆ Va ∩ Vp ⊆ Vp, the arguments described above
allow us to conclude that φ ∈ repP.

This part of the proof can be őnished by considering the cases in which
Nb = 0 or Nb ̸= 0 in U0.

If Ũ−
b = 0 and Nb ̸= 0, then U0 = N+

b and dimG Nb = m, for some
m > 0. Therefore, it is possible to deőne a representation W ∈ repP such
that W0 = N+

b and

Wx =





F (Nb) if x ∈ a▽,

Nb if x ∈ b⋏,

0 otherwise.

We also deőne the linear maps f0 : N+
b →W0 and f1 :W0 → V0 such

that: f0(v) = v for all v ∈ N+
b and f1 = φ.

Since W ≃ Tm(a, p), then φ1 = U
f0
−→ W

g0
−→ Tm(a, p) ∈ repP,

φ2 = Tm(a, p)
g−1
0−−→ W

f1
−→ V ∈ repP and φ2φ1 = φ, where g0 : W →

Tm(a, p) is an isomorphism.

If Nb =Mb = 0 in U0 or N+
a ∩N+

p = 0 in V0, we note that φ = 0.

If Hb = Nb = 0 in U0, we deőne a representation W = (W0;Wx | x ∈
P) such that W0 =

∑
x∈b⋏

M+
x and:

Wx =





F
(∑

x∈b⋏
Mx

)
if x ∈ a▽,∑

x∈b⋏
Mx if x ∈ b⋏,

0 otherwise.

If dim W̃0 = m, then W ≃ Tm(a, p). Therefore, we can apply the argu-
ments used above to őnd morphisms φ1, φ2 ∈ repP such that φ = φ2φ1.

Thus, φ ∈ [Hb, V
+
a ∩ V +

p ] and φ̃(Ub) ⊆ Va ∩ Vp implies φ ∈ ⟨T (a, p)⟩.

On the other hand, if φ ∈ ⟨T (a, p)⟩, there exist morphisms φ1 : U →
Tm(a, p) ∈ repP and φ2 : Tm(a, p) → V ∈ repP such that φ = φ2φ1,
for some m > 0. Since, φ̃1(Ub) ⊆ Tm

a (a, p), then φ1(Hb) ⊆ (Tm
a (a, p))−, in

fact, φ1(Hb) = 0. Therefore, φ(Hb) = 0, thus Hb ⊆ Ker φ. Furthermore,
since Tm

a (a, p) = Tm
b (a, p) = Tm

p (a, p) with (Tm
a (a, p))+ = F 2m it follows

φ̃2(T
m
b ) ⊆ Va∩Vp, therefore φ̃(Ub) = φ̃2(φ̃1(Ub)) ⊆ φ̃2(T

m
b ) ⊆ Va∩Vp and

Im φ ⊆ V +
a ∩ V +

p . With this argument, we conclude φ ∈ [Hb, V
+
a ∩ V +

p ]
and φ̃(Ub) ⊆ Va ∩ Vp if and only if φ ∈ ⟨T (a, p)⟩. We are done.
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The following lemma can be proved by using arguments described in
the proof of Lemma 18.

Lemma 19. If U ′ and V ′ are representations of a poset P′
(a,b) and φ :

U0 → V0 is a linear morphism, then φ ∈ [Hb, V
+
a ] and φ̃(Ub) ⊆ Va if and

only if φ ∈ ⟨T (a)⟩ in repP′.

Remark 8. Denote by R = repP and R′ = repP′, the categories
of representations associated with the equipped posets P and P′

(a,b),

respectively. Due to the fact that φ′ = φ, we obtain the natural inclusions
R(U, V ) ⊂ R′(U ′, V ′) for all objects U, V ∈ R. I = ⟨T (a), T (a, p)⟩R and
I′ = ⟨T (a)⟩R′ denote ideals in the category R and R′, respectively. We
get also inclusions I(U, V ) ⊂ I′(U ′, V ′) for all objects U, V ∈ R, taking
into consideration that T ′(a) = T ′(a, p) = T (a). Thus, for each pair of
representations U, V ∈ R, we obtain the diagram of inclusions shown in
Figure 12.

❅
❅❅

❅
❅❅

�
��

�
��

I(U, V )

I′(U ′, V ′)R(U, V )

R′(U ′, V ′)

Figure 12. The lattice associated with the ideals I, I′ and categories R,
R′ deőned by the differentiation IX.

Lemma 20. Let U, V be an arbitrary pair of representations in R. Then
the following identity holds

R(U, V ) ∩ I
′(U ′, V ′) = I(U, V ).

Proof. Let U, V be arbitrary representations in the category R, and let
φ be a morphism in R(U, V ) ∩ I′(U ′, V ′). Then φ ∈ [U−

b , V
+
a ] with

φ̃(Ub) ⊆ Va. Now we deőne the following partitions of the spaces U0 and
V +
a (we assume V0 = V +

a ):

U0 = U−
a ∩U−

p ⊕U−
a ∩N+

p ⊕T−
a ⊕T−

p ⊕(Na∩Np)
+⊕T+

a ⊕T+
p ⊕U−

p ∩N+
a ⊕X0,

where T−
a ⊆ U−

a , T−
a ∩ U+

p = 0, T−
p ⊆ U−

p , U+
a ∩ T−

p = 0.
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Ũ−
a ∩ Ta = 0, Ũ−

p ∩ Tp = 0, T+
a ⊆ N+

a ⊕M+
a , T+

p ⊆ N+
p ⊕M+

p and
X0 is a complementary subspace in U0. Furthermore, T+

a ∩ U+
p = 0 and

T+
p ∩ U+

a = 0.
Now, we consider the next suitable partition to the space V0

V0 = V −
a ∩ V −

p ⊕ V −
a ∩N+

p ⊕X−
a ⊕ (Na ∩Np)

+ ⊕ T+
a ⊕ Y0.

The spaces T±
x are deőned as for the space U0, and Y0 is a complementary

subspace in V0.
We assume the notations X1 = T+

a , X2 = T+
p , X3 = (Na ∩ Np)

+,
X4 = X0. In Va, Y1 = V −

a ∩V −
p , Y2 = V −

a ∩N+
p , Y3 = X−

a , Y4 = (Na∩N
+
p ),

Y5 = T+
a Y6 = Y0, and φij = eYj

φeXi
. Then

φ =
6∑

j=1

4∑

i=1

φij =
6∑

j=1

4∑

i=1

eYj
φeXi

.

By Lemma 18, φij ∈ ⟨T (a)⟩R if j = 1, φij ∈ ⟨T (a, p)⟩R otherwise.
Therefore φ ∈ I(U, V ), thus R(U, V ) ∩ I′(U ′, V ′) ⊆ I(U, V ).

The Remark 8 allows us to conclude I(U, V ) ⊆ R(U, V ) ∩ I′(U ′, V ′).
This result proves the desired identity.

Lemma 21. Let U, V be an arbitrary pair of representations in R. Then,
the following identity holds

R(U, V ) + I
′(U ′, V ′) = R

′(U ′, V ′).

Proof. From deőnition of the functor DIX

(a,b), we can note that for ψ in

R′(U ′, V ′), and for x ∈ {A ∪ B ∪ Σ ∪ {a, b}} ⊂ P, ψ̃(Ux) ⊂ Vx, then
ψ̃(Ux) ⊂ Vx. Therefore, for x ∈ P \ {p} and ψ ∈ R, ψ̃(Ux) ⊂ Vx, since
ψ̃(Up) ⊂ Vp + Va ⊈ Vp, then in general ψ /∈ R and R′(U ′, V ′) ⊈ R(U, V ).
The following procedure allows us to obtain a morphism φ ∈ R(U, V ) from
a morphism ψ ∈ R′(U ′, V ′). To get this morphism, we assume the same
partition, as above for the space U0, and deőne the following partition for
the space V0:

V0 = V −
a ∩V −

p ⊕V −
a ∩N+

p ⊕X−
a ⊕(Na∩Np)

+⊕X+
a ⊕X+

p ⊕X−
p ⊕V −

p ∩N+
a ⊕Y0

where Y0 is a complementary subspace in V0. The spaces Xx are deőned
as the spaces Tx in U0, whereas Na, Np ⊆ Ṽ0 are deőned as for space
U0. Furthermore, X+

p = Xp1 ⊕Xp2 (X+
a = Xa1 ⊕Xa2), where eλ ∈ Xp1

(eλ ∈ Xa1) if and only if there exists eζ ∈M+
p ∩V −

a (eζ ∈M+
a ∩V −

p ) such
that v = eζ + ξeλ ∈Mp (v = eζ + ξeλ ∈Ma).
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If Na = G{v = eζj + ξeλj
}1⩽j⩽k, for some positive integer k, then

(N+
a )1 = F{eζj}, (N

+
a )2 = F{eλj

}. We use the same notation for any
subspace Nx associated with a point x ∈ P⊗. Furthermore, if X is a
subspace of a k-vector space with a őxed basis {e1, e2, . . . , et}, then a
vector of the form ζ1e1+ ζ2e2+ · · ·+ ζtet will be denoted {ζr}X , 1 ⩽ r ⩽ t.
Therefore, if ψ : U0 → V0 ∈ R′(U ′, V ′), then ψ̃(Ua + Up) ⊂ Va + Vp; and
for any vector eζ ∈ U−

p , we have:

ψ̃(eζ) = {ζi}
Ṽ −

a ∩Ṽ −

p

+{λj}
Ṽ −

a ∩F (Np)
+{γk}

Ṽ −

p ∩F (Na)
+{δl}

X̃−

a

+{µm}
X̃−

p

,

for suitable index sets. In fact, ψ̃(Ũ−
p ⊕Mp) = ψ̃(Ũ−

b ∩Up) ⊆ Vp∩ Ṽ
−
b ⊆ Vp.

If eζ + ξeλ ∈ Na ∩Np then:

ψ(eζ) = {ζi}V −

a ∩V −

p
+ {λ1j}V −

a ∩N+
p
+ {δl}X−

a
+ {γ1k}V −

p ∩N+
a
+ {γ2k}Xa1

+ {ε1n}(Na∩Np)+ + {ε2n}(Na∩Np)+ + {ϖ1
t }Xa2

+ {ϖ2
t }Xa2

,

ψ(eλ) = {ζ ′i}V −

a ∩V −

p
+ {λ′1j }V −

a ∩N+
p
+ {δ′l}X−

a
+ {γ′1k }V −

p ∩N+
a
+ {γ′2k }Xa1

+ {ε′1n }(Na∩Np)+ + {ε′2n }(Na∩Np)+ + {ϖ′1
t }Xa2

+ {ϖ′2
t }Xa2

.

If eζ ∈ T+
p then:

ψ(eζ) = {ζi}V −

a ∩V −

p
+ {λ1j}V −

a ∩N+
p
+ {λ2j}Xp1

+ {δl}X−

a
+ {µm}X−

p

+ {γ1k}V −

p ∩N+
a
+ {γ2k}Xa1

+ {ε1n}(Na∩Np)+ + {ε2n}(Na∩Np)+

+ {ϖ1
t }Xa2

+ {ϖ2
t }Xa2

+ {ν1s}Xp2
+ {ν2s}Xp2

.

We deőne the F -linear morphisms w1 and w2, as follows:

w1 : U0 → V0,

such that, for all basic vector eθ ∈ (Na ∩Np)
+, w1(eθ) = {λ1j}V −

a ∩N+
p
+

{δl}X−

a
+ {γ1k}V −

p ∩N+
a
+ {γ2k}Xa1

+ {ϖ1
t }Xa2

+ {ϖ2
t }Xa2

, w1(t) = 0, for the

other basic vectors t in U0.

w2 : U0 → V0,

such that, for all basic vector eθ ∈ T+
p , w2(eθ) = {δl}X−

a
+ {γ2k}Xa1

+

{ϖ1
t }Xa2

+{ϖ2
t }Xa2

, w2(t) = 0, for the other basic vectors t ∈ U0. Thus, if
w = w1+w2 then w ∈ [Hb, V

+
a ] and w̃(Ub) ⊂ Va. Therefore,w ∈ I′(U ′, V ′)

by Lemma 19.
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Note that,
(ψ̃ − w̃)(Ux) ⊆ F (Va)⊕ Vx = Vx if x ∈ a▽;
(ψ̃ − w̃)(Ux) ⊆ Vx + Va = Vx, if x ∈ a⋎;

(ψ̃ − w̃)(Ũ−
p ⊕Mp) ⊆ Ṽ −

b ∩ Vp ⊆ Vp.
If a basic vector v = eζ + ξeλ ∈ Na ∩Np ⊆ Ub, then:

(ψ̃ − w̃)(v) = {ζi}V −

a ∩V −

p
+ {ε1n}(Na∩Np)+ + {ε2n}(Na∩Np)+

+ ξ({ζ ′i}V −

a ∩V −

p
+ ε′1n }(Na∩Np)+ + {ε′2n }(Na∩Np)+) ∈ Vp.

For a basic vector v = eζ + ξeλ ∈ Tp, we have:

(ψ̃ − w̃)(v) = {ζi}V −

a ∩V −

p
+ {λ1j}V −

a ∩N+
p
+ {λ2j}Xp1

+ {µm}X−

p

+ {γ1k}V −

p ∩N+
a
+ {ε1n}(Na∩Np)+ + {ε2n}(Na∩Np)+ + {ν1s}Xp2

+ {ν2s}Xp2

+ ξ({ζ ′i}V −

a ∩V −

p
+ {λ′1j }V −

a ∩N+
p
+ {λ′2j }Xp1

+ {µ′m}X−

p

+ {γ′1k }V −

p ∩N+
a
+ {ε′1n }(Na∩Np)+ + {ε′2n }(Na∩Np)+

+ {ν ′1s }Xp2
+ {ν ′2s }Xp2

) ∈ Vp.

Therefore, (ψ̃ − w̃)(Up) ⊆ Vp and φ = ψ − w ∈ R(U, V ). Thus, ψ =
φ+ w ∈ R(U, V ) + I′(U ′, V ′), hence R′(U ′, V ′) ⊆ R(U, V ) + I′(U ′, V ′).

The Remark 8 allows us to conclude that R(U, V ) + I′(U ′, V ′) ⊆
R′(U ′, V ′) with this inclusion, we are done.

Since Zavadskij proved in [25] that IndP \ [T (a), T (a, p)] ⇄ IndP
′
=

IndP′ \ [T (a)]. Then we have automatically the following fact from Lem-
mas 16, 17, 20, and 21:

Lemma 22. Let P be an equipped poset with a pair of points (a, b), IX-
suitable. Then, the functor DIX

(a,b) : repP → repP′
(a,b), deőned by formulas

(27), induces an equivalence between quotient categories:

R/I
∼
→ R

′/I′,

where R = repP, R′ = repP′
(a,b), I = ⟨T (a), T (a, p)⟩R and I′ =

⟨T (a)⟩R′ .

The following corollary holds as a consequence of Lemma 22.

Corollary 5. If Γ(R) and Γ(R′), are the Gabriel’s quivers of the cate-
gories R and R′, then Γ(R) \ [T (a), T (a, p)] ≃ Γ(R′) \ [T (a)].
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3.4. Categorical properties of the algorithm
of differentiation X for equipped posets with involution

Let (P,Φ) = P be an equipped poset with involution ∗ and Φ be
the set of all the equivalence classes of its points with respect to this
involution. We denote by rep(P,Φ) the category of all the representations
of (P,Φ) or simply by repP if there is no doubt about the involution
and their classes [8, 24,25].

Let U = (U0;Uκ | κ ∈ Φ) be a representation in repP. If x ̸= x∗ then
x ∼ x∗ and we assume the notation (x, x∗) for a class κ ∈ Φ .

Let (F,G) be the pair of őelds we are working on. Let U0 be some
őnite-dimensional F -vector space, Ũ0 its complexiőcation and κ ∈ Φ be
some class. We assume the notation, Uκ

0 (Ũκ
0 ) for direct sum of |κ|-copies

of U0 (Ũ0) numbered by the points x ∈ κ. In this case, the copy of U0

(Ũ0) in Uκ
0 (Ũκ

0 ) corresponding to a point x is denoted by Ux
0 (Ũx

0 ) and

usually is identiőed with U0 (Ũ0). So, Uκ
0 = Ux

0 = U0 (Ũκ
0 = Ũx

0 = Ũ0) if

x is small (weak) and Uκ
0 = Ux

0 ⊕ Ux∗

0 = U2
0 (Ũκ

0 = Ũx
0 ⊕ Ũx∗

0 = Ũ2
0 ) if x

is big (biweak).
For each class κ ∈ Φ and each point x ∈ κ, we consider natural

injections and projections:

ix :U0 = Ux
0 −→ Uκ

0 if x is a small or big point,

ix :Ũ0 = Ũx
0 −→ Ũκ

0 if x is a weak or biweak point,

πx :Uκ
0 −→ Ux

0 = U0 if x is a small or big point,

πx :Ũκ
0 −→ Ũx

0 = Ũ0 if x is a weak or biweak point.

(28)

Choosing a subspace Uκ ⊂ Uκ
0 (Uκ ⊂ Ũκ

0 ) if κ correspond to a small or

big (weak or biweak) point, we attach to it two subspaces in U0 (Ũ0) of
the form:

U−
x := i−1

x (Uκ), U+
x := πx(Uκ). (29)

Identifying Ux
0 (Ũx

0 ) with U0 (Ũ0), we also can assume U−
x = Uκ ∩ U

x
0

(U−
x = Uκ ∩ Ũ

x
0 ). Let x be a small or weak point, then κ = {x}. Therefore

U−
x = U+

x , for which points x we will omit the notations ± and write
simply Ux, for a big point a set U+

x = {s ∈ U0 | (s, t) ∈ U(x,x∗)}.
Let Uκ =

∑
iy(U

+
x ) =

∑
exy(U(x,x∗)), where x < y and y ∈ κ. The

dimension of a representation U is the vector dim U = (h0, hκ)κ∈Φ, where
h0 = dim U0 over the őeld F and hκ = dim (Uκ/Uκ) over the őeld G.

Zavadskij deőned the algorithm of differentiation X in [25], afterwards,
he presented in [28] the following modiőed version of this differentiation:
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A pair of incomparable points (a, b) in P where a is big (i.e. a ̸= a∗)
and b is weak is called X-suitable (i.e. suitable for differentiation X), if
P = a▽ + b△.

The derived equipped poset with involution (P′,Φ′) = P′, with respect
to the pair (a, b) is obtained from (P,Φ) in the following way:

(a) the point a∗ is replaced by a three-point chain a∗ < q < a0, where
a∗, a0 are big points and q is weak;

(b) the point b is replaced by a two-point chain b0 < b, where b0 is big
and b is weak;

(c) an order relation a < b0 is added;
(d) Φ′ is obtained from Φ by adding two new classes: a non-trivial one

{a0, b0} and a trivial one {q}.
Naturally, all the order relations induced by those in P and by those

aforementioned are added as well.
Figure 13 shows an equipped poset with involution (P,Φ) with a pair

of points (a, b) X-suitable and its corresponding derived poset (P′,Φ′).

•

✖✕
✗✔
•
a∗

a

A

⊗b

✖✕
✗✔
B

X
−−−−→
(a,b)

•

✗

✖

✔

✕

•

⊗

•

a0

q

a∗

a

A

⊗

•

b

b0

✖✕
✗✔
B�

�
�

�
�
�

Figure 13. Diagrams of equipped posets with involution (P,Φ) and (P′,Φ′).

Set A = a▼, B = b▲ in P and â = a▼, B′ = P′ \ a▽ in P′. Let
U = (U0;Uκ | κ ∈ Φ) be a representation of the set (P,Φ), where U0 is a
őnite-dimensional F -space. Consider an ordered sum U2

0 = U0 ⊕ U0, we
can deőne the coupling of a sequence of n subspaces X1, . . . , Xn ⊂ U2

0

being a subspace in U2
0 of the form:

[X1 −X2 − · · · −Xn] = {(t0, tn) | (ti−1, ti) ∈ Xi for some ti}.

The categories RΦ and R′
Φ′ are described as follows:

RΦ ={rep(P,Φ) | U−
A = U+

a ⊂ U+
b , U

−
b = U+

B }.

R
′
Φ′ ={rep(P′,Φ′) | U+

a ⊂ U+
B′ , U

−
a0

= U+
q , U

−
b = U+

b0
}.

(30)

Let P be an equipped poset with involution, and a pair of points (a, b), X-
suitable. The following formulas deőne the differentiation functor DX

(a,b) :
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RΦ −→ R′
Φ′ induced by the algorithm of differentiation X. Thus, for a

given representation U = (U0;Uκ | κ ∈ Φ) ∈ RΦ, we deőne the derived
representation U ′ = (U ′

0;U
′
κ | κ ∈ Φ′) in such a way that

U ′
0 = U0, U ′

b = Ub + Ũ+
a ,

U ′
(a0,b0)

= [U(a∗,a) − Ub] + (0, U+
a ), U ′

q = [U(a∗,a) − Ub − U(a,a∗)],

U ′
(a,a∗) = U(a,a∗) ∩ (U+

B , U0),

U ′
κ = Uκ for the remaining classes κ ∈ Φ′,

φ′ = φ for all F linear map−morphism φ : U0 → V0.
(31)

Following [28], if (E0,W0) is a (U+
a , U

+
B )-cleaving pair of U0, then the

reduced derived representation U↓ is deőned (uniquely up to isomorphism)
by the equality U ′ = U↓⊕Pm(â), where m = dimE0 = dim(U+

a , U
+
B )/U+

B

its evident form is U↓ = W, with W0 taken from the cleaving pair and
Wκ = U ′

κ ∩W0
κ.

Obviously, G′
1(b, a) = P (â) ⊕ P (b0) and G′

2(b, a) = P 2(â), hence

G↓
1(b, a) = P (b0) and G↓

2(b, a) = 0.

LetW be an object in R′
Φ′ . To construct the primitive object W ↑ ∈ RΦ,

we represent the spaces W(a0,b0), Wq and Wb, respectively, in the form

W(a0,b0) =W (a0,b0) ⊕ F1, F1 = {(f11, f
′
11), . . . , (f1p1 , f

′
1p1)};

Wq = W̃+
a∗ ⊕ F2, F2 = {(f21, f

′
21), . . . , (f2p2 , f

′
2p2)};

Wb = Ŵ+
b0

⊕H;

where Fi and H are some complements with the choosen bases for Fi.
Consider a new F -space E0 with a base

{e11, . . . , e1p1} ∪ {e21, e
′
21, . . . , e2p2 , e

′
2p2}

of dimension m = p1 + 2p2. Then, set W ↑ = (U0;Uκ | κ ∈ Φ) where

U0 =W0 ⊕ E0;

U̇κ =Wκ ⊕ Eκ∩A
0 for κ ̸= {a, a∗}, {b};

U̇(a,a∗) =W(a,a∗) + {(e11, f11), . . . , (e1p1 , f1p1)}

+ {(e2j , f2j), (e
′
2j , f

′
2j) : j = 1, . . . , p2};

U̇b = W̃+
B′ + {(e11, f

′
11), . . . , (e1p1 , f

′
1p1)}+H.

(32)
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The desired isomorphisms (U↓)
↑
≃ U , for a reduced object U ∈ RΦ

(without direct summands G2(b, a)) and (W ↑)
↓
≃W , for a reduced object

W ∈ R′
Φ′ (without direct summands P (â)) hold. Then the following two

lemmas are given as a consequence of the previous construction of the
primitive object (also called the integration process).

Lemma 23. For each representation W ∈ R′
Φ′ , there exists a representa-

tion W ↑ ∈ RΦ such that (W ↑)′ ≃W ⊕ Pm(â), for some m ⩾ 0.

Lemma 24. In the case of the differentiation X, the operations ↓ and ↑
induce mutually inverse bijections

IndRΦ \ [G2(b, a)] ⇄ IndR
′
Φ′ \ [P (â)].

Remark 9. Let RΦ and R′
Φ′ be the categories described in the equation

(30), associated with the equipped posets with involution P and P′
(a,b),

respectively. Due to the fact that φ′ = φ, we obtain the natural inclusions
RΦ(U, V ) ⊂ R′

Φ′(U ′, V ′) for all objects U, V ∈ RΦ. Let I = ⟨G2(b, a)⟩RΦ

and I′ = ⟨P (â)⟩R′

Φ′

be ideals in the category RΦ and R′
Φ′ , respectively.

We get also inclusions I(U, V ) ⊂ I′(U ′, V ′) for all objects U, V ∈ RΦ,
taking into consideration that G′

2(b, a) = P 2(â). Thus, for each pair of
representations U, V ∈ RΦ, we obtain the following diagram of inclusions

❅
❅❅

❅
❅❅

�
��

�
��

I(U, V )

I′(U ′, V ′)RΦ(U, V )

R′
Φ′(U ′, V ′)

Figure 14. The lattice associated with the ideals I, I′ and vector spaces
RΦ(U, V ), R′

Φ′(U ′, V ′) deőned by differentiation X.

The following lemmas allow us to establish that the differentiation X
induces a categorical equivalence.

Lemma 25. Let U and V be arbitrary representations in RΦ. Then the
following identities hold

RΦ(U, V ) + I
′(U ′, V ′) = R

′
Φ′(U ′, V ′)

and
RΦ(U, V ) ∩ I

′(U ′, V ′) = I(U, V ).
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Proof. The inclusions RΦ(U, V )+I′(U ′, V ′) ⊆ R′
Φ′(U ′, V ′) and I(U, V ) ⊆

RΦ(U, V ) ∩ I′(U ′, V ′) follow from Remark 9. Thus, it suffices to prove
RΦ(U, V ) + I′(U ′, V ′) ⊆ R′

Φ′(U ′, V ′) and RΦ(U, V ) ∩ I′(U ′, V ′) ⊆
I(U, V ) in order to obtain the identities.

Firstly, we prove that RΦ(U, V ) + I′(U ′, V ′) ⊆ R′
Φ′(U ′, V ′), with

I′ = [U+
B + (U ′

a)
+, (V ′

A)
−]. We note that in general, if (x, y) ∈ U(a,a∗) and

(r, s) ∈ Ub, then not necessarily (ψ(x), ψ(y)) ∈ V(a,a∗) and (ψ(r), ψ(s)) ∈

Vb. However, for any (x, y) ∈ U(a,a∗) ∩ (U+
B , U0) it holds that (ψ(x), ψ(y))

∈ V(a,a∗) ∩ (V +
B , V0) ⊂ V(a,a∗), provided that ψ : U0 −→ V0 ∈ R′

Φ′(U ′, V ′).
Thus, for any pair of vectors of the form (x, y) ∈ U(a,a∗), it is necessary
to deőne a linear map-morphism which can be used to adjust the corre-
sponding images to subspaces V(a,a∗) and Vb. To do that, we consider the
following partitions of the vector spaces U2

0 and V 2
0

U2
0 = U(a,a∗) ∩ Ũ

−
b ⊕ U(a,a∗) ∩Nb ⊕ T(a,a∗) ⊕ Tb ⊕ T0,

where Ub = Ũ−
b ⊕Nb, Nb = ⟨(1, ξ)t⟩G, Nb1 = ⟨(1, 0)t⟩F , Nb2 = ⟨(0, 1)t⟩F ,

then N+
b = Nb1 +Nb2 ,

U(a,a∗) ∩ Ũ
−
b ⊆ U ′

(a,a∗), U+
a = U+

a ∩ U+
B ⊕MB,

Tb = T̃−
b ⊕Hb, T̃−

b ⊆ Ũ−
b , Hb ⊂ Nb, Ua∗ = U+

a ⊕ La∗ ,

where T(a,a∗), Tb and T0 are complementary subspaces of U2
0 = U(a,a∗) ∩

Ũ−
b ⊕U(a,a∗) ∩Nb and U(a,a∗)+Ub in U(a,a∗), Ub and U2

0 , respectively. The
same notation is keeping for subspace V 2

0 and the corresponding partition.
Now, we consider the following cases.
(i) Suppose that (x, y) ∈ U(a,a∗) ∩ (U+

B , U0). Then (ψ(x), ψ(y)) ∈

V ′
(a,a∗) = V(a,a∗) ∩ (V +

B , V0) ⊂ V(a,a∗).

(ii) If (x, y) ∈ T(a,a∗), then there exists z ∈ U+
b such that (z, x) ∈ Ub.

Thus, (y, z) ∈ U ′
(a0,b0)

, y /∈ U+
b and (ψ(y), ψ(z)) ∈ V ′

(a0,b0)
. Assume that

vectors {(tji1 , t
j
i2
) : 1 ⩽ j ⩽ k} constitute a basis of [U(a,a∗) − Ub] and that

{tLa } : a ⩽ L ⩽ m is a basis of subspace V +
a . In this case, λV +

a
denotes a

linear combination of the form
∑m

h=1 λht
h
a, λh ∈ G. Therefore,

(ψ(y), ψ(z)) =

k∑

j=1

λj(t
j
i1
, tji2) + (0, λV +

a
),

ψ(y) =

k∑

j=1

λjt
j
i1
, ψ(z) =

k∑

j=1

λjt
j
i2
+ λV +

a
.
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Then, there exists a unique vector s such that (ψ(y), s) ∈ V(a∗,a) and

(s, ψ(z)− λV +
a
) ∈ Vb, where y /∈ V +

b . Thus, if the F -linear map-morphism
w1 : U0 −→ V0 is deőned in such a way that

w1(x) =

{
ψ(x)− s, if x ∈MB,

0, otherwise;

then w1 ∈ [U+
B + (U ′

a)
+, (V ′

A)
−]. Note that, ψ(U−

A′) ⊆ V −
A′ besides, if

(x, y) ∈ T(a,a∗) then

((ψ−w1)(x), (ψ−w1)(y)) = (ψ(x)−ψ(x)+s, ψ(y)) = (s, ψ(y)) ∈ V(a,a∗).

(iii) If (x, y) ∈ Hb, it holds that

(ψ(x), ψ(y)) =

( k∑

j=1

δjt
j
i1
,

k∑

j=1

δjt
j
i2
+ λV +

a

)
.

If w2 : U0 −→ V0 is a linear map-morphism such that

w2(y) =

{
λV +

a
, if y ∈ H+

b ,

0, otherwise,

then w2 ∈ [U+
B + (U ′

a)
+, (V ′

A)
−]. Note that, ψ̃(Ũ−

b ) ⊆ Ṽ −
b , and for (x, y) ∈

Hb, it holds that

((ψ − w2)(x), (ψ − w2)(y)) =

(
ψ(x),

k∑

j=1

δjt
j
i2
+ λV +

a
− λV +

a

)

=

( k∑

j=1

δjt
j
i1
,

k∑

j=1

δjt
j
i2

)
∈ Vb.

(iv) Suppose now, that (x, y) ∈ U(a,a∗) ∩ Nb, with y ∈ La∗ . Then
(y, x) ∈ U(a∗,a) and (x, y) ∈ Ub. Thus, (y, y) ∈ U ′

(a0,b0)
and (ψ(y), ψ(y)) ∈

V ′
(a0,b0)

, (ψ(x), ψ(y)) ∈ V ′
b .

(ψ(x), ψ(y)) =

( k∑

j=1

γjt
j
i1
,

k∑

j=1

γjt
j
i2
+ λV +

a

)

with
(∑k

j=1 γjt
j
i1
,
∑k

j=1 γjt
j
i2

)
∈ Vb and (ψ(y), ψ(y) − λV +

a
) ∈ [V(a∗,a) −

Vb]. Hence, there exist t1 such that (t1 unique) (ψ(y), t1) ∈ V(a∗,a) and
(t1, ψ(y)− λV +

a
) ∈ Vb, we write (in V )

V(a,a∗) ∩ Ũ
−
b = T1, V(a,a∗) ∩ Ñb = T2, T(a,a∗) = T3,
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then (t1, ψ(y)) = λT1
+ λT2

+ λT3
, where

λT1
= (r11, r

2
1), λT2

= (r12, r
2
2), λT3

= (r13, r
2
3),

r1i ∈ ReTi; r
2
i ∈ ImTi are linear combinations of all elements of the basis

of the corresponding subspace (ReTi= real part of Ti, ImTi= imaginary
part of Ti). Deőne the linear map-morphism w3 : U0 −→ V0 such that

w3(x) =





ψ(x)− r11 − r12 if x ∈Mb,

ψ(x)− r21 − r22 if x ∈ La∗ ∩N
+
b ,

0 otherwise.

Then

(ψκ − wκ)(x, y) = ((ψ − w)(x), (ψ − w)(y))

= (ψ(x)− ψ(x) + r11 + r12, ψ(y)− ψ(y) + r21 + r22)

∈ V(a,a∗) ∩ Ṽ
−
b + V(a,a∗) ∩Nb if x ∈Mb and y ∈ La∗ .

Thus (ψκ − wκ)(x, y) ∈ V(a,a∗) ∩ Vb, with w3 ∈ [U+
B + (U ′

a)
+, (V ′

A)
−].

(v) Deőne w = w1 + w2 + w3 ∈ [U+
B + (U ′

a)
+, (V ′

A)
−]. It is easy to

see that [U+
B + (U ′

a)
+, (V ′

A)
−] ≃ ⟨P (a▼)⟩R′ . Then, by construction, the

linear morphism (ψκ − wκ)(Uκ) ⊆ Vκ, for any class k ∈ Φ. In particular,
(ψκ − wκ)(U(a,a∗)) = (ψ − w)κ(U(a,a∗)) ⊆ V(a,a∗) and (ψ̃ − w̃)(Ub) =

˜(ψ − w)(Ub) ⊆ Vb. Therefore, φ = ψ − w ∈ RΦ(U, V ), which proves that
ψ ∈ RΦ(U, V ) + I′(U ′, V ′), thus RΦ(U, V ) + I′(U ′, V ′) = R′

Φ′(U ′, V ′).
In order to prove that RΦ(U, V ) ∩ I′(U ′, V ′) ⊆ I(U, V ), with I =

[U+
B , V

−
A ], (it is easy to see that [U+

B , V
−
A ] ≃ ⟨G2(b, a)⟩RΦ

), we take a
morphism φ ∈ RΦ(U, V ) ∩ I′(U ′, V ′). Then as φ ∈ I′(U ′, V ′), φ can be
factored through morphisms φ1 : U ′ −→ Pm(â) and φ2 : Pm(â) −→ V ′

that pass through sums of the representation P (â). Thus φ = φ2φ1 with
φ = φ1, and φ2 = id. Note that since P+

a = PB = 0 then φ2φ1(U
+
B ) = 0,

besides we have that Im φ ⊂ (V ′
A)

− provided that φ ∈ [U+
B +(U ′

a)
+, (V ′

A)
−].

Then Im φ ⊂ V −
A , therefore φ ∈ [U+

B , V
−
A ] = I(U, V ) and with this

argument, we are done.

Lemma 26. Let P be an equipped poset with involution, with a pair of
points (a, b), X-suitable. Then, the functor DX

(a,b) : RΦ −→ R′
Φ′ , deőned

by formulas (31), induces an equivalence between quotient categories

RΦ/I
∼
→ R

′
Φ′/I′ ,

where I = ⟨G2(b, a)⟩RΦ
and I′ = ⟨P (â)⟩R′

Φ′

.
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Proof. The density of the functor DX

(a,b) is guaranteed by Lemmas 23

and 24. Lemma 25 allows us to conclude that the functor DX

(a,b) is faithful
and full.

As a consequence of Lemmas 23, 24 and 26, we obtain the following
corollary regarding the Gabriel quiver of the corresponding categories.

Corollary 6. If Γ(RΦ) and Γ(R′
Φ′) are the Gabriel quivers of the cate-

gories RΦ and R′
Φ′ , then Γ(RΦ) \ [G2(b, a)] ≃ Γ(R′

Φ′) \ [P (â)].

Remark 10. The main Theorem 1 is proved by Lemmas 4, 5, 7ś10, 15ś17,
22ś24 and 26.

Remark 11 (Historical remark; a relationship between the theory of
representation of equipped posets and Krawtchouk matrices). It is worth
recalling the way that Zavadskij rediscovered the famous Krawtchouk
matrices in his paper [28]. In such a work, he deőned for two rings A,B
and an (A,B)-bimodule W the AWB-matrix problem which consists of
reducing to some canonical form one rectangular matrix M over W by
elementary transformations of its rows over A and columns over B.

The particular case when A = F is a őeld admitting quadratic ex-
tensions G1, G2 (which may coincide) in the algebraic closure F the
G1 ⊗

F
G2-problem is called the biquadratic matrix problem (which in gen-

eral is still an open problem) over the triple (G1, F,G2), the problem
is named homogeneous whenever G1 ≃ G2. Zavadskij proved that the
G⊗

F
G-problem is equivalent to the (1, σ)-pencil problem over G, where

σ(a+ ξb) = a− ξb.
In the page 43 of [28] Zavadskij wrote the following sentence to justify

the use of matrices of type Θ in his description of the indecomposable
representations of the G⊗

F
G-bimodule:

łBefore to prove Theorem 17, we need to introduce an integer matrix
sequence Θn which expresses in a perfect way a precise relationship
between polynomial invariants for the G⊗

F
G-problem and the (1, σ)-pencil

problemž.
Section 8 of that work is devoted to give many properties of matrices Θn

which now we know were introduced in the late 1920s by Krawtchouk [10].
In the current notation for Krawtchouk matrices Θn+1 = K(n) where
Θi,j

n =
∑

k(−1)k
(
j−1
k

)(
n−j

i−k−1

)
.

He also wrote that the problem of classifying indecomposable repre-
sentations of the critical equipped poset M1 = {⊗ ⊗} can be reduced
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to the C⊗
R
C-problem and therefore to the (1, σ)-pencil problem over the

complex őeld C.
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