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Categorical properties of some algorithms
of differentiation for equipped posets
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ABSTRACT. In this paper it is proved that the algorithms
of differentiation VIII-X (introduced by A.G. Zavadskij to classify
equipped posets of tame representation type) induce categorical
equivalences between some quotient categories, in particular, an
algorithm A, is introduced to build equipped posets with a pair of
points (a, b) suitable for differentiation VII such that the subset of
strong points related with the weak point a is not empty.

Introduction

The theory of representation of partially ordered sets or posets was
introduced and developed by Nazarova, Roiter and their students in the
1970s in Kiev. According to Simson such theory allowed to Nazarova and
Roiter to give a solution to the second Brauer-Thrall conjecture [14,20].
We recall that one of the main goals of the theory of representation of
posets consists of giving a complete description of the indecomposable
objects and irreducible morphisms of the category of representations rep %
over a field k of a given poset Z2.

Perhaps the most useful tool to classify posets are the algorithms of
differentiation [13,20]. For instance, Nazarova and Roiter introduced an
algorithm known as the algorithm of differentiation with respect to a
maximal point which allowed to Kleiner in 1972 to obtain a classification
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of posets of finite representation type [12]. The categorical properties of
such an algorithm were given by Gabriel in 1973 [11]. Soon afterwards
between 1974 and 1977, Zavadskij defined the more general algorithm I
(also named DI) with respect to a suitable pair of points, this algorithm
was used in 1981 by Nazarova and Zavadskij in order to give a criterion for
the classification of posets of finite growth representation type [16,17,22].
Actually, several years later Zavadskij himself described the structure of
the Auslander-Reiten quiver of this kind of posets, to do that, it was
established that such an algorithm I together with a completion algorithm
are in fact categorical equivalences between some quotient categories [23].

The theory of representation of posets with additional structures was
developed in the 1980s and 1990s, for instance, posets endowed with an
equivalence relation in particular with an involution were introduced and
classified by Nazarova and Roiter in [15], and Bondarenko and Zavadskij
in [1] whereas the theory of representation of equipped posets was intro-
duced by Zabarilo and Zavadskij in [30] and [31]. Posets with involution
were classified by using DI and some algorithms of differentiation named
DII-DV together with some additional (more simple) algorithms, such
collection of algorithms is currently called the apparatus of differentiation
DI-DV [9].

A tameness criterion for equipped posets with and without involution
was given by Zavadskij. It was obtained by using both the apparatus
of differentiation DI-DV and some additional differentiations VII-XVII
[24-26]. In particular, algorithms of differentiation I, VII VIIT and IX
allowed to classify equipped posets of finite growth representation type.
In fact, according to Zavadskij [25] the use of algorithms of differentiation
makes of the classification problems for posets a fairly easy task based
only on combinatorial methods.

Since algorithms of differentiation are additive functors it is necessary
to establish the behavior of the objects and morphisms involved in the
process, in this direction Gabriel proved that the algorithm of differentia-
tion with respect to a maximal point induces a categorical equivalence
and the same was proved by Zavadskij, Canadas et al for the algorithms
of differentiation I-V, and VII, actually advances on the subject have been
proposed for algorithms of differentiation VIII and IX [2—4,6,7,9,11,23|.

We recall that according to Zavadskij the main problem regarding the
theory of the algorithms of differentiation consists of proving that they
induce categorical equivalences between appropriated quotient categories [5].
In this paper, we address this problem by proving that algorithms of
differentiation A, (introduced in this paper by the authors), VIII, IX and



40 CATEGORICAL PROPERTIES OF SOME ALGORITHMS

X satisfy this property. Actually, we will establish the following theorem 1
bearing in mind that when Zavadskij introduced algorithms VII-XVII for
equipped posets he was focused on the behavior of the objects under the
action of functors of type D%, in fact, he proved the denseness property
of such algorithms without pay attention to its faithfulness and fullness
properties [25,28].

Theorem 1. Let (9, ®) be an equipped poset endowed with an involution
x and with a set of points S, J-suitable. Then if J is one of the symbols A,
VIII, IX, X the corresponding differentiation functor’ = Dg: rep® —
rep ¢ defined by one of the formulas (19), (20), (21), (27), (31) induces

an equivalence between quotient categories:
rep? /.9 = repPL) 9!

in particular the functor D induces mutually inverse bijections between
indecomposable representations of the form

Indrep? \ [$(])] = Indrep@:g =Indrep 2§\ [¥'(1)].

In Theorem 1 we let [¥] ([9/(I)]) denote a suitable ideal (collection of
isomorphic classes of indecomposable representations) defined by the action
of the corresponding functor. Generally such ideal consists of morphisms
that pass through sums of some suitable indecomposable representations
in [#(I)] and [$'(I)]. Moreover, for two representations or representatives
U,V € [9(I)] it holds that U" = V' € [9/(I)]. Besides, it is considered
that the involution x* is trivial (i.e., z* = z for all x € ) for each of the
differentiations A,, VIII and IX.

The following lemma proved by Zavadskij for differentiations VII-XVII
in [25, 28] establishes that each of these functors is dense. In this case, Y
denotes a suitable representation of the category of representations of an
equipped poset with a set of points S suitable for differentiation J, ¢

is a corresponding derived poset and @/S stands for the derivative of a
completed poset with an additional strong relation.

Lemma 1. For each representation W € rep @ig, there exists a represen-
tation W' € rep? such that (W) ~ W @Y™, for some m > 0.

This paper is organized as follows; in section 1 basic notation and defi-
nitions regarding the category of representations of posets with additional
structures are included. In section 2, we recall some categorical properties
of the algorithms of differentiation, I, completion, and VII. We prove the
main result by describing in section 3 the algorithms of differentiation A,
VIII-X.
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1. Preliminaries

In this section, for the sake of better understanding, we introduce main
notation and definitions regarding equipped posets and its category of
representations |2—4,6, 7,25, 26, 30, 31].

1.1. Category of representations of posets
with additional structures

In this section, we recall the definition of equipped posets and posets
with involution and their corresponding category of representations as
Zavadskij et al have described in [3,4,6,7,25,26]. Worth noting that
although equipped posets were introduced and classified in 25,26, 30, 31]
over the pair of fields (R, C), in this paper, we consider notation and defi-
nitions adopted by Zavadskij and Rodriguez in [19] where representations
of equipped posets are defined over a pair of fields (F,G) with G = F (&)
a quadratic extension of F' associated with a minimal polynomial of the
form t> + at + B, o, € F, f# 0 and & € G such that

+at+5=0. (1)

Equipped posets. A poset (?,<) is called equipped if all the order
relations between its points @ < y are separated into strong (denoted
x <y) and weak (denoted z < y) in such a way that

r<y<dz or z<dy<z implies z<z, (2)

i.e., a composition of a strong relation with any other relation is strong.

In general relations << and < are not order relations. These relations are
antisymmetric but not reflexive. In particular < is not reflexive (meanwhile
< is transitive) [19].

We let x < y denote an arbitrary relation in an equipped poset (2, <).
The order < on an equipped poset & gives rise to the relations < and <
of strict inequality: x < y (respectively, x < y) in @ if and only if z <y
(respectively, z Jy) and x # y.

A point x € P is called strong (weak) if x < (respectively, x < x).
These points are denoted o (respectively, ®) in diagrams. We also denote
P° C P (respectively, ?® C ) the subset of strong points (respectively,
weak points) of ?. If % = & then the equipment is trivial and the poset
9 is ordinary.

Remark 1. Note that if x < y in an equipped poset (%, <) and there
exists t € % such that * < t < y then z,y € #®, z < tand t < y.
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Otherwise, if x <t or tly then by definition it is obtained the contradiction
x Jy.

If 2 is an equipped poset and a € % then the subsets of % denoted

a”,an, av, an, a¥, ax, a’ and a, are defined in such a way that:

o/ ={zeP |a<z}, arn={z€P |z<a},
o' ={re?P|adr}, ar={zeP |rda},
a" =a’\a, as=oanp\a,

o' ={xeP|a=<z}, ar={z€P|z=a}.

Subset a¥ (an) is called the ordinary upper (lower) cone, associated
with the point a € 2 and subset a” (a,) is called the strong upper (lower)
cone associated with the point a € . Whereas subsets a¥ and a, are
called truncated cones (upper and lower) associated with the point a € 2.

In general, subsets @ and a, are not cones. Note that, if z € %° then
=z, =0.

For an equipped poset (%, <) and A C %, we define the subsets, A",
A and AV in such a way that

Av:Uav, AY:UaY, AV:UaV

acA acA acA

Subsets A,, A, and A, are defined in the same way.

If % is an equipped poset then a chain C = {¢; € P | 1 < i <
n,ci—1 < ¢ if i = 2} C P is a weak chain if and only if ¢;_1 < ¢; for each
1> 2. If ¢; < ¢, then we say that C' is a completely weak chain. Moreover,
a subset X C @ is completely weak if X = X® and weak relations are the
only relations between points of X. Often, we let {¢; < ca < -+ < ¢}
denote a weak chain which consists of points ¢y, ¢o, ..., ¢,. An ordinary
chain C' is denoted in the same way (by using the corresponding symbol
<).

The diagram of an equipped poset (%, <) may be obtained via its
Hasse diagram (with strong (o) and weak points (®)). In this case, a new
line is added to the line connecting two points z,y € & with x <y if
and only if such relation cannot be deduced of any other relations in 2.
Figure 1 shows an example of this kind of diagrams.

In this case if A = {4,6}, then AY = {6,7}, A" = {4,5}, AV =
{4,5,6,7}, Ax = {1,2,3,6,8,9}, Ax = {1,2,3,4,6,8,9} and A, =
{1,2,3,4}. Note that A # A®, subsets C; = {9 < 8 < 3 < 4 < 5}
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17 ={1,2,3,4} 1" ={56,7}

2V ={2,3,4} 2" =1{5,6,7}

3 = {3,4} 37 ={5,6,7}

4" ={4,5} 4" =g

5" = {5} 5 =@

6" =0 67 = {6,7}

=0 77 ={7}

8 =o 87 = {3,4,5,6,7,8}
9 =0 9" = {3,4,5,6,7,8,9}

F1GURE 1. The diagram of an equipped poset and some of its subsets.

and Cp = {1 < 2 < 3 < 4} constitute a chain and a completely weak
chain, respectively.

For an equipped poset & and A, B C % we write A < B if a < b for
each a € A and b € B. Notations A < B and A < B are assumed in the
same way.

Equipped posets endowed with an involution. An equipped poset
with involution is an equipped poset (#, <, <, <) with an involution x*
satisfying the following two additional conditions:

(i) on the set of all points %, it is given an involution * :  — &
which preserves strong and weak points and independent of the
relation <. Hence, strong points are divided into small (x = 2*) and
big (z # x*), and weak points are partitioned into weak (z = z*)
and biweak (x # z*);

(ii) to each biweak point x it is assigned the number g(z) = g(z*) € {£1}
called its genus (or genus of the pairs x,x*).

In the case x # z*, we called the points x and x* equivalents and write
x ~ x*. The involution * is said to be primitive if it leaves fixed all weak
points (i.e. there are no biweak points).

In diagrams of equipped posets with involution, symbols o, e, ®, ©®
depict small, big, weak and biweak points, respectively. All order relations
with a participation of at least one strong point, as well as all weak relations
between weak points, are pictured by a single line. But all strong relations
between weak points, which are not consequences of some other relations,
are pictured by a double line (or by an additional line) [25].

If some group of points is encircled by a contour connected by some
(single or double) line with some other points, it means that all points
located inside the contour have the same order relations with the mentioned
other points (determined by the type of the line).

Note that in Figure 2, a ~a*, ¢~ c*; ¢q=4¢*; b=0"; ¢*<b, ad
a*<q, a<dc=b, a<A, Bdb;b,c,c* qcP®.
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F1GURE 2. The diagram of an equipped poset with involution.

1.2. Complexification

In this section, we give definitions of complexification and reellification
of a vector space and its respective extension to complexification of linear
transformations [2,3,21]. Some particular subspaces whose properties are
useful in the theory of representation of equipped posets are described as
well [25].

Let F' C G be an arbitrary quadratic field extension with G = F (&)
for some fixed element & € G. Then each element x € GG can be written
uniquely in the form o« + &5 with a, 8 € F in this case (analogously
to the case (F,G) = (R,C)) « is called the real part of x and S is the
corresponding imaginary part of x.

Complexification of F-spaces. The complezification of a real vector
space Uy is the complex vector space Uy = Uy x Uy = U02 in which the
addition + : ffvo X ffvo — &B and the scalar multiplication - : C x ’Uvo — ’Uvo
are defined by

() ()= () ma @rm () =(rrm) @

If we identify the space Uy with the real subspace Uy x {0} of ﬁo and
write simply v instead of (v,0)! then an arbitrary element z € Uy, may
be written in the following form

_v_v+.w_+. cU
=1, =0 ilg)=vtiw, vuw 0-

Therefore the complexification of a real vector space Uy has the form
Up = Uy + tUy. Thus, if W C Uy is a R-subspace of Uy then the real part
of W denoted Re W and its corresponding imaginary part denoted Im W
are defined in such a way that if W = R{xz; + 4y, | x4,y € Uy, t € A} C Uy
for a fixed basis then

ReW = span{z; |t € A} C Uy, ImW = span{y; | t € A} C Up.



I. D. M. GAVIRIA, A. M. CANADAS 45

In this case, if k is a field and T' = {ej, ea,...,e,} is a set of generators of
a k-vector space V then k{ej,es,...,e,} denotes the subspace generated
by T.

In [21] it is proved that every basis in a real vector space V' is also a basis
(over C) of the complex vector space 1% consequently dimg V = dimg V.

If W is a complex vectorial space then the reellification Wg of W is
the real vector space which is obtained from W by restricting the scalar
multiplication to R x W, (Sloppily, this is just W considered as a real
vector space). Thus, if {w; | t € A} is a basis of W over C then

{wt]teA}U{szt\teA}

is a basis of Wg over R and dimg Wg = 2dim¢c W [21].

A real subspace V' of Wy is called a real form of W it W = V= V42V,
therefore dimg V' = dimc W. In [21] it is also proved that if V is a
R-space then (V)R ~ V @ V. Thus, if W is a C-subspace of &B with
W =C{zy + 2y | 2,y € Uy, t € A} C (70 then

Wr = R{zy + tys, —ye + iz | 2, ye € Up,t € A}, therefore Re Wr =
Im Wgr = span{z; | t € A} + span{y; | t € A} = span{zy,y: |t € A}.

The complexification of a real vector space may be generalized to
the case (F,G) where G = F(£) is a quadratic extension of F'. In this
case, we assume that &€ is a root of the minimal polynomial t> + at + 3,
B #0, (a, B € F). In particular if Uy is a F-space then the corresponding
complexification is the G-vector space also denoted UZ = Uy with a scalar
product of the form (see identity (1)):

(a + &) (Z) _ (bv i“(; fba“g)w) C vwel (@)

As in the case (R, C), we write U2 = Uy + £Uy = f]vo.

To each G-subspace W of vao it is possible to associate the following
F-subspaces of Uy, W' = ReWr = ImWp and W~ = span{z € U |
(2,00l e W} Cc WT.

Wt = F(W) is called the F-hull of W such that W C F(W). (5)

If Y is a F-subspace of Uy and X = Y then Xt =X~ =Y. Therefore,
Y is a F-form of X. For example, if we consider F' = R, G = C and
Uy = R? = R{ey, ez} then Uy = C2, in this case, we can assume £ = 1.
Thus, if W is a C-subspace of C? such that W = C{ej + iea} then

Wt=R?> and W~ =0.



46 CATEGORICAL PROPERTIES OF SOME ALGORITHMS

If R3 = R{ey, e2,e3}, and W = C{eq, ea +ie3} C C? = R3 then
WH=R} FW)=W+=C> and W~ =R{e;}.

Remark 2. Any G-subspace W of ﬁo can be written as a direct sum
of G-subspaces, W = W~ @& H where H is a complement of W~ in W.
Therefore, H ~ W+ /W~ If X C Uy is a G-subspace with a F-hull such
that F(X) = X then we say that X is a strong space. Therefore any
G-subspace X C ﬁa always has a strong direct summand of the form X-.

1.3. Representation of equipped posets

In this section, we recall the definition given by Zavadskij et al. of
the category of representations of equipped posets with and without an
involution defined on its set of points. It should be noted that Zavadskij
gave a generalization of equipped posets over a pair of fields (F, G), where
G is a Galois extension of the ground field F' [29].

A representation of an equipped poset over the pair (F,G) is a system
of subspaces of the form

U= (UyUs |z €P), (6)

where Up is a finite dimensional F-space; and for each z € &, U, is a
G-subspace of Uy, such that, if x <y then U, C Uy, and if <y then
F(Uy) C Uy (see (5)).

We let rep % denote the category whose objects are the representations
of an equipped poset 2 over a pair of fields (F, G). In this case, a morphism
0: (Up;Up |2 €P) — (Vo; Vi | © € P), between two representations U
and V is a F-linear map ¢ : Uy — Vj such that p(U,) C V, for each
x € P, where ¢ : Uy — Vg is the complexification of v (p=p+E&p).
The composition between morphisms of rep? is defined in a natural way.

Two representations U,V € rep? are said to be isomorphic if and
only if there exists an F-isomorphism ¢ : Uy — V{ such that ¢(U,) = V,,
for each x € %

The sum U @V € rep? is defined as in the classical way, that is, the
sum U &V of two representations of a given equipped poset % is defined in
such a way that UV = (U@ Vo; U, BV, | @ € ). Therefore, rep? is a
Krull-Schmidt category. A representation U € rep @ is indecomposable if
U # 0 and there is not a direct sum decomposition of U into two non-zero
representations. Often, we let Ind 2 denote a set of representatives of the
isomorphism classes of all the indecomposable objects of a category rep 2.
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Let 2 be an equipped poset and U,V € rep?. Then U is a sub-
representation of V if and only if the spaces Uy, Vi, U, and V, satisfy
the inclusions Uy C Vy and U, C V,, for each = € 9.

For each x € 9%, we let U, denote the radical subspace of Uy, that is,

Us=> FU.)+ > U..
z<x z=<x

Let @ be an equipped poset. The dimension of a representation U €
rep? is the vector d = dimU = (do;d, | = € &), where dy = dimp Uy
and d, = dimg U, /U,. A representation U € rep? is sincere if dy # 0
and d, # 0, for each x € 9. In other words, the vector d of a sincere
representation U has not null coordinates.

Let X C 2 and U € rep?. The subspaces of Uy, denoted respectively

by Ux, U;g, EX and (Ux)~, are defined as follows:

Ux =30, UE=YUf Ux= (U Ux) =(U;.

reX zeX zeX zeX

Note that U} =0, Uy = Up, and if 2,y € P with x <y then U} C U,

Let 2 be an equipped poset with involution * which naturally induces
an equivalence relation on the points of 2, let ® be the set of all equivalence
classes on & respect to such an involution. Then classes k € ® consist
either of one or two points, in the second case it holds that = # z* and
k= (z,x%).

Now, we recall the definition of a representation of an equipped poset
with involution as given by Zavadskij in [25]. In this case, we let (2, ®)
denote an equipped poset with an involution inducing a set of classes ®
over 9, if there is not doubt with the order < and the corresponding
equipment, we will write simply % to denote an equipped poset with
involution.

Let (2, ®) be an equipped poset with involution. A representation U
of (2, ®) is a system of vector spaces of the form

U= (UnUs |k €®), (7)

where Uy is a finite dimensional F-vector space and /U\a is its corresponding
complexification, which is a G-vector space, such that,

U, C:C%;

U, C Up;

U(x’m*) C gg b /U\Q;
l]kw,$*) C Uy @ Up;
Ufcu,.

if z is a small point
if z is a weak point
if z is a big point

if z is a biweak point

FEELL

ifex<y
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A morphism ¢ : (Up; Uy | k € @) — (Vo; Vi | & € @) between two
representations U and V, is an F-linear map ¢ : Uy — Vj such that:
©"(Uy) C Vi, for each k € ®. In the natural sense, if z = (21, 22) € U,,

then ©"(z) = (v(21), (22)).

1.4. Examples of some indecomposable objects

In this section, we give some examples of indecomposable objects in
the category rep 2, where % is an equipped poset. The matrix problem of
these kind of posets and the matrix presentations of the indecomposable
objects were defined by Zavadskij in [25].

Later on a subset X C & will be called small (big, weak,...) if all its
points are small (big, weak,...). A subset consisting of two (three, four)
mutually incomparable points is called a dyad (triad, tetrad).

we often write a || b to denote that points a,b in a poset % are
incomparable and if there is not confusion hereinafter % denotes an
equipped poset unless otherwise stated.

If % is an equipped poset and A C % then we denote by P(A)
an indecomposable representation of the equipped poset % such that
P(A) = P(minA) = (Py; Py | © € &), where Py = F and P, = G if
x € AV, P, =0 otherwise. In particular, P(&) = (F;0,...,0).

If a,b € % with a || b then P(a,b) denotes an indecomposable object
such that P(a,b) = (Py; P, | x € &) with Py = F and P, = G if
x €a’ UbY, P, =0 otherwise.

If a,b,p € P® c€ P° witha <b,al p,al cthen T(a), T(a,b),
T(a,p) Gi(a,c) and G3(a,c) denote indecomposable objects with matrix
presentation of the following form (T = Gy = F? in each case):

a a b a P a ¢ a c

1 110 1] 1 110 110 1

3 €1 £ € €1 £/ 1 0
T(a) T(a,b) T(a,p) G1(a,c) Ga(a,c)

If 9 is an equipped poset with a primitive involution *, and a € 2 °,
b e P® with a || b, then G1(b,a) and Ga(b,a) denote indecomposable
representations with the matrix presentations described below (Go = 2
in each case):

Gl(b, CL) = Gg(b, CL) ==

A I I
— O
o O
o O
N = o~
O =
=]
o O
o O
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Remark 3. Zavadskij proved in [25] that P(@), P(¢;), T'(¢;) and T'(¢;, ¢j)
for 1 < i < j < n, are the only indecomposable representations (up to
isomorphisms) over the pair (R, C) of a completely weak chain C' = {¢; <

- < ¢cp}. In fact, if U = (Up; U, | 1 < @ < n) is a representation of
C over (R, C), then in the corresponding matrix representation to each
block U, 1 < i < n, can be reduced via admissible transformations to
the following standard form:

Uci = I ;
11

where the columns consist of generators of U, modulo its radical subspace
U, = U,, , with respect to a fixed basis of Uy (in this case, empty cells
indicate null coordinates). This result can be generalized in a natural way
to the case (F,G) by using a suitable scalar & € G instead of the constant
¢ € C in the matrix presentation of U., shown above.

1.5. (A,B)-cleaving and the Zavadskij symbol

In this section, we recall the notion of a cleaving pair of subspaces in
the sense of Zavadskij [25] and the definition of the Zavadskij symbol as
Canadas and Cifuentes described in [9].

Henceforth, the disjoint union of subsets X, Y € & will be called a
sum and it will be denoted by X + Y. A sum X + Y is called cardinal
(ordinal) if there is no order relations between points x € X and y € Y (if
x<yforallz € X and y € Y, or conversely). By (p1,..., Pk q1,---,q)
we denote an analogous cardinal sum in which [ chains are ordinary with
q,--.,q points, and k chains are completely weak with pq,...,pg points,
respectively.

The following lattice allows defining a cleaving pair of subspaces as
Zavadskij described in [27].

The order relation in this poset is given by the natural inclusion of
subspaces, Ej is a complementary subspace of AN B in A, and Wy is a
complementary subspace of A+ B in Uy. Let Uy be an F-vector space and
Ey, Wy, A, B C Uy. The pair of subspaces (Ey, W) is an (A, B)-cleaving
of Uy if the poset of subspaces described in Figure 3 is a lattice (with the
obvious meets A = N and sums V = +). In other words, (Ey, Wp) is an
(A, B)-cleaving pair of Uy if and only if

Uy=FEc®&Wy, A=Ey+(ANB) and B=Wyn(A+B). (8)
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Uo
N\
A+ B Wo

SN
/\/

ANB

\/

FIGURE 3. The diagram of an (A, B)-cleaving of U.

Set Up, Vp be two arbitrary finite-dimensional F-vector spaces. For any
subspaces X C Up and Y C Vj, the Zavadskij symbol [X,Y] associated
with X and Y is a subspace of Homp (Up, Vo) such that ¢ € [X,Y] if

X C Kery and ImepCY.

Note that, if X’ C X and Y C Y’ then [X,Y] C [X, Y] [27].

If U=X@a&Y is a vector space decomposition then we let ex denote
the idempotent im in End (U), where 7 : U — X and i : X — U are the
natural projection and injection, respectively.

For a category &, we let (U; | i € I)g denote the ideal consisting of
all morphisms passing through finite direct sums of the objects U;. That
is,if p: U =V € (U; | i € I)g, then there exist morphisms f,g € R

such that ¢ = U EN @U™ L V with m; = 0 for almost all 4.

1.6. Auslander-Reiten quiver

The Gabriel’s quiver A(K) of a Krull-Schmidt category A is a directed
graph whose vertices are the isomorphism classes [U] of the indecompos-
able objects U in X and there is an arrow [U] — [V] if Irr(U, V) # 0
with Trr(U, V) = Rad(U, V) /Rad?(U, V). A component of K is the class
objects generated by the indecomposable objects belonging to a connected
component of A(A) [18].

The Auslander-Reiten quiver T'(A) of a Krull-Schmidt category K is
the Gabriel’s quiver of A in which it is defined a particular translation
denominated the Auslander-Reiten translation (7).
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2. Some preliminary algorithms

In this section, for the sake of clarity, we recall some categorical prop-
erties of the algorithms of differentiation, I (section 2.1), completion
(section 2.2) and VII (section 2.3).

2.1. Algorithm of differentiation I

The following is the definition of the algorithm of differentiation 1 (DI)
with respect to a suitable pair of points [26].

A pair of incomparable points (a,b), of a poset & is called I- suitable
or suitable for differentiation I, if 2 = a¥ + b, + C

where C' = {c; < --- < ¢,} is an ordinary chain incomparable with
points a, b. The derived poset of the set % with respect to the pair (a,b) is
aposet P =P, = (P\C)+CT+C~, where O~ ={¢] <---<¢,}
and C* = {¢f <.+ < ¢!} are new ordinary chains, replacing the chain
C, with the relations ¢; < cj; a < cj and ¢; < bforall 1 <7< n.

The differentiation functor Dza,b) :rep? — rep P’ assigns to each
representation U = (Up; U, | © € P) of % the derivative representation
U' = (Uy; UL | x € P') accordingly to the formulae:

Ul = Uy,
Uéf =U,+U,, forl<i<n,

U_=UyNnU,, forl<i<n, (9)

U/ =U, for the remaining points x € g’(/a,by

x

¢ = for all F linear map-morphism, ¢ : Uy — Vj.

%P,y can be considered as a subposet of the free lattice generated
by 2. Figure 4 shows the Hasse diagram for this differentiation.

of b
b
e
I
—
% (a.b)
a €1

FIGURE 4. Hasse diagrams of an equipped poset & and its corresponding
derived poset 2’ (, p).
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Since usually the derived representation U’ is decomposable and con-
tains trivial summands P(a), it is convenient to consider (besides U’) the
reduced derived representation Ut such that U’ ~ Ut @ P™(a), where
m > 0 and U* is free of direct summands P(a). There exist an alternative
definition of U+, namely, U* = W = (Wo; W, | « € ), where Wy is any
subspace in Uy satisfying the conditions U, +Wy = Uy, (Uy+Up) "Wy = U,
and W, =U’, ngn(:r) for all z € 2 (here m(z) = I is the multiplicity of
a point x). The representation U+ does not depend (up to isomorphism),
on the choice of Wj.

The inverse (in some sense) operation T, called integration, assigns to
each representation W of the set %’ the primitive representation W1 of
the initial set % such that (W)} ~ W as soon as W contains no direct
summands P(a).

Zavadskij proved the following result in [22], [23] and [27].

Theorem 2. Let % be a poset with a pair of points (a,b) I-suitable. Then:
(a) The functor DEa,b) :1epP — rep P’y 1, defined by formulas (9)
induces an equivalence of the quotient categories

1ep® /(P(a), Pla,cr), .., P(a,0)) 5 1ep@ (0 /(P()).
(b) The operations | and T induce mutually inverse bijections
Ind% \ [P(a), P(a,c1),...,P(a,c,)] = Ind@(’a b) \ [P(a)].

Remark 4. It should be noted that Zavadskij proved numerals (a) and (b)
of Lemma 2 in 22, 23] for the algorithm of differentiation I and completion,
whereas for algorithms A,, VII-X he only proved numeral (b) [25].

2.2. Completion algorithm

In this section, we present the algorithm of completion as Zavadskij
defined in [23, 25, 26].

A pair of weak points a,b weakly comparable a < b of an equipped
poset % will be called special if %% = a¥ + b, + X, where X is the interior
of the interval [a, b].

The following is the definition of the completion algorithm which is a
differentiation with respect to a special pair of points (a, b) of an equipped
poset.

The completion of % with respect to such special pair (a,b) is a
transition from % to a slightly different equipped poset % = @(&b)
obtained from % by strengthening the relation between the points a and
b for which we have the following two situations:
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(a) ? = a" + by, where a, b are incomparable strong points,
(b) % =a" + by + X, where a, b are weak points, a < b and ¥ is the
interior of the segment [a, b].

In both cases the completed equipped poset % is obtained from % by
adding the only one strong relation a <1 b. In the case (a) this is in fact
the classical completion of an ordinary poset (see, [23]). In the case (b)
the completion a <1 b of & conforms to a pair of mutually symmetric
completions of the evolvent & (i.e., the ordinary poset associated to %)
with respect to ordinary special pairs (a’,b"”) and (a”, V).

b b
> 45 0® g

@ completion @
(a,b)
B ®)

F1GURE 5. The diagrams of an equipped poset % and its corresponding
completed poset P (4 ).

Let E(a,b) crep%? — rep g(%b) be the functor induced by the algo-
rithm of completion. This functor is defined as follows: for U = (Up; Uy, |
rE€P)ecrep?,

Dy (U):=U=Up;U, |z €P) € rep@(a,b),

where
Uo = U,
Uy, =U,+ F(U,),
7b b ( a) B (10)
Uy = Uy, for the remaining points = € % (4 4),

© =, for all F linear map-morphism ¢ : Uy — V.

It is clear that rep% is a full subcategory of the category rep 2.
Moreover, the following statement holds, see [23,25].

Lemma 2. The category rep P coincides with the full subcategory of the
category rep PP formed by the objects without direct summands of type P(a)
in the case (a), and of type T'(a) in the case (b). Therefore

— [ Ind®? \{P(a)} in the case (a),
Id® a) = { Ind? \ {T'(a)} in the case (b).

Regarding the completion functor Canadas and Zavadskij proved the
following results in 2] and [27] respectively.
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Lemma 3. The completion functor ﬁ(a,b) imduces the following categorical
equivalence of quotient categories.

rep? /(T (a),T(a,b)) = rep P /(T (a)).

As a consequence of Lemmas 2 and 3, the following corollary is obtained
giving an isomorphism (~) between Gabriel quivers of the corresponding
categories.

Corollary 1. Let I'(R) and I'( l be, respectively, the Gabriel’s quivers
of the categories R =rep P and R = rep P, then

L(@)\ [T(a),T(a,0)] ~ (%) \ [T(a)].

2.3. Categorical properties of the algorithm
of differentiation VII for equipped posets

The differentiation VII is one of the seventeen differentiations devel-
oped by Zavadskij to classify (in particular) equipped posets of tame and
of finite growth representation type [25,26].

Let 2 be an equipped poset then a pair of points (a,b) of the poset
9 is said to be VII-suitable or suitable for differentiation VII, if a € %,
be?° a|band P =a” + by + C, where {1 < -+ < ¢} isa

completely weak chain (possibly empty) incomparable with the point
b, and a < ¢1 (note that automatically a < ¢,).

The derived poset 9’(’(1’13) of an equipped poset 9 with respect to a pair
(a,b) of points VII-suitable is an equipped poset defined in such a way
that

@(a’b) =@\ {a+C}H) +{a <a"}+C" +CT,

where a~ € (@(’a’b))‘@, at € (@’ab °,C” ={cf = =<c,}and CF =
{cir <= c,J{} are completely weak chains, ¢;” < cj for all 4; 0= < c];
t <l ¢, <b, and the following conditions hold:
(1) each of the points a™, a™, (¢, ,¢;") inherits all the previous order
relations of the point a (¢;) with the points of the subset 2\ {a + C'};
(2) the order relations in @(’&b) are induced by the relations in its subset
% \ {a+ C}, and by the relations described above (note that, in
particular, a™ < ¢;).

The following functor DE’;fb) was given by Zavadskij in [25], soon
afterwards, it was updated by Rodriguez and Zavadskij in [19] by using
some short versions of this algorithm via representations of posets with
additional lattice relations.
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FIGURE 6. Diagrams of an equipped poset % and its derivative poset 2’ (, ;).

Let & be an equipped poset with a pair of points (a, b), VII-suitable, the
following formulas define the differentiation functor DE/aI,Ib) :rep P —
rep 9’(’a7b), induced by the algorithm of differentiation VII. Thus for a
given representation U = (Up; U, | x € ) € rep P, we get the derived

representation U' = (Uy; UL, | x € ?}’(’a p)s if 1 < < n, where:

Uy=Us, U._=U,nU, U, =FU,),

a

U_=U,NUy, U =Ug,+F(Uy),
K K (11)

Ul = U, for the remaining points x € @{a,by

¢ = ¢, for all F linear map-morphism ¢ : Uy — V.

Note that, P'(a) = P(a*) and T'(a) = T"(a, ¢;) = P?(a™). A represen-
tation of &, containing no direct summands of the form P(a), T'(a) and
T(a,c;), will be called reduced. Obviously, P*(a) = T*(a) = T*(a,c;) = 0,
for all 1 <7 < n. By construction of the reduced derivative representation.

The following results were proved by Canadas, Zavadskij and Zavadskij
et al in [2], [19] and [25].

Lemma 4. For each object W € rep@l(mb) there exists an object U =
WT €rep? such that U' ~ W @ P™(at), for some m > 0.

Zavadskij proved that (Wt ~ W, (UHT ~ U for each reduced
representation U of & and each representation W of %/ where W =~
U+ [25].

Lemma 5. Let & be an equipped poset with a pair of points (a,b) VII-
suitable. Then:
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(a) The functor DEQI) rep? — rep P’ (44, defined by formulas (11)

induces an equivalence of the quotzent categories

rep@ /(T(a),T(a,c;), P(a) | 1 <i <n) = 1ep@’ (o) /(P(a’)).

(b) The operations | and T induce mutually inverse bijections

Ind? \ [T(a), T(a,c;), Pla )|1<z<n]<ﬁ1nd@/(a,b):

Ind 9)(' \ [P(a™)].

The following result holds as a consequence of Lemma 5

—

Corollary 2. IfT'(R) and T'(R') are the Gabriel’s quivers of the categories
R =r1ep? and R' =rep’, then

L(@%)\ [T(a), T(a,c;), P(a) | 1 <i <n] = T(R)\ [Pa™)].

Remark 5. Henceforth, if X is an F-subspace of a vector space Uy then,
we let Ax denote a linear combination of the form A;, z1 4+, xo+- - -+, T4,
for a fixed basis {z;} C X with \;, € F'.

3. Proof of Theorem 1

In this section, we prove that algorithms A,, VIII-X induce categorical
equivalences between quotient categories of equipped posets.

3.1. Some remarks regarding the algorithm of differentiation
VII for equipped posets

In this section, it is defined an algorithm A, which in some sense can
be considered as a generalization of the algorithm of differentiation VII
defined by the structure of a chain of (F, G) subspaces of a given F-vector
space Uy. Actually, algorithm A, is a way to obtain equipped posets with
a pair of points (a,b), VII-suitable for which the set (a¥)° # @.

Let us consider the following chain of G-subspaces of a vector space Uy.

Uy CUey, CU, €---C U, , CUe,, n21,
which are incomparable with a G-subspace U, such that:
F(Uy) = U
We also consider that, for any i, 1 <17 < n,

Ue; & F(Ue,)-
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Moreover, each G-subspace U, can be seen as a sum of subspaces of the
form

U, =Us, ,®H;, Hi=H" o8,

S o (12)
H =H NU,aY,, S;i =85 NU,@S;,

where S; is a complementary subspace of H,” in H;, as well as, Y;~
and S; are complementary subspaces of H; NU,and S; Uy in H; and
S;, respectively.

Another finest way to express U, as a sum of subspaces goes as follows:

Uy =Ue, @ H, NUy& S0 U, 0Y, @ Y T8 &N (13)

1

<j<n

In (13) the spaces >
for j fixed

i<j<n chl 7 and Nj are subspaces of S;. In particular,
Te) =~ T (¢;,¢j), for some ky > 0,

N (14)
N; ~T"(¢;), for some kg > 0.

The corresponding subspace T'(¢;) associated with an indecomposable
representation T'(c;,c;) will be denoted T(i) = (T1(i/), Tx(i?)), thus,
Ty(), To(i?) C U,.

We assume that

T() = (Ty() N Uy, Ta(¥)) + (X1(7), Xa (7)),
Ti() = (@) N U @ Ti (7)) & Xu (i), (15)
To(i') = To(i) N Uy & Ta(i?) & Xa(i?),

with To(i/) N U, =0 =T1(i7) = Xi (i) N Uy, k € {1,2}.

Ni = (Niq1y, Ni2)) = (Pyyps Pig2)) + (Qiqry, Qi2))

(16)
Piay € U, Qi) NUp = Pyo) NUp = Qy2) NUp = 0.

The algorithm A, (adding a subspace F(U.)). In this subsection,
it is described the way that a subspace U, changes when adding a subspace
FU,), z>0.

Firstly, we note that for 0 <i<n— 1 and z fixed 0 < z < 4,

Uci + F(Ucz) g Uci+1 + F(Ucz)?
U \Up + F(U..) C U, N Uy + F(U..).

i+1
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and that under these circumstances, the subspaces 11 (k?), T (k') X, (k') C

U, (see identities (15)), h € {1,2}.
The following lattice arises for each 2' 0<i<n—1

Cz+l
Uc, + F Cl+1 N,
Uci N,

F1GurE 7. The diagram of subspaces associated with U., and Us.

Then, the subspaces Ug,, U., N Up, Uy and U, + F(U,,) build (F, G)-
representations of the following equipped posets:

b
C:zr—l
X/%n Cly1 . Cp
o Ol c; » O
op (g/%erl A, ety [ ?}’(’cz@
s Cy c.
(X/%l b CE{@/@
O

F1cUuRrE 8. The diagram of the algorithm A,.

We let @(cz,b) denote the equipped poset obtained from the derived
poset 9]’(’62 b = (cd)” +ba + (cf_;). by adding a lattice relation of the
form (¢ +¢f +cg + - +cl )b=cl b Cc;, sometimes it is written
as @(cz,b) = (@(Chb) | >-(c..p)) where 37 ) consists only of the lattice

relation ¢/ b C ¢, and as in [2,19] it means that rep@(%b) is the full
subcategory of rep 9’(’62 b) whose objects W satisfy the condition

W(C+ 1))\ N Wb g WC; (18)
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Actually, any representation of o (c.,b) is obtained via the following assign-

ments of subspaces of ﬁa to the points of % and g)(cz,b)3

Up, to the point b,

U, to each point ¢;, 0 <@ <
U, N Uy to each point ¢;, z <1 < n, (19)
Ue; + F(U.,) to each point ¢, z <i <

U+ NU,CU,-.

z—1

Keeping without changes the other subspaces or points in the chain, i.e.,
U, = Ucif’ 0<h<c .

Note that by definition P’(c,) = P(c}), T'(c.,¢;) = T'(c.) = P?(c))

in rep Q’(CZ@, 1 > z. Therefore the algorithm A, transforms the poset %

in the new poset & (._ ). Also note that the case z = 0 corresponds to the
algorithm of differentiation VII (see identities (11)).

If we denote A,(U) = Dé;b)(U) = U, for z fixed, the output under
the algorithm A, of the representation U € rep 2 [2,19], then A, becomes
a functor which acts on objects and morphisms of category rep? as

follows:

/

=D, p) :rep?P — rep@(CZ,b)

Uy = U

Ue, + F(U, if 1> 2,
R A (20)
G Ue, it 0<i< 2.

Ué, =U;, NUy, for i >z,

7

¢’ = ¢, for all F linear map-morphism ¢ : Uy — V € rep 2.

By construction, we can see that D(., ) induces a categorical equivalence
between quotient categories. In fact, we have the following results for
algorithm A,.

Lemma 6. Let U and V' be two fized objects in the category rep P, R :=
rep? (U, V) = Homp (U, V), R’ := repP(._y(U', V') = Homp (U', V')
and let $ and .9’ be the ideals

FU,V)=9 = {P(c.),T(cz,¢j), T(cz), z<j<n}) Crep?,
F'(U VY =9"= ({P(c.)}) C repQZ’(cZ’b).

Then, the following poset of subspaces is a lattice:
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/\
\/

Proof. Firstly, we prove that ®" = % + .9’. To do that, we choose a
morphism ¢ € &’. Then

C V, for any point x ¢ ¢!,
C F(Vy), for any point x € @(/C b)

C V, , for any point x € @(c b)-

Note that, in general w 2) € Vg, for any x € P, thus in general
b ¢ %,

Let us now to define correction morphisms wo, w1, wy, ..., w, such
that ¢ — > qw; € R. To do that, we note that, if A € Y~ then ¢)(\) =
= + Ap(m.)- Throughout the proof, we assume the same notation for

subspaces of ﬁo and /VVO (if not confusion). Thus, if wy : Uy — V) is a
linear map-morphism such that

_ A it xeY,,
wo(z) = { F)

0 otherwise,

» Ve,

Suppose now that A = (A, A2) € 30, _;,, 77 @ N.. Then

D) = (M), ¥(A2)), where
DM =Ny, |+ )\%F ot AS.av, + Ay A i T AN,

then wo € [(Uy + Ue._, )", Vit and (¢ — @o)(H;) = ¢ (H;), for any j > 2.

=N Zz<]<n 7
_ )2 2 2 2
1/)()\2) — AVCZ71 ‘l— )\HN;Q + )\S r“/b + )\ + )\ZZ<]<H TZ + )\

Note that, for any subspace L € {Ti(27), Xi(27), Ny, P, k) Qi k), k e
{1,2}}, Al and A2 have real and imaginary parts, thus, )\ and A2 can
be written in the form:

A= (PN, A= (03N,
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Hence, if wy : Uy — V) is a linear map-morphism such that

w () = {(A%l + %)&L@’)\%? _ )‘IL’I _ %AIL’Q) i e 2j>2@(zj) + N2

0 otherwise.

then wy € [(Up+Ue,)™ + Uj;il, ch] ClUpy+U.,), ch And

(¢ —w1)(x) € Ny, for any x € P,
(@ZJ wy)(x) € N,, for any = € Q,

(b —w1)(z) € S., forany z €Y T(27),
z2<J

(¢ —w1)(2) = P(x), if z € U,

Therefore

() — wo —w1)(z) € Ve, itz € Ug,.

For each 7 > z, define now a linear map-morphism w; : Uy — Vy such

that w;(H;) = Ap(v,,), wi = 0, otherwise. Then w; € [(Up + U, ,)” +
U:gﬂ ,V;H]. Thus, if w = S04 w; then (h—W)(Us,) C Ve, for 0 <i <

(1 — @) (Up) C Vi, (¥ — @0)(Uy) C V. Therefore 1) — w € % with

n—z+2
I =, +UL VI + D U+ Uy )™ UL, VL

Cz4i—37 " Cz
=2

In order to prove that % N.9’' =.¥, we note that .¢ C .9" and . C % by
definition. Therefore . C % N.9’. On the other hand, we also note that
in %

(P(c.)) = UL +U, V.,

(T(co)) = UL, + (Up+Ue,)”, VeI,
(T(cz,cj)) = [UL_, + Uy + Ugy—1) ", Ve,

then
RNI=UL +U, V29" =[U; +UL VI O

Since Zavadskij proved the following lemma for DVII (case, z = 0)
in |25]. It is enough to establish that the integration procedure holds for
any other case (i.e., for z # 0), but this is guaranteed by the integration
process of its short version VI, see [2,19].
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Lemma 7. For each representation W &€ rep@z’(cZ’b) there exists a repre-
sentation W € rep @, such that (W) ~ W @ P™(cT), for some m > 0.

Lemmas 6 and 7 prove the following result for the algorithm A,.

Lemma 8. Let & be an equipped poset with a pair of points (c,,b) A,-
suitable (as described in Figure 2.9 and assignments (19)). Then the
functor of differentiation

D(Z,b) crep? — repg’(%b),

defined by formulas (20) induces an equivalence between quotient categories
rep? /(P(c,), T(c,), T(czyc) | 1 <i<n)~ rep@(%’b)/(P(Cj)).

Lemmas 5, 7 and 8 establish the following corollary regarding the
Gabriel quiver of the corresponding categories involved in the differentia-
tion A,.

Corollary 3. If T'(R) and T'(R') are the Gabriel’s quivers of the categories
R =rep? and R’ =repP 1, then

L(%)\ [P(c:), T(c2), T(cz i) | 1 < i< m] = T(®R') \ [P(c])].

z

Remark 6. Note that, algorithm A, can be also defined for equipped
posets with a VIl-suitable pair of points. Due that it can be defined in
such a way that no action is allowed for the functor on the subspaces
U, associated with points € a" + ba in a representation U € rep 2.
However, the interesting case happens whenever a¥ = @.

3.2. Categorical properties of the algorithm of differentiation
VIII for equipped posets

In this section, we recall the definition of the algorithm of differentiation
VIII and some of its categorical properties are proved [25].

A pair of weakly comparable points a < b of an equipped poset & is
suitable for differentiation VIII if 9 can be written in the form:
P =a"+by+X+{ca,b},

where ¥ is the interior of the completely weak interval [a, b] and ¢ is a
strong point incomparable with [a, b].

The derived poset of the set % with respect to such a pair (a, b) is the
equipped poset %' = Q’EM),

which is obtained from % by replacing the point ¢ for a three-point
chain ¢~ < ¢? < ¢t, where ¢7, ¢? are weak points and ¢* is a strong point,
a < ¥ < b and the following conditions are satisfied:
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1) each of three points ¢, ¢t and ¥ inherits all the previous order
relations of the point ¢ with the points of 2 \ {c};
2) the order relations in the whole set @’a’b are induced by the initial
relations in the subset 2 \ {c¢} and by the aforementioned relations.
The diagram in Figure 9 shows an equipped poset with a pair of
points (a,b), VIII-suitable and its corresponding derived poset, in this
case A =a" and B = b,:

F1GURE 9. Diagrams of an equipped poset % and its corresponding derived
poset 2’4 p).

Let & be an equipped poset with a pair of points (a, b), VIII-suitable.
The following formulas define the differentiation functor DE/aHg) irep P —

rep @(’a by’ induced by the algorithm of differentiation VIII. Thus, for a
representation given U = (Uy; U, | © € P) € rep P, we get the derived
representation U' = (U); UL | x € 9)('& p)); Where:

Uy = U, U;:UCHUN,,‘,
é+ = UC+F(UQ)7 éO = Ua+Uchbv (21)
U, =U,, for the remaining points z € 2,

¢ =, forall F linear map — morphism ¢ : Uy — V;.

Note that, the following identities hold for indecomposable representations
of an equipped poset with a pair of points (a,b) VIII-suitable.

T'(a) = G'(a,c) = G4(a,c) = T(a).

Lemmas 9 and 10 below were proved by Zavadskij in [25].

Let Ut be a reduced (i.e., without direct summands of type T'(a),
G1(a, ), Ga(a,c)) representations of a poset @(’a,b) for which U’ = Ut @
T™(a), where 2m = dim(U,; + U, )/U, . In this case, if (Eo, W) is a
(U, U, )-cleaving pair, then UV =W, where W, = U. N Wo. In this case,
U+ is a representation of the completed (by the relation a <1 b) derived
poset @/(a,b)' Obviously, TH(a) = G%(a, c) = G%(a, c)=0.
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Lemma 9. For each representation W € rep @/(a,b) there exists a repre-
sentation W1 € rep@, such that (W) ~ W @ T™(a), for some m > 0.

Lemma 10. In the case of the differentiation VIII, the operations | and
T induce mutually inverse bijections Ind? \ [T(a),G1(a,c),Ga(a,c)] =
md %, = nd 2’ \ [T(a)].

The following lemma characterizes the ideal .$¥ = (T'(a),G1(a,c),
Ga(a,c)) C rep?, where % is an equipped poset with a pair of points
(a,b), VIlI-suitable.

Lemma 11. If U = (Up;U, | x € P) and V = (Vp; Vy | * € P) are
representations of an equipped poset % with a pair of points (a,b), VIII-
suitable, then the following equivalences hold for a linear map ¢ : Uy — Vp:
1) ¢ € (T(a)) if and only if ¢ € [(Up + Ue)~, V'], 3(Uy) C Vi
2) e <G1(a7 C)> if and Only if@ € [Ub_,Vj], @(Ub) C Va, &(Uc)
c V.. -
3) ¢ € (Gala,c)) if and only if p € (U, , V- NV], Imp C Vo NVe.

Proof. 1t is enough to assume UbJr = Uy # 0. We also assume V7 # 0
throughout the proof. Furthermore, we adopt the following partitions of
spaces Uy and Vy: Uy = U, ® Ny; Vi, = Vg & M, ® Ny, where M, = {v =
ea +&eg€ValveV, |

If o € [(Up + Ue)~, V] with ¢(Up) C Vg, then: ¢(U,) C F(V,) C Vi,
if z€a’; o(Uy) C p(Up) €V, CV,, for any point x € a”.

Since @(U.) = 0, the arguments described above allow us to conclude
that ¢ € rep 2.

This part of the proof can be finished by considering the cases for
which U~ = 0 or IV, = 0.

If U =0and N, # 0, then Uy = NbJr and dimg Ny = m. Therefore,
it is possible to define a representation W € rep 2 such that Wy = Nb‘*' .

F(Nb) if JJEGV,
Wx: Nb if J,‘EaY,

0 otherwise.

We also define linear maps fj : Nb+ — Wy, f1 : Wy — Vj such that:
fo(v) = vforall v € N;f and fi = . Since W ~ T/ then ¢ =

-1
ULw L, T™(a) €Erep?, w2 =T"(a) Bowhye rep?  and
w21 = @, where go : W — T"(a) is an isomorphism.
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In the case N, = 0, we observe that ¢ = 0. Thus ¢ € [(Uy+ U.) ™, V']
and 3(Uy) C V, imply € (T(a).

On the other hand, if ¢ € (T'(a)) then there exist morphisms ¢; :
U—T™(a) €rep? and ¢y : T™(a) — V € rep?, such that ¢ = pa¢1.
Since, ¢1(Uy) C T)"(a) then o1 ((Up +U:)™) C (T2*(a))”, in particular,
o1(UF) = ¢1(U, ) = 0. Therefore, p((Up + Ue)~) = 0 thus (U + U.)~ C
Ker . Furthermore, since T!"(a) = T;"(a) with (T;"(a))t = F?™ it
follows o (Ty") C V,. Therefore, ¢(Uy) = @2(01(Us)) C @2(Ty") € Va,
thus, Im ¢ C V,*. With this argument, we conclude ¢ € [(Up + U.) ™, V,']
and ¢(Up) C V, if and only if ¢ € (T'(a)).

Arguments used above with the additional condition ¢(U.) C V, allow
us to conclude the second item, ie., ¢ € [U,",V, ] and ¢(Us) C V, if and
only if ¢ € (Gi(a,c)).

The following arguments prove the third item.

If ¢ € (Ga(a,c)) then there exist morphisms ¢; : U — G5'(a,c) €
rep? and g2 : G5'(a,c) — V € rep?, such that ¢ = @a¢;1. Therefore,
p201(U,") = @2(1(Uy ) = 0, due that 1(U,") € ((G5'(a,¢))p)” = 0.

) =

Furthermore, @(V, wap1(Np) C VN \f/\cj = \//;j N /‘;Cj thus Ime C
V.o NV, .
On the other hand, if ¢ € [U, ,V,” NV,"] and Imp C V; NVe, then

F(U) CVa NVe CF(V,) SV, ifa€a’.

SU)CVa NV CV, if zea.

Finally, ¢(U.) C V, NV, C V., therefore, p € rep 2.

Now we can use arguments as above to find out morphisms ¢ : U —
G5 (a,c), 2 : G'(a,c) — V € rep?, such that ¢ = pap;. Note that, the
representation W ~ G3'(a, ¢) defined for the case U,” = 0, N, # 0 has the
form (Wo; Wy | z € &), where Wy = N, and

F(N,) if ze€a’ +¢",
Wx: Nb if .Z'ECIY,

0 otherwise.

Therefore, ¢ € [U,,V,” N V.| and Imp C {/;: N Ve if and only if
¢ € (Ga(a,c)). O

The following lemma can be proved by using arguments described in
the proof of Lemma 11.
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Lemma 12. If U’ and V' are representations of a poset 93’(/(1 p ond @
Uo — Vo is a linear morphism, then ¢ € (U, , V7| and ¢(Uy) C Vg if and
only if p € (T'(a)) in repP’.

Remark 7. Denote by % = rep? and &' = rep?’ the categories
of representations associated with the equipped posets % and @(’a by

respectively. Due to the fact that ¢’ = ¢, we obtain the natural inclusions
RU, V) CR'(U, V') for all objects U,V € %. .9 denotes the ideal in
the category % consisting of morphisms which pass through the objects
T(a), Gi(a,c) and Ga(a,c). ¥’ denotes the ideal in the category %’
consisting of morphisms which pass through the object T'(a). Taking into
account that 7'(a) = G (a,c) = G(a,c) = T(a), we get also inclusions
S(U, V) c $'(U", V') for all objects U,V € R. Thus, for each pair of
representations U,V € % it is possible to obtain the lattice of subspaces
shown in Figure 10.

R'(U', V')

/N

R(U,V) g,V

F(U,V)

F1GURE 10. The lattice associated with the ideals ., .9’ and categories %,
9%’ defined by the differentiation VIII.

Lemma 13. Let U,V be an arbitrary pair of representations in %&. Then,
the following identity holds.

R(U, V)OI, V') = $(U,V).

Proof. The Remark 7 allows us to conclude . (U, V) C% (U, V)NG' (U, V).
So, it is enough to prove R (U, V) N .$'(U', V') C $(U,V) in order to
obtain the identity proposed. To do that, we suppose that a morphism
iUy — Vo eR(U,V)NI' (U, V') and define the following partition for
the space Up:

U=UInU )T, & U NN aT, T e W,

where T,” C U, , T, NUS =0, T,) CN,", T,F nUS =0, T N0, =0
and Wy is a complementary subspace in Uy.
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Since by Lemma 11, Im) C V' we can assume V" = V[ and define
a partition of the form:

V= (Ve V) e T, o (VNN T,
where T, C V", T, NVt =0, T, C N} and T, N V" =0.

Lemma 12 allows building the following linear maps induced by ),
and by the partition of the spaces Uy and V,':

b = ey Vewianyy V2 T euranhVewianyy  (22)
Vs = Cvmnvn) Yoy T e Ve (23)
Us = emnvh ety Y6 = eah Vet
Ut =ewavo)Vemry Y8 = enyYery (24)
g = e(VC*nN;)we(ij Y10 = e(T;)we(Tg),
@Z)ll = e(%‘nVa_)¢€(Wo)7 ¢12 = e(T;)¢6(T§)’ (25)
P13 = €-nnh Vewn) Y14 = eryVemy),

Then Lemma 11 allows concluding that 1,13, 17, ¢¥s, 911 € (Ga(a,c)),
Yo, 5,9, Y10 € (Gi(a,c)), and Yu, Pe, 12,913, P14 € (T(a)). As F =
14

(T'(a),G1(a,c),Ga(a,c))g, thus p = > 1 € F(U,V). Therefore,
i=1

RUV)NI (U, V') =9U,V). O

Lemma 14. Let U,V be an arbitrary pair of representations in . Then,
the following identity holds.

R(U,V) + .9 (U, V') =R' (U, V).

Proof. The Remark 7 allows us to conclude that % (U, V) + .9/ (U', V') C
R'(U',V'). In order to prove the equality, we proceed as follows:

From definition of the functor Dz’;}g), we can note that for ¢/ €
R'(U', V'), and for z € {AUBUXU{a,b}} Cc P, ¢(U;) C V,, then
o(Uy) C V. Therefore, for x € & \ {c} and ¢ € R, p(U,) C V,, and
o(Ue) C Vo + F(V,) ¢ V., then in general ¢ ¢ & and &' (U, V') €
R(U,V).
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The following procedure allows obtaining a morphism ¢ € % (U, V)
from a morphism ¢ € R’ (U’,V'). To get this morphism, we need to do a
partition of the vector space Up, as follows.

U=U, NUfe N NUF T T, oT, & W,

where T,” C U, , T, NUS =0, T, € NS, T,y nUS =0, T, C U},
T, NU,” = 0, Wy is a complementary subspace of T, in Up. Actually, this
partition is induced by the (U, U;")-cleaving pair (T, Wg). Furthermore,
TF =TT

We assume e, € Tl:, if there exists e5 € NbJr NUS, such that e, +&es €
N, for some x € Uy, \ (). In this case, T, b;“ is a complementary subspace.

The following partition of the space Vj is induced by the (V" V.t)-
cleaving pair (X1, Yp).

Vo=V, NVieX, e X eN NVieX e,

where X, C V-, Xt C V', X} C N} and Y} is a complementary
subspace.

Note that X" = (X)1® (X, )2, where if N, = G{v = e, +&es; }1<j<k
for some positive integer k, then (N, )1 = F{e,, }, (N )2 = Fes, }.

We use the same notation for any subspace N, associated with a point
x € 2%, Furthermore, if X is a subspace of a F-vector space with a fixed
basis {e1,e2,...,€e:}, then a vector of the form ~vje; + voe9 + -+ + e
will be denoted {7, }x, 1 < 7 < t. Therefore, if v = e, + €e5 € ﬁa and
YUy — Vo € R'(U', V'), then ¢(ey) and ¢(es) can be written in the

following form for suitable sets of indexes:
V(ey) = {’Yi}va—mvc— + {53'})(; + {’Yk}Xj + {51}N;“0VC+ + {5}n}(xj)l
+ {SEn}(X;)Q + {7 }os
P(es) = {'Yg}va*m/; + {5;‘})(; + {VI/c}Xj + {51/}ij\/€+ + {5;711}()(3)1
+ {5/72}()(;)2 + {0 }ves

with el,, el €2, 2 € F.
Let wy,ws : Uy — Vp be linear maps induced by 1, defined in such a
way that:

If e, is a vector of a fixed basis of N;” N UJ, then:

’11)1(67) - {6J}X; + {E}R}(X;)l + {67271}(X(;r)2
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If v = ey + &es belongs to a fixed basis of IV;, with es € TJIF7 then:

wi(es) = {07} x- +{emb i, T et xi),0

where if €2 + a& + 3 = 0, then

1
el = —Esfn, for each m,
. (26)
e? =¢l + ¢ for each m,

B

wi (t) = 0 for the other basic vectors ¢t € U.

wa(ey) = {0} x- + {E}n}(Xj)l + {67277,}(Xj)2 if e is a vector of a fixed
basis of T.F,

wa(t) = 0 for the other basic vectors ¢ € U.

Note that, wi,we : Uy — Vo € [U,,V,'], with wi(Uy) € V, and
wa(Up) € Vg. Thus, w = wy + wy € (T'(a))g/, therefore, by Lemma 12,
we $'(U, V).

IfU = (Uy; Uy | x € P) is a representation of an equipped poset %,
then: B B

if 2 € a7 then (§ — @)(Uy) = $(Uy) — @(Uy) C Vs + F(Va) = Vi

if z € a” then (Y —w)(Uy) = (Uy) —w(Uyz) C Uy + Vo = Vi3

if z € by then w(U;) =0 and (¢ — w)(Uy) = (Uz) C Va.

(W —w)(U.) = (¥ —w)(US NU, & N, NUS & TF) C V.. Therefore,
p=1v—weRUV),and p = p+w € R(U,V) + 9" (U, V'), hence
RNUVY=R(U,V)+ 93U, V). O
Lemma 15. Let & be an equipped poset with a pair of points (a,b), VIII-

suitable. Then, the functor Dz’anbl) s rep? — rep @(’a by’ defined by formulas
(21), induces an equivalence between quotient categories:

RIF SRS
where R =repP, R’ = rep?}’(’a,b), $ = (T(a),Gi(a,c),Ga(a,c))q and
9" =(T(a))a
Proof. The density of the functor DE’;I;) is guaranteed by Lemmas 9 and 10.

Besides, Lemmas 13 and 14 allow us to conclude that the functor nglg)
is faithful and full, respectively. Ol

The following result holds as a direct consequence of Lemmas 9, 10
and 15.

Corollary 4. IfT(R) and T'(R") are the Gabriel’s quivers of the categories
R and R', then T(R) \ [T(a), G1(a,c),Ga(a,c)] ~T(R')\ [T(a)].
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3.3. Categorical properties of the algorithm of differentiation
IX for equipped posets

In this section, we present the definition of the algorithm of differenti-
ation IX giving a proof of some of its categorical properties |25].

A pair of comparable weak points a < b of an equipped poset % is
called I1X-suitable if % can be written in the form:

P =a" +by+ %+ {p,a,b},

where ¥ is the interior of the completely weak interval [a,b] and p is a
weak point incomparable with a, and p < b [25].

The derived poset of the set 2, with respect to the pair (a,b), is the
equipped poset P’ = @(a’b), obtained from % by replacing the point p by
a weak two-point chain p~ < p™ with the additional relations a < p™ < b
and p~ <1 b (plus all the induced relations). The points p~, p* inherits all
the previous order relations of the point p with the points in & \ {p}.

The following diagram shows an equipped poset with a pair of points
(a,b), IX-suitable, and its corresponding derived poset:

F1icUurE 11. Diagrams of an equipped poset % and its corresponding derived
poset P’ (4 p)-

Let 2 be an equipped poset with a pair of points (a, b), IX-suitable. The
following formulas define the differentiation functor Déb) irep P —
rep @(a’b) induced by the algorithm of differentiation IX. Thus for a
given representation U = (Uy; U, | © € P) € rep P, we get the derived

/

representation U' = (U); UL | x € Plap)):

Ul = U, U;_:UpﬁU;, ;+:Up+Ua,
U, =U,, for the remaining points. (27)
¢ =, forall F linear map-morphism ¢ : Uy — Vj.

Note that, for the functor D&( b) and for indecomposable representa-
tions T'(a) and T'(a,p), we have T'(a) = T'(a,p) = T'(a). The following
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arguments were used by Zavadskij in order to describe the integration
procedure for the algorithm IX [25].

Representations U in rep 2 without direct summands 7'(a) and T'(a, p)
will be called reduced. A reduced representation UY, for which U’ =
Ut @ T™(a), is defined evidently, analogously to the previous cases. Take
some complementing pair of subspaces (Ey, Wp) in Uy, with respect to the
pair (U, U, ), and set Ut = W, where W, = U, N Wy (W, = U, N Wo)
for a strong (weak) point x € %’. Obviously, T*(a) = T*(a, p) = 0.

The representation U does not depend, up to isomorphism, on the
choice of Ey and Wy and, due to the inclusion W," C W, is a represen-

tation of the set gl(a,b) completed by the relation a <1 b.

Lemma 16. For each representation W € rep @/(a,b) there exists a repre-
sentation W1 € rep@® such that (W) ~ W @ T™(a), for some m > 0.

Lemma 17. In the case of the differentiation 1X, the operations | and 1
induce mutually inverse bijections

md? \ [T'(a), T(a,p)] = Ind P, ;) = nd 2’ \ [T(a)].

The following lemma characterizes morphisms which pass through
the objects from the ideal ¥ = (T'(a),T(a,p)) C rep?, where P is
an equipped poset with a pair of points (a,b), IX-suitable. In Lem-
mas 18, 19, 20, and 21, we assume the following partitions for the subspaces
Up,v€a’: -

Uy =Uz &M, P N,, forallz € a” \{b}, M,CU_, M,NU; =0,
forallz € a"\{b}, Mpy= Y M,, U, =Hy®M, N,NU; =0,

z€a\{b}
forallz ea’.

Lemma 18. IfU = (Up;Uy |z € ) and V = (Vo; Vp | © € P) are
representations of an equipped poset P with a pair of points (a,b), IX-
suitable, then the following equivalences hold for a linear map ¢ : Uy — Vp:
1) Y e <T(CL)> Zf and Only Zf@ € [Hbv Va+]f &(Ub) C Va;
2) p € (T(a,p)) if and only if @ € [Hy, V,F N Vpﬂ, o(Uy) C VNV

Proof. In order to prove the first item, it is enough to adapt arguments
used to prove the first item of Lemma 11. In fact, the same arguments
can be used if M = 0.

For the second item, we assume Ulf = Uy # 0.

If o € [Hy, V," N V1], with ¢(Uy) € Vo, NV, then:
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P(Uy) CF(Vo)NF(V,) CFE(V,) CV,, ifz €a;

o(Uy) Cp(Up) €V, NV, CV, CV,, for any point z € a".

Since ¢(Up) C ¢(Up) C Vo NV, C Vp, the arguments described above
allow us to conclude that ¢ € rep 2.

This part of the proof can be finished by considering the cases in which
Nb:0A9rNb7éOinU0.

If U =0 and N, # 0, then Uy = NbJr and dimg N, = m, for some
m > 0. Therefore, it is possible to define a representation W € rep % such
that Wy = NbJr and

F(N,) if = €a”,
We=< Ny if xe€by,

0 otherwise.

We also define the linear maps fy : N — Wy and f; : Wy — Vp such
that: fo(v) = v for all v € N} and fi =

Since W ~ T™(a,p), then ¢1 = U Jo, w2, Ly T™(a,p) € rep P,

-1
w2 = T"(a,p) oy oy Iy V erep? and pop1 = ¢, where g9 : W —
T™(a,p) is an isomorphism.

If Ny = Mb—OanoorN+ﬂN+—01n%, we note that ¢ = 0.

If H, = N, =0 in Uy, we define a representation W = (Wy; W, | x €
%) such that Wo = 3 o, M, and:

F (X e, Mz) if zed”,
We =19 e, Mo if z€b,,

0 otherwise.

If dim Wy = m, then W ~ T"™(a, p). Therefore, we can apply the argu-
ments used above to find morphisms ¢1, p2 € rep? such that ¢ = pa¢;.

Thus, ¢ € [Hy, V,F NV,!] and ¢(Uy) € V, NV, implies ¢ € (T'(a,p)).

On the other hand, if ¢ € (T'(a,p)), there exist morphisms ¢; : U —
T™(a,p) € rep? and g : T™(a,p) — V € rep? such that ¢ = @op1,
for some m > 0. Since, p1(Up) C T2 (a, p), then ¢1(Hyp) € (10" (a,p))~, in
fact, p1(Hp) = 0. Therefore, ¢(Hp) = 0, thus H, C Ker . Furthermore,
since T (a, p) = T;"(a,p) = T)"(a, p) with (T;*(a,p))* = F*™ it follows
BT C Va1V, therefore 3(Uy) = 3a(71(Us) € 33(T}") € Va1V, and
Im ¢ C V- NV, With this argument, we conclude ¢ € [Hy, V,F NV,f]
and ¢(U,) C V NV, if and only if ¢ € (T'(a,p)). We are done. O
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The following lemma can be proved by using arguments described in
the proof of Lemma 18.

Lemma 19. If U’ and V' are representations of a poset @(’a b) and ¢ :
Uy — Vi is a linear morphism, then ¢ € [Hy, V'] and ¢(Uy) C V, if and
only if p € (T'(a)) in repP’.

Remark 8. Denote by & = rep? and R’ = rep?’, the categories
of representations associated with the equipped posets % and @(’a by’

respectively. Due to the fact that ¢’ = ¢, we obtain the natural inclusions
RU,V)C R (U, V') for all objects U,V € R. $ = (T'(a),T(a,p))s and
9" = (T'(a))y denote ideals in the category & and %', respectively. We
get also inclusions ¥ (U, V) C .9/ (U, V') for all objects U,V € &, taking
into consideration that 7"(a) = T'(a,p) = T'(a). Thus, for each pair of
representations U, V € %, we obtain the diagram of inclusions shown in
Figure 12.

R (U, V")

N

R(U,V) I(U', V")

J(U,V)

FI1GURE 12. The lattice associated with the ideals ., .9’ and categories %,
9%’ defined by the differentiation IX.

Lemma 20. Let U,V be an arbitrary pair of representations in . Then
the following identity holds
RUVYNI' (U, V)= 9(U,V).

Proof. Let U,V be arbitrary representations in the category %, and let
¢ be a morphism in R(U,V) N .$"(U',V'). Then ¢ € [U, ,V,"] with
©(Up) € V,,. Now we define the following partitions of the spaces Uy and
V:t (we assume Vp = V,F):

Up = U, NU, U, NN, &T, &T, &(NaNN,) " &T,f 6T, dU, NN ®Xo,

where T,” C U, , T, NUS =0,T, CU,,USfNT, =0.
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Uds NT, =0,U, NT, =0, Tt C Nf@oMf, T.,; CNS &M and
X is a complementary subspace in Up. Furthermore, T,f N U, = 0 and
T nU; =0.

Now, we consider the next suitable partition to the space Vj

Vo=V, NV, ®V, NN e X, & (NN N,)" & T, &Y.

The spaces T, f are defined as for the space Uy, and Y is a complementary
subspace in Vj.

We assume the notations Xy = T,5, Xo = T,f, X3 = (Na N N,) ™,
Xy=Xo-InV,, V1=V, NV, Yo = Va_ﬂN;r, Ys=X.,Y, = (NaﬂN;),
Ys =T,5 Y5 = Yo, and ¢ = ey,pex,. Then

6 4 6 4
0= DD %= DD eveex:

j=li=1 j=li=1

By Lemma 18, p;; € (T'(a))g if j = 1, ¢ij € (T'(a,p))s otherwise.
Therefore p € (U, V), thus Z(U, V)N .$" (U, V') C $(U, V).

The Remark 8 allows us to conclude $(U, V) C % (U, V)N $" (U, V).

This result proves the desired identity. [

Lemma 21. Let U,V be an arbitrary pair of representations in %R. Then,
the following identity holds

RU, V) + 3'U, V') =R'U", V).

Proof. From definition of the functor Dz p)» We can note that for v in

R'(U', V'), and for = € {AUBUYX U {a,b}} ¢ 2, P(U,) C V,, then
Y(Uy) C Vi. Therefore, for x € 2\ {p} and ¢ € R, (U,) C V, since
Y(Up) C V,+ Vo € Vp, then in general ¢ ¢ R and R'(U', V') L R(U,V).
The following procedure allows us to obtain a morphism ¢ € % (U, V) from
a morphism ¢ € R'(U’',V"). To get this morphism, we assume the same
partition, as above for the space Uy, and define the following partition for
the space Vp:

Vo =V, NV, &V, NN, &X; &(NaNN,) e X eX eX, eV, NN aY,

where Yj is a complementary subspace in Vp. The spaces X are defined
as the spaces T, in Uy, whereas N,, N, C Vj are defined as for space
Up. Furthermore, X, = X, © X, (X = X4y @ Xo,), where ey € X,

(ex € Xq,) if and only if there exists ec € Mf NV, (e¢ € M NV,") such
that v =ec +&ex € M, (v=-ec +E&ey € M,).
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If Ny = G{v = e¢; + &e, 1<j<k, for some positive integer &, then
(N1 = Fleg}, (N)2 = F{ey,}. We use the same notation for any
subspace N, associated with a point € 2%, Furthermore, if X is a
subspace of a k-vector space with a fixed basis {e1,e2,...,e:}, then a
vector of the form (1e1 + (aez + - - - + (g will be denoted {¢}x, 1 <7 <t
Therefore, if ¢ : Uy — Vy € R'(U’, V'), then (U, + U,) C V, + Vj; and

for any vector e¢ € U,", we have:

9e0) = {6l i + Oihm sy + D=+ 0 + i) =

Va NV, V, NF(Ng) X,

for suitable index sets. In fact, J(l};_ ®M,) = J((jbi NU,) C Vpﬁ/VbV_ C V.
If e¢c + &ex € N, N N, then:
vlee) = {Gtvavy + b ang + 100 xs + Ddbvrany + 1) xa,
+{entwann)+ +{ert wanny+ + {@i b x., +{@F X,
w(ex) = {vavy + N by ang {00k + 10 by v + 100 3 x,
+ {5%1}(Narwp)+ + {EE}(NaﬁNp)+ + {wffl}Xa2 + {Wéz}XGQ-

If ec € TJ then:

Uleq) = {Ghvmv + N hymang + I, + {00 + {im) x
+ {’Y;}v*mw + {’YIE}Xal + {5711} (NaNNp)+ T {gi}(NaﬁNp)Jr
+{@} }xo, + {@F}xa, + {vatx,, + {¥2}x,,

We define the F-linear morphisms wi; and ws, as follows:

w1:U0_>‘/EJ7

such that, for all basic vector eg € (N, N N,) T, wi(eg) = {)‘}}V;mNJ +

{0} - + v ave T 1 xe, @l b, H{@fhx,,, wit) =0, for the
other basic vectors t in Uj.

lU22U0—>‘/0,

such that, for all basic vector eg € T,F, wa(ep) = {0} x- + {Vi}x., +
{wtl}xaz +{w? } X, wa(t) = 0, for the other basic vectors ¢ € Up. Thus, if
w = wi+ws then w € [Hy, V,"'] and w(U,) C V,. Therefore, w € .$' (U, V")
by Lemma 19.
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Note that,

(Y —w)(Up) CF (Vo) @ Ve =V, if 2 € a”;

(b —w)(Uy) SV + V=V, ifxea’;

(& — @)Uy ©My) CV; NV, C V.

If a basic vector v = e¢ + ey € N, N N, C Uy, then:

W — @) (v) = {Gihvmvs + {en}(Varmy)+ + {E2} (Vari, )+
+ 5({Cf}va—mvp— +en b wann)+ + {En t(vann)+) € Vp.

For a basic vector v = e¢ + §ey € T}, we have:

(¢ —@)(v) = (Gl v + I hveany + 105 x, + (i}
+ v ang et vanng)t TR vanmy)+ + s dx,, VK,
+E{Cy vy + N vmany + AP x,, + i) xs
+ {Vél}vp—mN;r + {en Y wanny)+ + e} vann,)+
+{v Yy, +{vl)x,,) €V
Therefore, (v — @W)(U,) € Vp and ¢ = ¢ —w € R(U,V). Thus, ¢ =
o+weRUV)+ 9" (U, V"), hence R (U, V') CR(U,V)+ 9" (U, V).

The Remark 8 allows us to conclude that % (U, V) + $/(U', V') C
%'(U', V') with this inclusion, we are done. O

Since Zavadskij proved in [25] that Ind 2 \ [T'(a), T (a,p)] = md? =
Ind%’ \ [T'(a)]. Then we have automatically the following fact from Lem-
mas 16, 17, 20, and 21:

Lemma 22. Let % be an equipped poset with a pair of points (a,b), IX-
suitable. Then, the functor ng,b): rep? — rep @{a’b), defined by formulas
(27), induces an equivalence between quotient categories:

RIF SRS
where R = rep P, R’ = rep@(’ab), 9 = (T(a),T(a,p))x and 9" =
(T'(a))a -
The following corollary holds as a consequence of Lemma 22.

Corollary 5. If T'(R) and T'(R'), are the Gabriel’s quivers of the cate-
gories R and R', then T'(R)\ [T(a),T(a,p)] ~T(R")\ [T(a)].
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3.4. Categorical properties of the algorithm
of differentiation X for equipped posets with involution

Let (2,®) = % be an equipped poset with involution * and ® be
the set of all the equivalence classes of its points with respect to this
involution. We denote by rep(#, ®) the category of all the representations
of (2, ®) or simply by rep? if there is no doubt about the involution
and their classes [8,24,25].

Let U = (Up; Uk | k € ®) be a representation in rep . If x # x* then
x ~ z* and we assume the notation (x,z*) for a class k € ® .

Let (F,G) be the pair of fields we are working on. Let Uy be some
finite-dimensional F-vector space, 170 its complexification and xk € ® be
some class. We assume the notation, U ([76“) for direct sum of |k|-copies
of Uy (ﬁo) numbered by the points € x. In this case, the copy of Uy
(Up) in Uy (ﬁ('f) corresponding to a point z is denoted by U (ﬁ(’f) and
usually is identified with Uy (Up). So, Uf = Ug = Uy (U§ = UE = Uy) if
x is small (weak) and Uf = UF @ UF" = U2 (U = UE @ U™ = UZ) if x
is big (biweak).

For each class k € ® and each point x € k, we consider natural
injections and projections:

iy :Up = Uy — U} if x is a small or big point,

in :Uy = UF — UY if & is a weak or biweak point, (28)
e Uy — Uy = Up if  is a small or big point,

e U — UE = Uy if z is a weak or biweak point.

Choosing a subspace U, C Uf (U, C (76‘) if k correspond to a small or
big (weak or biweak) point, we attach to it two subspaces in Uy ((70) of
the form:

Uy =i (Uy), U :=m.(Uy). (29)

x xT

Identifying Uy (175‘3) with Uy (Up), we also can assume U, = Uy N Uy
Uy =U:N ﬁ(‘)‘) Let = be a small or weak point, then x = {x}. Therefore
U, = U, for which points x we will omit the notations + and write
simply Uy, for a big point a set U5 = {s € Uy | (5,t) € Uz 2+)}-

Let Us = > iy(Uf) = 3 eay(U(zav)), where © < y and y € k. The
dimension of a representation U is the vector dim U = (hg, hy)xes, where
ho = dim Up over the field F' and h, = dim (U, /U,) over the field G.

Zavadskij defined the algorithm of differentiation X in [25], afterwards,
he presented in |28 the following modified version of this differentiation:
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A pair of incomparable points (a,b) in & where a is big (i.e. a # a*)
and b is weak is called X-suitable (i.e. suitable for differentiation X), if
9P =a’ +b,.

The derived equipped poset with involution (2, ®') = %’ with respect
to the pair (a,b) is obtained from (%, ®) in the following way:

(a) the point a* is replaced by a three-point chain a* < ¢ < ag, where
a*, ag are big points and ¢ is weak;

(b) the point b is replaced by a two-point chain by < b, where by is big
and b is weak;

(¢) an order relation a < by is added;

(d) @' is obtained from ® by adding two new classes: a non-trivial one
{ao,bo} and a trivial one {q}.

Naturally, all the order relations induced by those in & and by those
aforementioned are added as well.

Figure 13 shows an equipped poset with involution (%, ®) with a pair
of points (a,b) X-suitable and its corresponding derived poset (%, ®').

® ¢
A

F1GURE 13. Diagrams of equipped posets with involution (%, ®) and (%', ®’).

Set A=a¥,B=0b,in? anda =a", B = 2"\ a" in . Let
U = (Up; Uy | k € ®) be a representation of the set (2, ®), where Up is a
finite-dimensional F-space. Consider an ordered sum U = Uy & Up, we

can define the coupling of a sequence of n subspaces Xi,...,X,, C UO2
being a subspace in Ug of the form:
[Xl — X2 — e — Xn] = {(to,tn) | (tifl,ti) S Xz fOI' some ti}.

The categories Bg and R, are described as follows:

Re ={rep(?,®) | U, =U C U, U =ULY.
R ={rep(P', ") | US Cc U, U, =US, Uy = Ub'g}.

a

(30)

Let % be an equipped poset with involution, and a pair of points (a, b), X-
suitable. The following formulas define the differentiation functor DE(a b)
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Re — R, induced by the algorithm of differentiation X. Thus, for a
given representation U = (Up; Uy | k € ®) € R, we define the derived
representation U' = (U); U/, | k € ®') in such a way that

Ul = Uy, U, = Ub—i-Ua,
_ + _
U(/ao,bo) - [U(a*,a) - Ub] (0 U ) U(; - [U(a*,a) —-Up— U(a,a*)]a
U(a a*) — U(aa *) (UngO)v
U. =U, for the remaining classes k € @',
¢' = ¢ forall F linear map — morphism ¢ : Uy — V.
(31)
Following [28], if (Eo, Wo) is a (U;", Ug)-cleaving pair of Up, then the
reduced derived representation UY is defined (uniquely up to isomorphism)
by the equality U’ = Ut @ P™(a), where m = dim Ey = dim(U,", U ) /U5
its evident form is U¥ = W, with W; taken from the cleaving pair and
W, = U, N Wy".
Obviously, G} (b,a) = P(a) @ P(by) and G4(b,a) = P?(a), hence
Gi(b,a) = P(by) and G5(b,a) =
Let W be an object in R%,. To construct the primitive object W' € R,
we represent the spaces W, 1), Wy and Wy, respectively, in the form

W(ao,bo) = E(ao,bo) @ F17 F]- = {(fll?f{l)’ DR (f1p17f{p1)};
Wq = W(j; EBF27 Fy = {(f217f£1)7 ceey (f2p27fép2)};
Wy = WI:’(; ® H;

where F; and H are some complements with the choosen bases for Fj;.
Consider a new F-space Fy with a base

{611, .. .,elpl} U {621,6/21, .. .,62p2,8/2p2}

of dimension m = p; + 2po. Then, set W' = (Up; Uy | k € ®) where

Uy =Wy @ Ep;
U, =W, ® E;™ for k # {a,a*}, {b};
Uwar) = Wiaar) + {(e11, f11), - - (€1, fip)} (32)

+ {(eaj, faj); (€5, f2;) 5 =1, p2};

Ub — WE/ + {(6117]({1)7 R (elpl?f{pl)} + H.
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The desired isomorphisms (U i)T ~ U, for a reduced object U € R

(without direct summands Ga(b, a)) and (VVT)i ~ W, for a reduced object
W € R, (without direct summands P(a)) hold. Then the following two
lemmas are given as a consequence of the previous construction of the
primitive object (also called the integration process).

Lemma 23. For each representation W € Ry, , there exists a representa-
tion WT € Re such that (W) ~W @ P™(a), for some m > 0.

Lemma 24. In the case of the differentiation X, the operations | and 1
induce mutually inverse bijections

Id R \ [G2(b, a)] = IndRY, \ [P(@)).

Remark 9. Let ¢ and %Y, be the categories described in the equation
(30), associated with the equipped posets with involution % and 9’(’@ by’

respectively. Due to the fact that ¢ = ¢, we obtain the natural inclusions
Ro(U, V) C Ry, (U, V') for all objects U,V € Rg. Let .§ = (Ga(b, a))a,
and .9 = <P@>% be ideals in the category R4 and Ry, respectively.
We get also inclusions ¢ (U, V) C $'(U', V') for all objects U,V € Ry,
taking into consideration that G%(b,a) = P%(@). Thus, for each pair of
representations U,V € &4, we obtain the following diagram of inclusions

R (U V")

/

Re(U,V) g1, v
J(U,V)
FI1GURE 14. The lattice associated with the ideals .#, .’ and vector spaces
Ro(U, V), Rl (U, V') defined by differentiation X.
The following lemmas allow us to establish that the differentiation X

induces a categorical equivalence.

Lemma 25. Let U and V' be arbitrary representations in Re. Then the
following identities hold

Re(U,V)+ 9" (U, V') =Ry (U, V')

and
Re(U, V)N I (U, V') =9(U,V).
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Proof. The inclusions Ro (U, V)+9"(U', V') C Ry, (U', V') and 9 (U, V) C
Re(U, V)N I'(U', V') follow from Remark 9. Thus, it suffices to prove
Re(U, V) + 3/ (U, V') C Ry (U', V') and Re(U,V) NI (U, V') C
F(U,V) in order to obtain the identities.

Firstly, we prove that R¢(U,V) + $'(U', V') C R, (U’, V'), with
9" = UL+ (U,)", (V4)~]. We note that in general, if (z,y) € U, 4+ and
(7,5) € Up, then not necessarily (¢ (), (y)) € Viq,qa+) and (1(r),9(s)) €
V. However, for any (z,y) € U(gq+) N (Uf, Vo) it holds that (¢(x), 1 (y))
€ Vigay N (Vg ., Vo) C Via,a*), provided that 1 : Up — Vo € %g, (U', V).
Thus, for any pair of vectors of the form (z,y) € U(a,a*), 1t 1s necessary
to define a linear map-morphism which can be used to adjust the corre-
sponding images to subspaces V(, 4+) and V;. To do that, we consider the
following partitions of the vector spaces U3 and Vg

U02 = U(a,a*) N Ul; ©® U(a,a*) NNy & T(a,a*) @& T, @ Ty,

where Ub - Ub_ S¥ Nba Nb - <(17€)t>G7 Nbl - <(170)t>F7 sz - <(07 ]-)t>F7
then N," = Ny, + N,

Utaar) N0y C Ulyaeys Ur=UnUL & Mp,
Ty =1, © Hp, T, C U, , Hy C Ny, Ua» = U @ Le-,
where T{, 4+), Ty and Tj are complementary subspaces of Ug =Uig,ar) N
Uy ®Ua,a) NNy and Ug gy + Up in Uy q+), Up and U3, respectively. The

same notation is keeping for subspace V02 and the corresponding partition.

Now, we consider the following cases.

(i) Suppose that (z,y) € Ugq+) N (UE,UO). Then (¢¥(x),9¥(y)) €
‘/(/a,a*) - Vv(a,a*) N (ng Vb) - Vv(a,a*)-

(ii) If (z,y) € T(qq+), then there exists z € U;" such that (z,z) € Up.
Thus, (y,z2) € U(’ao bo) Y ¢ U+ and (Y(y),v(2)) € V(ao bo)- Assume that
vectors {(tf ,tf ) 1< j <k} constitute a basis of [Ug q+) — Up] and that
{tly . a < L < m is a basis of subspace V' In this case, Ay+ denotes a
linear combination of the form Z;Ln_l )\hth Ap € G. Therefore,

(( Z/\ tfljt{Q + (0, Ay+),

k

ZAJ Lo () = YoMt A

j=1
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Then, there exists a unique vector s such that (¢(y),s) € V(4= q) and
(8 ¥(2) = Ay+) € Vp, where y ¢ V,'. Thus, if the F-linear map-morphism
Uy — Vo is defined in such a way that

w () = {w(x)—s, if x e Mg,

0, otherwise;

then wy € (U} + (U.)*,(V})~]. Note that, ¥(Uy,) C V, besides, if
(7,y) € T(4q+) then

(¢ —w1) (@), (¥ —w1)(y)) = (Y(x) =P (2) +5,9(y) = (5,9(1)) € Vig,an)-
(iii) If (z,y) € Hp, it holds that

k
(6(a), 6(y) = (Z ML N )
j=1 =1
If wo : Uy — Vj is a linear map—morphism such that

A+, if yeH ,
wy(y) =4 Ve .
0, otherwise,

then wo € [U4 + (U,)T, (V4)~]. Note that, ¢( ;) €V, , and for (z,y) €
Hy, it holds that

(4 — wa) (&), (4 — w2) (y < ZJ%H AV;>

- (Zajtgl,zfsjt{z) € V.
j=1 =1

(iv) Suppose now, that (z,y) € Uy q+) N Np, with y € Lg+. Then
(y,x) € U(a*,a) and (:Cay> € Up. Thus, (yay) € U(,a07b0) and W(y)ﬂ/}(y)) €
Vi (8(2),00)) € V7,

(V(z =<Z% lezvjt + Ay )

with (3251 5t],, 35y ith,) € Vb and (4(), 9 (y) = Ays) € Viar o) —
V3]. Hence, there exist ¢; such that (¢; unique) (1(y),t1) € V(g+ ) and
(t1,¥(y) — )‘VJ) €V, we write (in V)

Vieay Uy =Tt Vigay NNy =To,  Tiaey = T3,
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then (t1,9(y)) = Ay, + A, + Apy, where
)\Tl - (Tir%)v )‘Tz - (T‘%,T%), )‘Ts = (T§7T§)7

ril € ReTj; 1"12 € Im T; are linear combinations of all elements of the basis
of the corresponding subspace (Re T;= real part of T;, Im T;= imaginary
part of T;). Define the linear map-morphism ws : Uy — V{ such that

Y(x) —ri —rd if 2 € My,
ws(z) = w(:c)—rf—r% if ©&€ Ly ﬂNb”L,

0 otherwise.

Then

(W —w")(z,y) = (¥ —w)(z), (¥ —w)(y))
= (W(x) — () + i +75,9y) — YY) + 17 +713)
€ Vigar) NV, + Vigary N Ny if @ € My and y € Lg-

Thus (" — w")(2,y) € Vig,ax) N Vb, With wg € [Ug + (U, (V)]

(v) Define w = wy + we +ws € [Uf + (UL)™T, (V4)7]. It is easy to
see that [U} + (U.)T,(V4)~] =~ (P(a¥))g:. Then, by construction, the
linear morphism ()" — w")(Uy) C Vj, for any class k € ®. In particular,
(Qﬁ\:wﬂ)(U(a,a*)) = (w - w)H(U(a,a*)) < ‘/(a,a*) and (dj - @)(Ub) =
(v —w)(Up) C V. Therefore, ¢ =19 —w € R (U, V'), which proves that
Vv eRe(U, V) + 9" (U, V'), thus Re(U, V) + I (U, V') =R5, (U, V).

In order to prove that Re(U, V)N S (U, V') C $(U,V), with ¥ =
(UL, V)], (it is easy to see that [Uf,Vy] ~ (Ga(b,a))a,), we take a
morphism ¢ € Re(U, V) N.$ (U, V). Then as ¢ € $'(U', V'), ¢ can be
factored through morphisms ¢q : U’ — P™(a) and @9 : P™(a) — V'
that pass through sums of the representation P(a). Thus ¢ = po¢; with
© = 1, and @9 = id. Note that since P}t = Pg = 0 then gpg(pl(U ) =0,
besides we have that Im ¢ C (V)™ provided that ¢ € [Ug+(U.)™, (V})7].
Then Im ¢ C V, therefore ¢ € [U4,V,] = $(U,V) and with this
argument, we are done. O

Lemma 26. Let % be an equipped poset with involution, with a pair of
points (a,b), X-suitable. Then, the functor D( e : Re — Rl defined
by formulas (31), induces an equivalence between quotient categories

Ro/I = Rpi /I,
where 9 = (Ga(b,a))a, and 9’ = (P(’d)m;,.



84 CATEGORICAL PROPERTIES OF SOME ALGORITHMS

Proof. The density of the functor DE‘a b) is guaranteed by Lemmas 23

and 24. Lemma 25 allows us to conclude that the functor Dé‘a b) is faithful
and full. ]

As a consequence of Lemmas 23, 24 and 26, we obtain the following
corollary regarding the Gabriel quiver of the corresponding categories.

Corollary 6. If I'(Rs) and I'(RY,) are the Gabriel quivers of the cate-
gories Ro and Ry, , then T'(Ra) \ [Ga(b,a)] =~ T(RL,) \ [P(a)].

Remark 10. The main Theorem 1 is proved by Lemmas 4, 5, 7-10, 15-17,
22-24 and 26.

Remark 11 (Historical remark; a relationship between the theory of
representation of equipped posets and Krawtchouk matrices). It is worth
recalling the way that Zavadskij rediscovered the famous Krawtchouk
matrices in his paper [28]. In such a work, he defined for two rings A, B
and an (A, B)-bimodule W the 4Wp-matrix problem which consists of
reducing to some canonical form one rectangular matrix M over W by
elementary transformations of its rows over A and columns over B.

The particular case when A = F' is a field admitting quadratic ex-
tensions G4, G2 (which may coincide) in the algebraic closure F' the
G1 (122 Go-problem is called the biquadratic matriz problem (which in gen-

eral is still an open problem) over the triple (G, F,G3), the problem
is named homogeneous whenever GG1 ~ Gy. Zavadskij proved that the
G ® G-problem is equivalent to the (1, 0)-pencil problem over G, where

F
o(a+&b) =a — &b
In the page 43 of [28] Zavadskij wrote the following sentence to justify
the use of matrices of type © in his description of the indecomposable
representations of the G (%) G-bimodule:

“Before to prove Theorem 17, we need to introduce an integer matrix
sequence O, which expresses in a perfect way a precise relationship
between polynomial invariants for the G ® G-problem and the (1, o)-pencil

F

problem”.

Section 8 of that work is devoted to give many properties of matrices 6,
which now we know were introduced in the late 1920s by Krawtchouk [10].
In the current notation for Krawtchouk matrices ©,41 = K (") where
O’ = Zk(_l)k(jgl) (ifﬁl)-

He also wrote that the problem of classifying indecomposable repre-
sentations of the critical equipped poset M; = {® &} can be reduced
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to the C ® C-problem and therefore to the (1, 0)-pencil problem over the
R
complex field C.
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