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ABSTRACT. For M € R-Mod and 7 a hereditary torsion
theory on the category o[M] we use the concept of prime and
semiprime module defined by Raggi et al. to introduce the concept
of T-pure prime radical M, (M) = 9, as the intersection of all
7T-pure prime submodules of M. We give necessary and sufficient
conditions for the 7-nilpotence of M, (M). We prove that if M is
a finitely generated R-module, progenerator in o[M] and y # 7 is
FIS-invariant torsion theory such that M has 7-Krull dimension,
then 91, is 7-nilpotent.

Introduction

It is known [11], [12] that, for any ring R having right Krull dimension,
the prime radical N(R) is nilpotent. Later Albu, Teply and Krause proved
in [1] the relative version of this theorem for an ideal invariant hereditary
torsion theory 7. More precisely, let 7 = (T, [F,) be a hereditary torsion
theory on Mod-R such that the ring R has 7-Krull dimension, and let
N: = N;(R) denote the 7-pure prime radical, that is, the intersection of
the 7-pure prime ideals. They proved that N, is a 7-nilpotent ideal, i.e.,
N € T, for some integer n > 0.

In this paper we use the product of submodules of modules given by
L. Bican et al. [4] and the concept of prime and semiprime modules given
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in [14] and [15], to define the 7-pure prime radical M. (M) (this is the
intersection of the 7-pure prime submodules of M) of an R-module M,
where 7 € M-tors. With these definitions, we proceed to make a good
case of how natural the framework is, and how ring-theoretic results
can be extended to the module-theoretic. So with this tool in hand the
Theorem 2.16 presents necessary and sufficient conditions on M and on 7,
for the 7-pure prime radical M, (M) to be 7-nilpotent, i.e, M (M) is 7-
torsion for n > 0. When M is projective in o[M], we prove in Corollary 3.9,
that any FIS-invariant (as defined in [6]) hereditary torsion theory 7 € M-
tors satisfies the condition ii) of the Theorem 2.16. The results obtained in
this paper generalize the results given in [1]. The FIS-invariant hereditary
torsion theories on the category o[M] are the natural extension of the
ideal invariant torsion theories on R-Mod.

In order to do this, we organized the paper in three sections. In section 1,
we provide the necessary material that is needed for the reading of the
next sections. In section 2, we give the main results. In section 3 we give
interesting results about the FIS-invariant hereditary torsion theories on
the category o[M].

Throughout this paper R will denote an associative ring with unity
and R-Mod will denote the category of unitary left R-modules. Let M
and X be R-modules. X is said to be M-generated if there exists an R-
epimorphism from a direct sum of copies of M onto X. The category o[M]
is defined as the full subcategory of R-Mod consisting of all R-modules
X which are isomorphic to a submodule of an M-generated module.

Let M-tors be the frame of all hereditary torsion theories on o[M].
For a family {M,} of left R-modules in o[M], let x({M,}) be the greatest
element of M-tors for which all the M, are torsion free, and let {({My})
denote the least element of M-tors for which all the M, are torsion.
X({My}) is called the torsion theory cogenerated by the family {M,},
and £({M,}) is the torsion theory generated by the family {M,}. In
particular, the greatest element of M-tors is denoted by x and the least
element of M-tors is denoted by . If 7 is an element of M-tors, gen(T)
denotes the interval |7, x].

Let 7 € M-tors. By T,,F.,t, we denote the torsion class, the torsion
free class and the torsion functor associated to 7, respectively. For N €
o[M], N is called 7-cocritical if N € F, and forall0 # N’ C N, N/N' € T,.
We say that N is cocritical if N is 7-cocritical for some 7 € M-tors. For
N € [M],let N denote the injective hull of N in ¢[M]. If N is an essential
submodule of M, we write N C.ss M. If N is a fully invariant submodule
of M we write N Cpy M. For 7 € M-tors and M’ € o[M], a submodule N
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of M'is 7-dense in M" if M'/N € T, and N is 7-pure in M’ if M'/N € F,.
For N C M we denote N = ({C C M | N C C and M/C € F,}. The
module N is called the 7-purification of N in M. If M € R-Mod we denote
by Sat, (M) the set of all 7-pure submodules of M.

Let M € R-Mod. In [5] the annihilator in M of a class C of R-modules
is defined as Anny,(C) = K@QK , where

Q = {K C M | there exists W € C and f € Hom(M, W) with K =
ker f}. Also in Beachy [3, Definition1.5] a product is defined in the
following way. Let N be a submodule of M. For each module X € R-
Mod, N - X = Annx(C), where C is the class of modules W, such that
f(N)=0forall f € Hom(M,W). For M € R-Mod and K, L submodules
of M, in [4] the product Ky L as Ky L =) {f(K) | f € Hom(M, L)} is
defined, when M is projective in o[M] this product coincides with the
product given by Beachy in [3]. We prove in |5, Proposition 1.9] that if
M € R-Mod and C is a class of left R-modules, then Ann;(C) = > {N C
M | NyX =0 for all X € C}. If N € R-Mod, then we denote Annx (N)
instead of Anny ({N}).

Let M € R-Mod and N # M a fully invariant submodule of M.
N is prime in M (or N is a prime submodule of M) if for any K, L
fully invariant submodules of M we have that KL C N implies that
K C Nor L C N. We say that M is a prime module if 0 is prime in
M see |14, Definition 13 and Definition 16]. For X € R-Mod we denote
ann(X) ={re R|rX = 0}.

For N € o[M] a proper fully invariant submodule K of M is said
to be associated to N, if there exists a non-zero submodule L of N
such that Anny(L’) = K for all non-zero submodules L’ of L. By [5,
Proposition 1.16] we have that K is prime in M. We denote by Assy; (V)
the set of all submodules prime in M associated to N. Also note that, if
N is a uniform module, then Assp;(N) has at most one element.

The 7-Krull dimension k,(N) of a module N € o[M] is the Krull
dimension (or deviation) K dim(Sat,(N)) of the poset Sat,(/N). Thus
kr(N) = —1if and only if N € T,, and k,(N) = « for an ordinal o > 0
if k;(N) £ a and, given any descending chain

NDNlDNzD"'DNZ‘DN,‘_}_lD"‘

of 7-pure submodules, k;(N;/Nit1) < « for all but finitely many . Note
that if M = R and 7 = &, then k; (V) = Kdim(N) = K dim(L(N))
is the Krull dimension of the R-module N in the sense of Gordon and
Robson [11]. A module 0 # N € ¢[M] is called 7-critical if it is 7-torsion
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free with 7-Krull dimension and k(N/L) < k(N for every 0 # L C N.
A 7-critical module N with k- (N) = « is called a-7-critical.
For details about concepts and terminology concerning torsion theories

in o[M], see [17] and [18]. For torsion theoretic dimensions, the reader is
referred to Golan [1], [10], [16]

1. Preliminaries

In this section we provide the necessary material that is needed for
the reading of the next sections. We use the product of modules defined
in [5] and the concept of prime and semiprime module defined in [14]
and [15] respectively. We show some properties of 7-pure and 7-dense
modules for a hereditary torsion theory on the category o[M]. We show
that if M is projective in o[M] and Spec(M) # @, then Fnil(M) = N,
where Fnil(M) = {a € M | a is M-strongly nilpotent }, Spec(M) = {P |
P is prime submodule of M} and Mt =N {P | P € Spec(M)}.

We require a goodly number of results from the literature. We include
here those results for convenience of the reader.

Definition 1.1 (see [7]). Let M € R-Mod and N Gy M. We say that N
is semiprime in M (or a semiprime submodule of M ) if for any K Cpr M
such that KyyK C N, then K C N. We say M is semiprime if O is
semiprime 1 M.

Remark 1.2 (see [7]). Notice that if M is projective in o[M] and N Cpy
M, then N is semiprime in M if and only if for any submodule K of M
such that KK C N implies that K C N.

Remark 1.3 (see [7]). Let M € R-Mod be projective in o[M]. Similarly
we can prove that a fully invariant submodule P of M is prime in M if

and only if for any submodules K and L of M containing P, such that
KyL CP,then K=Por L=P.

Definition 1.4 (see [8]). Let M € R-Mod. If N is a submodule of M,
then successive powers of N are defined as follows: First, N> = Ny/N.
Then by induction, for any integer k > 2, we define N* = Ny (N*~1).
Lemma 1.5 (see [8]). Let M € R-Mod be projective in o[M] and let N be
a semiprime submodule of M. If J is a submodule of M such that J" C N
for some positive positive integer n, then. J C N.

Proposition 1.6 (see [8]). Let M € R-Mod and 7 € M-tors. If P is
a prime T-pure submodule of M, then there exists P' C P such that P’ is
a mintmal T-pure prime submodule of M.
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Proposition 1.7 (see [8]). Let M € R-Mod be projective in o[M] and
T € M-tors. If U is a uniform submodule of M, such that U € F., then
Anny,(U) is a T-pure prime submodule of M.

Definition 1.8 (see [8]). Let M € R-Mod and T € M-tors. A fully
imwvariant submodule N of M is T-nilpotent if N = Ny Npys...pq N €
—_————

n-times
T, or, equivalently, if N™ C t.(M) for some positive integer n; it is
T-idempotent if W]\;N eT,.

Remark 1.9. Notice that N is 7-idempotent if and only if N = Ny, N.

In fact we know that % is the 7-purification of WJ\;N in WA;IN
Thus (ﬂ) /<N7]\7AN> € TT. Since W]V]V < TT, then % S TT.
M N N
Hence N ~ € T.. But ~ IN - N € IF,. Therefore NN 0. So N =

Ny N. Inversely if N = Ny N, then WJZN = 0. Hence %/ %ﬁ% =

0 € T,. As NN is the r-purification of NyyN in M, then {15 € T,.
Thus 5 € T,. So ¥y € T-.

Lemma 1.10. Let M € R-Mod and 7 € M-tors. If L and N are a sub-
modules of M such that L C N and N/L € T., then % e T, for all
K € o[M].

Proof. Let y € Ny K. As Ny K = > {f(N) | f € Hom(M, K)}, then
Yy = fl(nl) —I—fg(ﬂg) +--- +fr(nr) with n; € N and f; € HOIn(M, K) Put
Y =y+ LuK. Then ¢ = fi(m) + fa(n2) + -+ fr(ny) + Lu K.

Let n} = n; + L. Thus 0 = ann(n})(n; + L). Hence ann(n})n; C L. So
ann(nl) fi(ng) = filann(nf)ns) € fi(L) C Lafks.

Therefore ann(n})[fi(n;) + Ly K] = 0, and hence ann(n}) C
ann(f;(n;) + Ly K). On the other hand we have that N/L € T,.

R ~ R
Hence () :an e T,. So an () T K) €T, for all 1 <i<r.

Thus P2 € T,
Corollary 1.11. Let M € R-Mod be projective in o[M] and T € M-tors.

If I is a submodule of M such that ﬁ € T,, then Iin € T, for any integer
n = 2.

Proof. For n = 2 we have the result. Now let n > 2. By Lemma 1.10 we
have that an IJSI ! 7 € Tr. Now we consider the following short exact sequence
Ingl I

0— T~ Tl IMI — 0 Hence we obtain that (I") 7 € T7. As
M is projective in a[ ], then (In) IM{I”) ]n+1 eT,.
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Proposition 1.12. Let M € R-Mod be projective in o[M]. If N is
a submodule of M and {L;}icr is a family of submodules of a module

X e O‘[M], then Ny <ZL1 = ZNMLi'
i€l el

Proof. By |5, Proposition 1.3] we have that Y Ny L; C Ny <ZL1>

icl icl
We consider the canonical epimorphism ¢ : @L; — Y L; and let f :
icl iel
M — > L; be a morphism. As M is projective in o[M] there exists
i€l
f: M — @L; such that the following diagram commutes:
el

e
PLi——=> Li—0

i€l i€l

~

So po f=f. Thus f(N) = ¢(f(N)). If 2 € N, then f(x) = ¢(f(2)).
But f(z) € @L;. So there exists r € N such that f(z) = (l1,1l2,...,1).
el
Hence we obtain 7;(f(x)) = l; where 7; : @L; — L; is the projection
il

~ ~ ~

on L. Thus we have f(z) = o(f(2) = plm o fla), w20 F(@), .. o
f(x)) =miof(z)+mo f(z)+ - +mof(z) withmjof: M — L;and
1 < j < r. Therefore NM(ZLi) C > NyL;.

iel i€l

Definition 1.13. Let M € R-Mod and N € o[M]. If Y is a submodule
of M, we define Ann’y; (V) =S {L C N | V)L = 0}.

Proposition 1.14. Let M € R-Mod be projective in o[M] and let Y
be a submodule of M. If N s a fully invariant submodule of M, then
Annd, (V) is a fully invariant submodule of M.

Proof. Let f : M — M be a morphism and L be a submodule of N
such that Yy;L = 0. We claim that Y/ [f(L)] = 0. In fact, we know
that Yar [f(L)] =Y Ah(Y)|h: M — f(L)}. Now let h : M — f(L) be

a morphism. As M is projective in o[M], then there exists a morphism
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g : M — L such that the following diagram commutes

So f(g(Y))=h(Y). As Yy L =0, then g(Y) = 0. Thus h(Y) = 0.
Hence Yar[f(L)] = 0. On the other hand as N is a fully invariant
submodule of M, then f(L) C N. So f(L) € Ann}; (Y). Therefore
h (Ann}) (Y)) € Ann}j (V). Hence Ann}) (V) is a fully invariant sub-
module of M.

Notice that if M is projective in ¢[M] in Definition 1.13, then by
Proposition 1.12 Ann}; (V) is the largest submodule of N such that
Yy [Annf; (V)] = 0.

For M € R-Mod and 7 € M-tors, we will also use the notation.

e Spec(M) = {P | P is a prime submodule of M };

e Spec. (M) ={P € Spec(M) | P is T-pure in M}.

Notice that if Spec(M) # @, then

N=N(M) = m{P | P is a prime submodule of M}

and if Spec(M) = @, then M = M.
Analogously if Spec, (M) # @, then

N, =N (M) = ﬂ{P € Spec(M) | P is T-pure in M}

and if Spec.(M) = @, then M, = M.

Definition 1.15. Let M € R-Mod. An element a € M is M -strongly
nilpotent if any sequence a = ag, ax, as. .. .such that Ra;41 C (Ry;) s (Ra;)
1s ultimately zero.

We put Fnil(M) = {a € M | a is M-strongly nilpotent}.

Proposition 1.16. Let M € R-Mod. If M is projective in o[M] and
Spec(M) # &, then Fnil(M) = N.

Proof. Suppose that a ¢ 91. Hence there exists a prime submodule P
of M such that a ¢ P. Thus (Ra),, (Ra) ¢ P. Therefore there exists
a1 € (Ra),; (Ra) with a1 ¢ P. Thus (Ray),, (Ra1) ¢ P. Repeating this
process we obtain a sequence of non zero elements a = ag, aq, as. .. such
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that Ra;41 C (Ra;),, (Ra;). Hence a is not M-strongly nilpotent. So
a ¢ Fnil(M). Thus Fnil(M) C M. Now let a ¢ Fnil(M), then there
exists a sequence a = ag, a1, az...such that Ra;41 C (Ra;),, (Ra;) for
alli. If A ={a =agp,a1,as....a,...}, then AN{0} = &. Using Zorn’s
lemma we may choose a fully invariant submodule P of M maximal
with respect to having AN P = @. We claim that P is prime in M. In
fact, let K and L be fully invariant submodules of M such that P ¢ K
and P & L. Therefore there exist a; € KN A and a; € LN A. So we
may suppose that j > i. So j = ¢ + r for some integer r > 0. Since
Rait1 C (Rai)y; (Ra;), then Ra; C (Ra;),, (Ra;) € K. Thus a; € KN L.
Hence aj1 € Rajy C (Raj),, (Ra;j) € Ky L. Therefore Ky L € P. So
P is prime in M. Moreover AN P = &. Thus a ¢ P. So a ¢ M. Thus
N C Fnil(M).

Lemma 1.17. Let M € R-Mod be projective in o[M] and T € M-tors.
If C and B are fully invariant submodules of M, then CyB = CyB.

Proof. By |5, Proposition 1.3] we have that CyyB C CyB. So CyyB C
CuB. As CyyB C Cy B, then by Proposition 1.12. Cyy (B + CMB) =
CuB + Cuy (CMB) C CyB. By [3, Proposition 5.5 we have that

Cy (%) = 0. We claim that Cj (%) = 0. In fact let

f:M— % be a morphism, then f (C) = 0. So we can define the

M

morphism f : % — % such that f(a? +C) = f(z). AsC/C € T, and

BT C i < B, s F(/C) =0, Henoe 0= J0-+C) = 112

for all x € C. Hence f(é) = 0. Therefore Oy, (BZZZTMBB) = 0. Hence

by |3, Proposition 5.5 we have that Cj; (B+CMB) C CyB. Thus
CyB C CyB. Hence C B C CyB. Therefore C B = CyB.

2. 7-Nilpotence of D1,

In this section we use the 7-noetherian modules and we give equivalent
conditions for 91, to be 7-nilpotent. Although much more difficult we
give necessary and sufficient conditions for the 7-nilpotence under the
hypothesis that M is a finitely generated R-module with 7-Krull dimension.
These results extend the results given by Albu, Krause and Teply in [1,
Proposition 3.3 and Theorem 4.5].
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7-Noetherian modules

The following definition was given in [6, Definition 1.1].
We say that an R-module M is 7-noetherian if the lattice Sat, (M)
satisfies the ascending chain condition.

Lemma 2.1. Let M € R-Mod, 7 € M-tors and N € o[M]. If N € F,,
then Annpy(N) is T-pure in M.

Lemma 2.2. Let M € R-Mod be a projective generator in o[M] and
T € M-tors. Suppose that P is maximal in the set of all T-pure fully
mwvariant submodules of M. Then P is a prime submodule of M.

Proof. Let L and K be fully invariant submodules of M such that P C L,
P C K and Ly;K C P. As M is projective, then by |3, Proposition 5.5
Ly (K/P) = 0. By |5, Proposition 1.9] we have that L C Annys (K/P).
Since M is generator of o[M], then Annys (K/P) # M. On the other
hand we know that P C L C Anny; (K/P). Moreover K/P is a T-torsion
free module, then by Lemma 2.1 we have that Anny (K/P) is a fully
invariant 7-pure submodule of M. By the maximality of P we must have
P =L = Anny, (K/P). So by [8, Remark 1.4] we have that P is a prime
submodule of M.

Notice that the lemma 2.2 is not true in general. Consider the Example
given in |7, Example 3.15]. The maximal fully invariant submodules L, K
and N of M = E (S) are {-pure in M. But they are not prime submodules
of M.

Remark 2.3. If M € R — Mod, 7 € M-tors, and N is a fully in-
variant submodule of M, then 7V denotes the direct image of 7 in
the category o [M/N], where T.n = {L € o[M/N] | L € T,}. It is
clear that 7%V € M/N-tors. Moreover, if L € o [M/N], then {K C L |
L/K e F.n} ={K CL|L/K € F;}. In fact let K C L such that
L/K € F_.n.If L/K ¢ ., then there exists 0 # L'/K C L/K such that
L'/K € T,. As L/K € o[M/N], then L'/K € T,n. So L/K ¢ F.x
a contradiction. Therefore, L/K € F; and {K C L | L/K € F.n} C
{KCL|L/K€eF,}.

Analogously we prove that

{KCL|L/KeF,} C{KCL|L/K€cF_n}.

Notice that If M is projective in o[M], 7 € M-tors and I C A both
(A _ A
T

are fully invariant submodules of M, then by Remark 2.3, (%) = %, where
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(?)is r1-purification of ? in % and A is the 7-purification of A in M. So
we will denote by ? the 7/-purification of ? in ¥

Proposition 2.4. Let M € R-Mod be projective in o[M] and x # 7 € M-
tors. If M is T-noetherian, then the following conditions are equivalent.

i) MF C ¢.(M) for some integer k > 0.

i1) For each fully invariant submodule A of M, there exists an integer
k > 0 such that (‘ﬁE)M AC (M), A

i7i) For each fully invariant submodule A of M that is contained in
MN,, there exists an integer k£ > 0 such that (‘ﬁ]ﬁ)M AC (M), A
Proof. i) = ii) As M¥ C t,(M), then by [5, Proposition 1,3], we have
that (91%) A C (t-(M)),, A. Since t-(M) is fully invariant submodule of
M, then (t-(M)),; A C t,(M). Thus (NF), A Ct.(M). We know that
0=1t(M). As (M,),, A is 7-pure in M, then ¢, (M) C (N;),; A. Hence
(M), A€ Oy A

i1) = 4i7) It is clear.

iti) = i) Since T # X, then t.(M) C M. Moreover t,(M) is a 7-
pure fully invariant submodule of M. As M is 7-noetherian, then there
exists a maximal fully invariant submodule @) of M such that @ is 7-
pure in M. By Lemma 2.2. we have that @) is a prime submodule of M.
Hence 91, € Q & M. Suppose that there exists a 7-pure fully invariant
submodule I of M such that I C 9, but M7 € I for all j > 0. As M is
T-netherian we can choose I maximal with respect to this property. It is
clear that I € M.. So N, /I #0. As N, /I € F; and M is 7 noetherian,
then by |6, Proposition 2.7| we have that Assy; (M./I) # @. Let P €
Assyr (M;/1), then Anng?T/I) (P)= Z{NTI C %z | PMNT/ =0} # 0. So we
put Annggltf/l) (P) = ? Thus PMé = 0. By [3, Proposition 5.5] we have
that Py A C I. We claim that A is a fully invariant submodule of M. In fact
as A C 91, then by [5, Proposition 1.3| we have that Ay M C (M), M =
I since N, is fully invariant submodule of M. As I C A and Iy M =1,
then I = IpyM C Ap M. Hence AJ‘}M C 2=, By [3, Proposition 5.6]
we have that Py (AyM) = (PyA)y M C IyyM = I. Hence by |3,

Proposition 5.5 Pxy (’L‘I‘%M) = 0. Thus A”%M - Anng\?T/I) (P) = ?.
Hence Ap;M C A. Therefore A is a fully invariant submodule of M.
Since P € Assys (91:/1), then there exists N'/I C 91, /I such that P =
Annp (N"/I) for all 0 # N”/I C N'/I. By lemma 2.1 we have that P
is 7-pure in M. As P is prime, then 9, C P. So by [5, Proposition 1.3]

we have that (M;),; A C Py A. Thus (M;),; A C I. On the other hand
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we know that A C 91,. By hypothesis, there exists an integer k& > 0
such that (MF), A C (Nk),; A € T = I. Moreover as N, is T-pure,
then A C M. Since t, (M/A) = A/A, then A/A is a fully invariant
submodule of M/A. Hence by [14, Lemma 17] we have that A is a fully
invariant submodule of M. Since I ¢ A C A C M, our choice of I
implies M C A for some ¢ > 0. By [5, Proposition 1.3] we have that
(‘ﬁ]ﬁ)M me C (WE)MZ C I. Hence ‘ﬁlﬁq C I which is a contradiction.
Therefore, every T-pure fully invariant submodule of M contains a power
of M,, so in particular, N C ¢, (M) for some k > 0.

Modules with 7-Krull dimension

Let M € R-Mod and 7 € M-tors. For X C Hom (M, M), let Ax_ =
Nyexiker f | ker f is 7-pure in M}. We consider the set 7-Ay = {Ax, |
X C Hom (M, M)}.

The following definition was given in |7, Definition 3.1].

Definition 2.5. Let M € R-Mod and 7 € M-tors. We say M satisfies
the ascending chain condition (ACC) on T-pure annihilators, if T-Ap
satisfies ACC. If 7 =&, we say that M satisfies ACC on annihilators.

Proposition 2.6. Let M € R-Mod be projective in o[M] and T € M-tors.
If M is semiprime and M has 7-Krull dimension, then M satisfies ACC
on annihilators.

Proof. As M has 7-Krull dimension, then by |7, Corollary 2.13] we have
that N contains a monoform submodule for all 0 # N € o[M]. By |7,
Proposition 3.8] we have that M is non M-singular, moreover as M has
finite uniform dimension. So by |7, Proposition 3.6] we have that M
satisfies ACC on annihilators.

Corollary 2.7. Let M € R-Mod be projective in o[M] and let T €
M-tors. If M 1is semiprime and M has T7-Krull dimension, then M
has a finite number of minimal prime submodules Py, Ps, ..., P, and
PPNnPnNn---NPk,=0.

Proof. By Proposition 2.6. we have that M satisfies ACC on annihilators.
So by [8, Theorem 2.2.] the result is clear.

Proposition 2.8. Let M € R-Mod be projective in o[M] and T € M-tors.
If M € F; and M has 7-Krull dimension such that 0t =0, then 9. = 0.
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Proof. We suppose that 0 =9t = (|{P | P is prime submodule of M}. So
M is semiprime module. Moreover by the proof of [9, Proposition 1.12]
we have that every prime submodule P of M contains a minimal prime
submodule. Hence by Corollary 2.7 we have that P NFP,N---NP, = 0 where
P; is a minimal prime submodule of M. Moreover, by |9, Lemma 1.23]
we have that P; = Annyy (N2 Pj). As M € F, then by Lemma 2.1 P;
is T-pure in M for:=1,2,...,n. Thus M, C P NPN---NF,=0.So
N, =0.

Notice that if M is as in Proposition 2.8, then every minimal 7-pure
prime submodule P of M is a minimal prime submodule of M. In fact let
P be a minimal prime submodule of M. By [9, Proposition 1.12] we have
that there exists a minimal prime submodule P’ of M such that P’ C P.
As P’ is 7-pure, then P’ = P.

Lemma 2.9. Let M € R-Mod be projective in o[M] and let T € M-tors.
If M € F. and M has 7-Krull dimension such that N, # 0, then N,
contains a non zero fully invariant submodule I of M such that InsI = 0.

Proof. By Proposition 2.8 we have that 91 £ 0. Moreover 91 C 91,. If
I = 0, then we have finished. Suppose that 913,91 # 0, then there
exists f : M — 91 such that f () # 0. So there exists n € N such
that 0 # a = f (n). Hence 0 # Ra. If (Ra),, (Ra) # 0, then there exists
0 # a1 € (Ra),; (Ra). Thus (Ra1),,; (Ra1) C (Ra),,; (Ra). So we obtain
a succession a = ag, a1, . . ., a;, aj+1 such that a; 41 € (Ra;),, (Ra;). Since
a € M, then by Proposition 1.16 we have that a € Fnil(M). Hence there
exits n such that a, # 0 such that (Ray),; (Ra,) = 0. As Ra, C M,
then (Rap),; M C M and (Ray),; M is a fully invariant submodule
of M. Moreover as M is projective in o[M] by [3, Proposition 5.5]
we have that [(Ray),, M],, [(Ran)y M] = [(Ray),, (MyRay)],, M C
[(Ran) s Ran)y, M = 0. So I = (Ray),, M.

Lemma 2.10. Let M € R-Mod be projective in o[M]. Suppose that A, B
are submodules of M and I is a fully invariant submodule of M such that

I C A, ICB, then (?)M/I (B) = AuB+l

Proof. Let F': M/I — B/I be a morphism. As M is projective in o[M],
then there exists a morphism f : M — B such that the following diagram
commutes

1

M—"% M/T

[k

B—"-B/I 0
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So mof = Fom. As (mof)(A) = m(f(A4)) = f(AI)+I and
(Fom)(A) = F(m (A)) = F(A/I), then F (A/I) = f(AI)+I c AM}B—H.

Thus (I)M (?) C %. Inversely let f: M — B be a morphism. As
I

Iis fully invariant submodule of M, then we can define the morphlsm

f:M/I — B/I such that f(z+1) = f(z)+ I. Sof(A/I) ST

(4) (5). Thus AuPAT C (), (8) S0 (4)  (£) = AP

Corollary 2.11. Let M € R-Mod be projective in o[M]. Suppose that A
18 a submodule of M and I is a fully invariant submodule of M such that
1 C A, then (é)r = #
We consider the following condition:
() If A and B are fully invariant submodules of M, such that B C 0.,
then BX/IZ C By A for some integer r > 0.

Proposition 2.12. Let M € R-Mod be projective in o[M] and let T € M-
tors. If M has T7-Krull dimension and M satisfies the property (), then
the following conditions hold.

i) For any fully invariant submodule I of M such that I C 9., the
factor module M /I satisfies ()

i1) The 7-purification of a 7-nilpotent fully invariant submodule I of
M is T-nilpotent.
Proof. i) Let I be a fully invariant submodule of M such that I1C ‘.)'IT. We
put N1 (M/I) = N{P/I | P/I € Spec.: (M/I), where 71 € X -tors }.
We claim that 9.s (M/I) = 2= In fact, since I C N, then I C P for all
P € Spec,(M). So by Remark 2.3 and [14, Proposition 1.8] we have that
N{PIPESpee, M)} — N(P/I | P/I € Spec,s (M/I)}. Thus N1 (M/T) =
mT . Now letA = A/I and B = B/I be fully invariant submodules of M /I
5uch that B C 91_; (M/I). Hence 5 C mT . So B C 7,. By hypothesis
B, A C ByA for some integer 7“ > O On the other hand we have

that (B)y, A = (£ )jWI( ) by Remark 2.3. Now by Lemma 2.10 and

Corollary 2.11 we have that

<?>:\/1/1<f]1>: <BTI+I>M/I </Il> B (BT;I>M/I <1;1)
_ B+ A+T
i :
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By [5, Proposition 1.3] we have that

(B"+ Dy A+ _ B'yA+IyA+1 _B'yA+1T _ BuA+1
I B I B I - I

ByA+1 B A -
Ciz _— e = .
B I <I>M/I <I> Bag/rh

Thus (]B%)}"WIK C Bag/rA.

i1) Let A be a fully invariant submodule of M, such that A is 7-
nilpotent, then there exists an integer n > 0, such that A™ C t.(M).
Hence A™ C P for all P € Spec,.(M). Then A C P for all P € Spec,.(M).
So A C ;. Now, we suppose that A has index of 7-nilpotency v (A) = n.
If n = 1, then Al = A C t,(M) = t,(M). Thus A is T-nilpotent. Let
n > 1, and suppose that the assertion has been established for any 7-
nilpotent fully invariant submodule of M of 7-nilpotency index < n. As
A CN,, then A C M, =N.. On the other hand as % =t,; (M/A), then
by |14, Lemma 17] we have that A is fully invariant submodule of M. So by

hypothesis we have that there exists r > 0 such that (Z)LZ C AyA. By
Lemma 1.17 we have that Ay A = Ay A = A2. Thus (Z>;\4Z C A2, As
v (A2) < v (A) = n, then by induction hypothesis there exists an integer
m > 0, such that (ﬁ)m Ct.(M). As (Z)TH C A2, then {(Z)Hl}m -
{ﬁ}m C t,(M). Therefore (A) (r+Dm Ct(M).

For M € R-Mod and 7 € M-tors, we consider the following condition:
() Annd; (N,) # 0 for any nonzero N € o[M] such that N € F,.

Lemma 2.13. Let M € R-Mod be projective in o[M] and T € M-tors.
If M satisfies the property (B), then M/C' satisfies the property (°8) for
all fully invariant submodule C' of M with C C N,.

Proof. Let C be a fully invariant submodule of M with C' C 0. By [6,
Proposition 1.5] we have that M /C is is projective in o [M/C]. Moreover
o[M/C] C o[M]. Let L € ¢[M/C] such that L € F.c. As L € o[M],
then by Remark 2.3 L € F.. So by hypothesis Ann]]tf/[ (M) # 0. Hence
there exists 0 # L' C L such that (M;),, L’ = 0. We claim that
(Nee (M/C)) e L' = 0. In fact as C C Ny, then C C P for all
P € Spec.(M). So by Remark 2.3 we have that M_c (M/C) = % So
(Nee (M/C)) ppje L' = (%)M/C L'. Let f: 2 — L’ be a morphism, then
fom € Homp (M, L), where 7 : M — M/C' is the canonical epimorphism.
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Thus (f o) (MN;) = 0. Hence f (%) = 0. Therefore (%)M/C L'=0. So

(Nec (M/C))pryc L' = 0. Thus Annﬁ/[/c N (M/C)) #0.

Lemma 2.14. Let M be a finitely generated module and projective in
o[M]. If I and N are fully invariant submodules of M such that0 # I C N
and In I =0, then there exists a non zero fully invariant submodule A of
M such that A is maximal with respect ApyA =0 and A C N.

Proof. Let F' = {0 # I Cpr M | IpyI = 0 and I C N}. By hypothesis
F # @. Let {I;} be a chain in F. We claim that (UI;),, (Ul;) = 0.
In fact if (UL;),, (UL;) # 0, then there exists € Ul; and f : M — UI;
a morphism such that f(z) # 0. Hence there exist j and j/ such that « € I;
and f(x) € Ij. On the other hand, as M is finitely generated module,
then there exits j” such that f(M) C I;». Let r = max{j, j/, j”}. So
x € I, and f : M — I,. Thus (I,),, I, # 0, which is a contradiction.
Therefore (Ul;),, (Ul;) = 0. Moreover it is clear that U, is a fully invariant
submodule of M and UI; C N. Therefore every chain {Z;} in F is bounded.
By Zorn’s lemma we have the result.

Note that the Lemma 2.14 is not true in general. Consider the following
example.

Example 2.15. We consider the Z-module M = Z,~ where p is a prime
number. Since Zyn p;Zym = 0 for all n and m. In particular, Zyn prZyn = 0
for all positive integer n. So M does not have maximal submodule N
of M, such that Ny;N = 0. Moreover M is an artinian module and, so
M has 7-Krull dimension for all 7 € M-tors. Notice that in this case M
is not a finitely generated module.

Theorem 2.16. Let M € R-Mod be a progenerator finitely generated in
o[M] and T € M-tors with Spec.(M) # @. If T # x and M has 7-Krull
dimension then the following conditions are equivalent.

i) () For any fully invariant submodules A and B of M with B C N,
there exists an integer v > 0 such that (B"),, A C By A.

(B) Annd; (M) # 0 for any nonzero N € o[M] such that N € F,.

ii) a) The T-purification of any T-nilpotent fully invariant submodule
of M is T-nilpotent.

b) If C C N, is a T-pure fully invariant submodule of M, then
N.c(M/C) = % does not contain a nonzero 7€ -idempotent fully in-
variant submodule of M/C.

i) N, is T-nilpotent.
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Proof. i) = ii) By Proposition 2.12 ii) a) follows from (2(). Now, by
Proposition 2.12 i) and Lemma 2.13 we have that conditions () and
(B) are inherited by all module M/C where C' is a 7-pure fully invariant
submodule of M and C' C M,. As t.(M) is a fully invariant submodule of
M and t-(M) C M., then we may assume that M is 7-torsionfree, and we
have to show that if I C 91, is a 7-idempotent fully invariant submodule of
M, then I = 0. Suppose otherwise, then by the condition (*8) we have that
0 # Annf, (M,) € Annl,(I). Let X = Annl,(I). As I is a fully invariant
submodule of M, then T is a fully invariant submodule of M. Moreover
by Proposition 1.14. we have that X is a fully invariant submodule of M.
So by condition (2) we know that (I"); X C Iy X = 0 for some integer
r > 0. Since M € F,, then (I")yyX = 0. As I is T-idempotent, then

7.7 € T;. So by Corollary 1.11 we have that = € T,. By Lemma 1.10

Y (IIT]\)N(Y € T;. Hence IyX C t-(M) = 0. Since X C I, then
M

XCI. SoX = AnnM( ) = X. We claim that X = 1. In fact, we suppose

N

_ L
that X ¢ I, then £ € F,. So by hypothesis Anng, (M) 7é 0. Since

e
I C N, then 0 # Anng, (N;) C AnnM( ). So we put AnnM( ) =
Hence IMY = 0. Now, by [3, Proposition 5.5] we have that I;Y C X.
By [5, Proposition 1.3] Ips (In;Y) € Iy X. So (12) Y C IyX =

Moreover by Lemma 1.10 I/Y = (]’;’Y € T,. Thus IyY Ct (M) =0.

Hence Y C AnnM( ). Therefore Ann},(I) =X ¢ Y C AnnM( ) which is
a contradiction. So X = 1. Thus InyI € Iyl = Iy X = 0. So I = 115 €
T, But I C M eF,. Thus I =0.

\><_H

.O

i1) = 4i1) As Spec. (M) # @ and 7 # x, then M, & M. Let C = ¢, (M).
Since C' = t,(M) C N, then by Remark 2.3 we have that M_c (M/C) =
%L If N.e (M/C) is C-nilpotent, then [%]n € T,c for some integer

n > 0. Hence by Corollary 2.11. we have that [%]n = w =

Bt € Toe. By Remark 2.3 (D € T, So ()" € T
Thus M, is T-nilpotent. Thus, we may assume that M € F,.. If 01, =0,
there is noting to prove; so we assume that 91, # 0. By Lemma 2.9 91,
contains a fully invariant submodule 0 # I of M such that Iy = 0.
On the other hand as M is finitely generated, then by Lemma 2.4 we
choose a fully invariant submodule A of M maximal with respect to
0#ACN, and Ay A = 0. By (4i)(a) we have that A is 7-nilpotent. As
A is a fully invariant submodule of M, then A is fully invariant submodule
of M. Moreover A C M,. Hence by Remark 2.3 we have that €F x
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By (7)) (b) we have that M 3 (%) mj Hence if M_z (%) = 0, then
N, = A. Thus N, is 7-nilpotent So we may suppose that N x ( )
Ao

Repeating the argument for % there exists = maximal with respect

0 # % CNa (%) and (%)M (2> = £. By Lemma 2.10 we have
I

B[N

A

that % = 4 us (A2),, (A2) € A. So we obtain a chain
0=Ay = COSZA1C01§A2C02§ e A CCE A Clin G
- C N, where A1 = A, C; = AJ, and each fully invariant submodule
Ajyq1 of M is chosen maximal with respect to C; & A1 € 91 and
(Ajy1),, (Aj41) € Cj. Note that C; is T-nilpotent for all j.
Suppose that the above chain is infinite, and set

Joen
j=1

By hypothesis (ii) (b), I is not 7-idempotent. We claim that there exists
n, j € N such that 1™ C I"*1 4+ ;. In fact, suppose that I"™ ¢ ["+1 4+ C;
for all n, j € N. We proceed to select a subsequence {B} of {C,} such
that I" N By ¢ I"+t1 4+ B, for all n > 1. Choose B; = Cy = 0. Since
I is not 7-idempotent, then I/ I & I. Thus. I = I ¢ Iyl = I?. Hence

there exists C; € 12 for some j > 0. We choose j minimal with respect to
this property and set By = C;. Thus

TﬂBQZIﬂCj:Cj gﬁ:ﬁ+0:ﬁ+31
Now suppose that By & By & --- & B), have been chosen such that
I 1N B, £ I"+ B,_4

Now, if I" N C; C I"*t! + B, for all j, then we have that

oo o0
r=rnrcrnljc=rn|lJc| <1+ B,
~ .

As B,, = Cj for some j/, then I" C I"*t! + (C}, which is impos-
sible, since we suppose that I"™ ¢ ["+1 4 C; for all n, j. Therefore
ﬁﬂCj ¢ I"+1 + B, for some j. So we may take j minimal, and B,,1 = C}.
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Moreover we have that B,, & B,+1. So by [13, Lemma 3.2.8] we have that
I does not have 7-Krull dimension which is a contradiction since M has
7-Krull dimension. Therefore 1™ C I"+! 4 C; for some n, j. On the other

hand 1"+ 4+ C; C I+l 4 C;. Hence I"+! 4 C; C In*! + Cj. Moreover it
is clear that I"+! + C; C I"+l 4 C;. Thus I"t! + C; = I"*+1 + C;. Thus

I"+C; oy I
In+—1’—+é]. C I"+1—+|-Cj- = I"+1icj- € T. By Lemma 1.10 and Lemma 2.10 we
have that % €T ¢;. Now by Lemma 2.10 we have that
I"+C; m+c;
(Tge) (TEe) WG (Precp/e; T
i Jmye; \ G Cj

So the fully invariant submodule % of CM] is 7C-idempotent. Now

by (ii)(b) we have that In(jfij] = 0. Hence I" C Cj. If n =1, then
I C Cj. So [ = Cj. Ifn> 1, then (Inil —|—Aj+1)M (Inil +Aj+1) =
1?2 + (In_l)MAj_H + (Aj""l)M 1 + (Aj+1)2. Since Aj_|_1 was
chosen maximal with the property (Ajy1),,(Aj41) € Cj, then
(Inil + Aj+1)M (Inil—i-Aj_H) = (In71+Aj+1)2 c I+ Cj C Cj. Hence
It 4+ Ajyy = Ajpq. So I C Aj 1y C Cjy1. Repeating this argument,
we obtain I C Cy with k=j+n—1. But I C Cy C Apy1 C I, which is
a contradiction. Therefore, the chain {C),} must be finite. Consequently
C,, = N, for some n, and N, is T-nilpotent.

iii) = i) As M, is 7-nilpotent, then exists k > 0 such that NM* C
t-(M), then it follows for two fully invariant submodules A and B of M
with B C M, that (BY), AC (MF), ACt.(M)yACt-(M)C ByA.
So () holds. Now, let N € o[M] with N € F,, then ¢,(M)y N = 0. By
[5, Proposition 1.3] we have that (‘ﬂ’j)MN Ct.(M)yN = 0. If N is
the smallest power of 91, such that (‘)TZT)M N =0, then (‘ﬁfl)M N #0
where M2 = M. As M is generator in o[M], then (N?), N = My N # 0.
Hence 0 # (‘.)'Ii_l)M N C Ann}; (91,). So (B) holds.

Notice that in Theorem 2.16 the hypothesis M is finitely generated is
used only in the proof of ii) = i)

Note that the Theorem 2.16 is not true in general. Consider the
following example.

Example 2.17. We consider the example 1.12 of [5]. In that example, R
is the trivial extension of Zy by Zg @ Zy, M = E (S) where S is the only
one simple R-module and E (S) denotes the injective hull of S. Also note
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that M is a finite module. Hence M is an artinian module. Moreover the
authors showed that Spec(M) = @. Thus M, = M for all 7 € M-tors. So
1. is not T-nilpotent for all x # 7 € M-tors.

3. FIS-invariant torsion theories

In this section we use the concept of FIS-invariant torsion theory
T € M-tors given in [6]. We will show that the conditions ii) a) and i)
b) of the Theorem 2.16 are satisfied when M is a progenerator in o[M]
and 7 € M-tors is a FIS-invariant torsion theory. Furthermore if M is
a finitely generated module and M has 7-Krull dimension, then 91, is
T-nilpotent.

The following definition was given in |6, Definition 2.1].

Definition 3.1. Let M € R-Mod. A hereditary torsion theory T € M-tors
1s K-invariant for a fully invariant submodule K of M if the module leD
is T-torston for any T-dense submodule D of M. If T is K-invariant for
every fully invariant submodule K of M, then T is called FIS-invariant
(Fully Invariant Submodule invariant torsion theory).

We observe that & and y are FIS-invariant torsion theories.

Proposition 3.2. Let M € R-Mod be projective in o[M] and let R
be a commutative ring. If M is a multiplication module, then T is FIS-
mwvariant for all T € M-tors.

Proof. As M is a multiplication module, then M is a duo module ( every
submodule N of M is fully invariant). We claim that M generates all
its submodules. In fact, let NV be a submodule of M, then N = IM for
some ideal I of R. Since R is commutative ring, then for each r € I we
may define the morphism f, : M — M as f.(m) = rm. So f.(M) =
rM C IM = N. Thus f, : M — N for all » € I. Hence we have
that N = IM = > _; fr(M) € MyN C N. So My N = N. Thus M
generates N.

On the other hand. As M is a multiplication module. If N and L
are submodules of M, then there exist ideals I and J of R such that
N=IMand L =JM. So Ny L = Zf:M—)Lf(N) = Zf:M—)Lf(IM) =
IS prson JOM) = T(MyL) = IL = T(JM) = (I M = (JI)M —
J(IM) = Ly N. Therefore NyjL = Ly N.

Now let 7 € M-tors and K, D be submodules of M such that D is

7-dense in M. As % € T, then by Lemma 1.10 we have that ]\gﬁf{( eT,.
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Since My K = K and Dy K = Ky D, then 3248 = K0 € T, So 7 is
FIS-invariant.

Notice that if R is a von Neumann regular ring and M is a multi-
plication R-module, such that M generates all its submodules, then 7
is FIS-invariant for all 7 € M-tors. The proof is similar as the proof of
Proposition 3.2.

Proposition 3.3. Let M € R-Mod be projective in o[M] and let T € M-
tors. If K is a fully invariant submodule of M, then the following conditions
are equivalent:

i) T is K-invariant
it) If KpyyN' =0 for a T-dense submodule N' of a T-torsionfree N €
o[M], then Ky N = 0.

Proof. i) = ii) Let N € o[M] with N € F; and let N" be a 7-dense sub-
module of N such that Ky N’ = 0. We know that KyyN = > f(K).
M—N
Let f : M — N be a morphism. So we can consider thfe morphism
mof: M — N/N' where 7 : N — N/N' is the canonical projection. We
put ker (mo f) = D. Thus 7 (f (D)) = 0. So f (D) C N'. By [5, Propo-
sition 1.3 | we have that K/ [f (D)] = 0. We claim that f (K D) = 0.
In fact let h : M — D be a morphism. As foh : M — f(D), then
(foh)(K) =0. Hence f(Kp D) = 0. Now we consider the restriction
morphism fg : K — N. As K is a fully invariant submodule of M, then
KyD C K. Thus fig (KpD) = f (KyD) = 0. So we have the morphism
E; : % — N such that f‘;(aj + KypD) = fig(z) = f(z). On the other
hand as ker (7 o f) = D, then M/D € T,. Thus D is 7-dense in M. Since

7 is K-invariant, then % € T;. Since N € F,, then E;( = 0.
Therefore 0 = ﬁ; (x+ KpuD) = f(z) for all x € K.

i1) = i) Let D be a 7-dense submodule of M, then % is 7-dense
M
submodule of Kf\jD. Thus D+% €T, As KyyD € DN Ky D, then by

[3, Proposition 5.5 | we have that Kjs (Dmﬁ> = 0. Since Dﬁ% =

D+Ky D D+KyD\ _ : M .
b then Ky (7KMD ) = 0. Since %D © F,, then by hypothesis

Ky (%) — 0. By [3, Proposition 5.5] we have that KM C K/ D. As

K is a fully invariant submodule of M, then KyyM = K. So K C Ky D.

K Ky D . . .
Thus o D - D € T,. Therefore 7 is K-invariant.

_K
KuD
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Lemma 3.4. Let M € R-Mod be projective in o[M] and T € M-tors. If
7 is FIS-invariant and N € o[M] is a T-cocritical module, then Annps(N)
s a T-pure prime submodule of M.

Proof. Let K and L be fully invariant submodules of M such that Ky, L C
Anny/(N), then (KpL),, N = 0. Suppose that L ¢ Annps(N). Thus
Ly N # 0. If LyyN = N, then by [3, Proposition 5.6 | we have that
0= Ky (LyN)=KyN. Thus K C Annp(N). If 0 # LyyN & N, then
% € T,. So Ly N is a 7-dense submodule of N. Now by Proposition 3.2
we have that KN = 0. So K C Annjs(N).

Note that if 7 is FIS-invariant in the Theorem 2.16, then by Lemma 3.4
Spec.(M) # @ since M has 7-Krull dimension. (thus, there exist 7-
cocritical modules).

Lemma 3.4 is not true in general. Consider the following example.

Example 3.5. We consider the Z-module M = Zp~ where p is a prime
number. We know that Z, is a {-cocritical module. On the other hand,
Annyy (Zy) = Zye, but Zy is not a prime submodule of M.

Proposition 3.6. Let M € R-Mod be projective in o[M| and T € M-tors
be FIS-invariant. If M € F, and M has 7-Krull dimension, then N, does

not contain T-idempotent fully invariant submodules 0 = N of M .

Proof. Suppose that I is a T-idempotent fully invariant submodule of
M such that I C 91.. We claim that Iy, N = 0 for all N € F;. In fact,
we choose an ordinal a which is minimal with respect to the property
that there exists a 7-torsion free module N with k;-dim(N) = « and
Iy N # 0. Assume, that N is a-7-critical, then k.-dim(N/L) < « for all
7-pure submodules 0 # L of N. Hence I, (%) = 0. By [3, Proposition 5.5]
we have that InyN C L. So I)yN C L = L for all 7-pure submodules
0 # L of N. Thus 0 # Iy N is the unique non zero minimal 7-pure
submodule of N. On the other hand, if N’ is a nonzero T-pure submodule
of IyyN, then N’ is 7-pure in N. Thus N’ = I,;N. Hence II‘EN c T,
for all 0 # L submodules of Iy N. Therefore Iy;N is 0-7-critical (7-
cocritical). Since nonzero submodules of a-7-critical modules are a-7-
critical, then o = 0. Hence N is 0-7-critical. So N is a 7-cocritical module.
By Lemma 3.4, Anny/(N) is a prime 7-pure submodule of M. Thus
M, C Annps(N). As I C N, then Iy N = 0 this is a contradiction. Thus
N cannot be 7-critical. Notice that I annihilates any 7-critical submodule
of N. By [12, Proposition 3.2.4] we have that there exists 0 # L a 7-
critical submodule of N. Therefore k,-dim(L) < k,-dim(N) = a. If
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kr-dim(L) < a, then IpsL = 0. If k--dim(L) = «, then IjsL = 0. Hence
L C Anndj(I) # 0. We put H = Ann};(I). So IyyH = 0. Thus H ¢ N.
Now if t; (N/H) = H'/H, then by Proposition 3.3 Iy;H' = 0. Hence
H' C Anny(I) = H. Thus t, (N/H) = 0. So N/H € F,. So there exists
a T-critical submodule 0 # T'/H of N/H. By the preceding paragraph
0 T/H C Ann}/"(I). Hence In; (T/H) = 0. So by [3, Proposition 5.5]
we have that Iy, C H. By |3, Proposition 5.6] we have that (Ip/1),, T =
Ing (InyT) C IpgH = 0. As I is 7-idempotent, then Tlﬂ € T,. So by

Lemma 1.10 IyT = Iyl T,. Since Iy;T € H C N € F,, then
(In 1)y T

IyT = 0. Hence H ¢ T C Ann};(I) = H this is a contradiction.
Therefore InyN =0, for N € F.. Thus I = I),yM = 0.

Proposition 3.7. Let M € R-Mod be projective in o[M], let T € M-
tors and K a fully invariant submodule of M. If T is K-invariant, then
KyN C Ky Nfor all N € o[M].

Proof. 1t is clear that Ky N C KpN N N. So by [3, Proposition 5.5] we

have that Ky (Ki]]\\me) = 0. Hence K, (N+K1”IN> 0. On the other
N+KuyN ~ N

hand K]“(’[ QKNGIF and( )/( )_N+KMN eT,.

As 7 is K-invariant, then by Proposition 3.3 KM L) = 0. We claim

is a morphism, then

that Ky (%) = 0. In fact, if f: M — KNN
M M

. . N
f (K) = 0. Hence we can define the morphism f : 7 e such that

f(z+ K) = f(z). Since % € T; and % € ., then f(K> =0.500=
fx+K)=f(z)forallz € K. Hence f (K) = 0. Thus Ky <K1N> =0.

By [3, Proposition 5.5] we have that K N C Ky N.

Notice that if 7 is FIS-invariant in Proposition 3.7 we have that
Ky N C KN for all fully invariant submodules K of M and for all
N € o[M].

Lemma 3.8. Let M € R-Mod be projective in o[M] and T € M-tors. If
T is FIS-invariant and I is a fully invariant submodule of M, then 71 is
FIS-invariant.

Proof. Let K/I be a fully invariant submodule of M/I and D/I a 7!-
dense submodule of M/I. By Lemma 2.10, ( )M/I (D) = %. Hence

€ )Kj L @) = Kﬁéﬁ T KM% —7- Since K /I is a fully invariant submodule
M/I I
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of M/I, then K is a fully invariant submodule of M and by Remark 2.3

D is 7-dense in M. Hence % € T,. Therefore ﬁ € T,. Thus by
Remark 2.3 KKi/ID is 7/-torsion. So 7! is FIS-invariant.

(T)M/I(T)
Corollary 3.9. Let M € R-Mod be projective in o[M| and T € M-tors.
Suppose that M € F. and M has 7-Krull dimension. If T is FIS-invariant,
then the following conditions hold:

i) The T-purification of any T-nilpotent fully invariant submodule of
M s T-nilpotent.

i) If I C N, is a T-pure fully invariant submodule of M, then
N1 (%) = % does not contain nonzero ! -idempotent fully invariant
submodules of %

Proof. i) Let I be a 7-nilpotent fully invariant submodule of M, then
I C t.(M) for some positive integer n. Now, by Proposition 3.7 (T)n -
InC W =t-(M). So I is T-nilpotent.

ii) By [17, Proposition 18.2 (4)] we have that & is projective in o [££].

So we apply Lemma 3.8 and Proposition 3.6 to get the result.

Theorem 3.10. Let M € R-Mod be a finitely generated module, progener-
ator in o[M] and T € M-tors FIS invariant. If T # x and M has T-Krull
dimension, then I, is T-nilpotent.

Proof. Apply Corollary 3.9 and Theorem 2.16 to get the result.
Notice that the Example 2.17 shows that the Theorem 3.10 is not true
in general.
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