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On a stronger notion of connectedness in c-spaces
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Abstract. In this article, a stronger form of connectedness

called Y -connectedness in c-spaces is introduced and some of its

properties are studied. Using the notion of touching, some conditions

under which union of Y -connected sub c-spaces of a c-space become

Y -connected is also discussed.

Introduction

Axiomatization of the notion of connected sets by Reinhard Börger in
1983 is a great achievement in the study of connectedness. It is known
that topological connectedness was used in the study of connectedness
in continuous őgures whereas graph theoretical connectedness was used
in the study of discrete őgures. But these two concepts are not mutually
compatible as there are topological structures whose connectedness cannot
be induced from a graph and viceversa [2, 10]. Compatibility is a must
for an applied mathematician to work with as study of continuous őgures
is achieved by discretizing them. In fact, the proposed theory of Börger,
known as the theory of c-spaces, uniőed various abstract notions of connect-
edness present in different branches and őnd many applications in various
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branches like Digital Topology, Signal Processing, Pattern Recognition
and many more [4, 5, 10,13,14].

1. Preliminaries

All terminologies in this section are standard and are taken from [4,
8, 11, 12] unless otherwise mentioned. A nonempty set X together with
a collection C of subsets of X which satisőes the following axioms is called
a c-space.

(i) ∅ ∈ C and {x} ∈ C for every x ∈ X.

(ii) If {Ci : i ∈ I} is a non empty collection of subsets in C with⋂
i∈I Ci ̸= ∅, then

⋃
i∈I Ci ∈ C.

The collection C of subsets X which satisőes the above axioms is called a c-
structure [8] or a connectivity class [4,5,14] of X. Elements of a c-structure
are called connected sets.

One trivial example is indiscrete c-space where indiscrete c-structure
is given by IX = P(X), the power set of X. Another example is discrete
c-space, where discrete c-structure is given by DX = {∅} ∪ {{x} : x ∈ X}.
Unless otherwise speciőed, the c-space (X,CX) is represented by X. For
example, considering R as a c-space, connected sets are precisely intervals
in R. A c-space Y is said to be a sub c-space of the c-space X if Y ⊆ X
and CY = {A ∈ CX : A ⊆ Y }. A c-space is said to be C1 if it contains no
two element connected sets.

A point x ∈ X is said to touch a set A ⊂ X if there is a nonempty
subset C ⊆ A such that {x}∪C is connected. The set of all points touching
the set A is denoted by t(A). Further, the subsets A and B of X are said
to touch if there is a point x ∈ A ∪B which touches both A and B. A is
said to be t-closed if it contains all of its touching points. The t-closure
of a set A is deőned to be the smallest t-closed set containing A and is
denoted by Ā. We may note that t-closure is not a Kuratowski closure
operator. By convention, t2(A) = t(t(A)), t3(A) = t(t2(A)) and so on.

A function f : X → Y is called a c-continuous function if it maps
connected sets of X to connected sets of Y . Let {Xi : i ∈ I} be a family of
c-spaces and let X =

∏
Xi. Then C = {A ⊂ X : πi(A) ∈ CXi

for every i},
where πis are the projection functions deőned on the set X, is a c-structure
on X and X with this c-structure is called the product space of {Xi :
i ∈ I}. Obviously it is the largest c-structure on X which make each πi
c-continuous. To make the concept more clear, an example of connected
and disconnected sets from R2 is given in Figure 1.
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Figure 1.

A function f : X → Y is said to be a quotient map if CY is the
smallest c-structure on Y which make f c-continuous. Then CY = ⟨{f(C) :
C ∈ CX}⟩, the smallest c-structure on Y which contains all f(C)s. In
otherwords, it is the c-structure generted by the collection {f(C) : C ∈
CX}. In this case we say that Y is a quotient space of X. Many properties of
quotient space can be seen in [12]. Further, if (X, CX) be the sum of the the
family of c-spaces {(Xi, CXi

) : i ∈ I}, then CX =
⋃

i∈I{C×{i} : C ∈ CXi
}.

Let X be any set and α be any cardinal with α ⩽ |X|. Then a c-
structure C on X is said to be α-generated if there is a sub collection
B ⊆ {A ∈ C : |A| ⩽ α} such that C = ⟨B⟩. A c-space is said to be
α-generated if its c-structure is α-generated [9]. 2-generated c-spaces are
of special interest to us [8, 9].

2. On a stronger notion of connectedness in c-spaces

A topological space is connected if it cannot be written as the union
of two disjoint nonempty open sets. Alternately, a topological space X is
connected if and only if any continuous map f from X to the two element
discrete topological space {0, 1} is a constant (Page 164 of [7]). In his
work [3], Dai Bo introduced the idea of Z-connectedness by replacing the
two element discrete space {0, 1} by a T1 topological space Z.

Analogously, Joseph Muscat and David Buhagiar [8] observed that
a c-space X is connected if and only if any c-continuous function f from
X to the two element discrete c-space {0, 1} is a constant. In our work
on stronger notion of connectedness, we replace the two element discrete
c-space {0, 1} by a C1 c-space. It can be noted that the associated c-space
of a T1 topological space is C1.
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Deőnition 1. Let Y be any C1 c-space with more than one element.
A c-space X is said to be Y -connected if every c-continuous function
f : X → Y is constant.

Remark 1. The restriction that Y should be a C1 c-space is mandatory.
For otherwise, Y contains a two element connected set, say {a, b}. Let
f : X → {a, b} be any non constant function. Then f is c-continuous as
every subset of {a, b} is connected in Y .

Now we list some examples of Y -connected spaces.
1) Let Y be the Brunnian closure of an inőnite discrete c-space.

a. Consider the c-space (X, CX) where X = {1, 2, 3} and CX =
DX ∪ {{1, 2}, X}. Let f : X → Y be any c-continuous map.
Since X is a őnite connected set, we must have f(X) = {a}
for some a ∈ Y , so that f is a constant map and hence X is
Y -connected c-space.

b. Consider the c-space (X, CX) where X = {1, 2, 3, 4} and CX =
DX ∪ {{1, 2}, {3, 4}, {1, 2, 3}, X}. Similar arguments as above
shows that the c-space X is Y -connected.

2) Let Y be any C1 c-space with more than one point. Then we can
note that all 2-generated connected c-spaces are Y -connected. Using this
we can construct inőnite c-spaces which are Y -connected. For example,
the c-space (X, CX) where X = N and CX = ⟨{n, n+ 1} : n ∈ N⟩.

Proposition 1 ([8]). A c-space X is connected if and only if any c-
continuous function f from X to the two element discrete c-space {0, 1}
is a constant.

Proposition 2. Every Y -connected space is connected.

Proof. Let X be any Y -connected space. Consider the two element discrete
c-space D = {0, 1}. Let f : X → D be any c-continuous function.

As D is a discrete c-space, any function g : D → Y is c-continuous.
Since composition of two c-continuous functions is again c-continuous, g◦f :
X → Y is c-continuous. Since X is Y -connected, g ◦ f is a constant map
for every g. This implies that f is a constant map. Then by Proposition 1,
X is a connected c-space.

Remark 2. We may note that converse of the above proposition is not
true. For example, any surjective function f : X → Y with corresponding
c-structures CX = DX ∪{X} and CY = DY ∪{Y } is c-continuous and will
serve our purpose.
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Combining the Proposition 2 with the above remark, it follows that
Y -connectedness is a stronger notion of connectedness in c-spaces.

Remark 3. Further we may note that if X is a őnite c-space, then X is
connected if only if X is Y -connected.

By Proposition 2, we know that a Y -connected c-space is always
connected. Conversely let X be any őnite connected c-space. Let f : X →
Y be any c-continuous function. Since |f(X)| is őnite, we have f(X) = {a}
for some a ∈ Y . Hence f is a constant function. This implies that X is
Y -connected.

The above remark can be generalized to any c-space X with |X| < |Y |.

Proposition 3 ([8]). Let X and Y be c-spaces and f : X → Y be a c-
continuous function. Let x ∈ X and A ⊂ X such that x touches A. Then
f(x) touches f(A).

The following proposition easily follows from the above result.

Proposition 4. Let X and Y be c-spaces and f : X → Y be a c-continuous
function. Let A, B be subsets of X such that A touches B. Then f(A)
touches f(B).

In the next theorem we investigate some conditions under which union
of Y -connected spaces become Y -connected.

Theorem 1. Let X be a c-space and {Xα}α∈I be a family of Y -connected
sub c-spaces of X. Then

1) If
⋂

α∈I Xα ̸= ∅, then
⋃

α∈I Xα is Y -connected.
2) If Xα touches Xβ for all α and β in I, then

⋃
α∈I Xα is Y -connected.

3) If I = N and Xn touches Xn+1 for all n ∈ N, then
⋃

n∈NXn is
Y -connected.

4) Let {Xα}α∈I be a directed family of Y -connected sub c-spaces of X,
direction being the set inclusion. (That is, for each pair of elements
t1, t2 ∈ I, there exists t3 ∈ I such that Xt1 ⊂ Xt3 and Xt2 ⊂ Xt3.)
Then

⋃
α∈I Xα is Y -connected.

Proof. Since each Xα is Y -connected, by Proposition 2, each Xα is con-
nected.

1) Consider a c-continuous function f :
⋃

α∈I Xα → Y . Since each Xα

is Y -connected, the image f(Xα) coinsides with a singleton {f(p)}. Hence
f(
⋃

α∈I Xα) =
⋃

α∈I f(Xα) = {f(p)}, a singleton and hence
⋃

α∈I Xα is
Y -connected.
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2) Let f :
⋃

α∈I Xα → Y be a nonconstant c-continuous function.
Then there exist x, y ∈

⋃
α∈I Xα with x ≠ y such that f(x) = k1 and

f(y) = k2 with k1 ̸= k2. Let x ∈ Xα and y ∈ Xβ for some α, β ∈ I.
Obviously, f ◦ iα : Xα → Y is a c-continuous function, where iα :

Xα →
⋃

α∈I Xα is the inclusion function. Xα being Y -connected, f ◦ iα is
constant for every α. In particular, we have (f ◦ iα)(Xα) = {k1}. That is,
f(Xα) = {k1}. Similarly f(Xβ) = {k2}.

Since Xα touches Xβ , by Proposition 4, f(Xα) touches f(Xβ). That
is, {k1} touches {k2}. Consequently the set {k1, k2} is connected in Y .
This is possible only if k1 = k2, a contradiction. Thus the only possible
c-continuous functions f :

⋃
α∈I Xα → Y are constant functions and hence

the result.
3) First let us prove that

⋃n
i=1

Xi is Y -connected. Using the Principle
of Induction, it is enough to prove the case for n = 2.

Let n = 2. Since X1 touches X2, X2 touches X1. Then by case (2)
above, X1 ∪X2 is Y -connected. Hence our claim.

Let Cn =
⋃n

i=1
Xi. Then Cn is Y -connected for each n ⩾ 1. Since⋂

n∈NCn = X1 ̸= ∅, by case 1) above,
⋃

∞

n=1
Xn is Y -connected.

4) Let f :
⋃

α∈I Xα → Y be a nonconstant c-continuous function. Then
there exist x, y ∈

⋃
α∈I Xα such that f(x) = k1, f(y) = k2 with x ≠ y

and k1 ̸= k2, where k1, k2 ∈ Y .
Let x ∈ Xα and y ∈ Xβ for some α, β ∈ I. I being a directed set, there

exists γ ∈ I such that Xα ⊂ Xγ and Xβ ⊂ Xγ . Since f ↾Xγ : Xγ → Y is c-
continuous and since Xγ is Y -connected, f ↾Xγ is a constant. Let f(Xγ) =
{k3}, for some k3 ∈ Y . Then obviously k1 = k2 = k3, a contradiction.
Hence f must be a constant function.

3. More on Y -connected c-spaces

In this section, results relating to product, quotient, sum and t-closure
of Y -connected c-spaces are discussed. As c-spaces can contain noncon-
nected c-subspaces, it follows that Y -connectedness is not a hereditary
property. Further, since sum of two connected spaces is not connected, it
follows that sum of Y -connected c-spaces is not Y -connected.

Theorem 2. Finite product of Y -connected c-spaces is Y -connected.

Proof. Let X1 and X2 be two Y -connected c-spaces. It is enough to prove
that X1 ×X2 is Y -connected.

Consider the product space X1 ×X2. Fix a point (a, b) in X1 ×X2.
For x ∈ X1, let Tx = (X1 × {b}) ∪ ({x} ×X2).
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Now obviously X1 × {b} is a Y -connected space c-isomorphic with
X1 and {x} × X2 is a Y -connected space c-isomorphic with X2. Then
by Theorem 1, Tx is Y -connected, being the union of two Y -connected
c-spaces that have a point (x, b) in common.

Now
X1 ×X2 =

⋃

x∈X1

Tx

Then by Theorem 1, X1 × X2 is Y -connected being the union of Y -
connected c-spaces which have a point (a, b) in common.

The above theorem can be extended to the artbitrary product, which
is as follows.

Theorem 3. The product X =
∏

α∈AXα of Y -connected spaces is Y -
connected.

Proof. Assuming that X is not Y -connected, we can őnd a c-continuous
map f : X → Y such that f(a) ̸= f(b) for some points a, b ∈ X. By
Proposition 2, every space Xα is connected (being Y -connected) so is its
isomorphic copy Ẋα = {x ∈ X : {β ∈ A : x(β) ̸= a(β)} ⊆ {α}} in X. By
the deőnition of a c-structure, the union V =

⋃
α∈A Ẋα is a connected

subset of X. Since each Xα is Y -connected, so is its isomorphic copy Ẋα,
which implies that f(Xα) = {f(a)}.

Now consider the subsetC = V ∪{b} of X and observe that for every α ∈
A its projection πα(C) = πα(V ) = Xα is connected. Then C is a connected
subset of X by the deőnition of the c-structure on X =

∏
α∈AXα. Since

f is c-continuous, the image f(C) = f(V ) ∪ {f(b)} = {f(a), f(b)} is
a connected subset of Y . Since Y contains no connected two element
subsets, f(b) = f(a), which contradicts the choice of a, b.

Theorem 4. Let f : X → Z be a surjective c-continuous function. Then
if X is Y -connected, so is Z.

Proof. Given any c-continuous map g : Z → Y , observe that the com-
position g ◦ f : X → Y is c-continuous and hence a constant as X is
Y -connected. Then g(Z) = g ◦ f(X) is a singleton, which means that Z
is Y -connected.

Corollary 1. Let {Xα : α ∈ I} be a family of nonempty Y -connected
c-spaces. If

∏
α∈I Xα is Y -connected, then each Xα is Y -connected.

Corollary 2. Quotient space of a Y -connected space is Y -connected.

Two preceding theorems imply the following characterization.
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Theorem 5. The product
∏

α∈AXα of a family (Xα)α∈A of c-spaces is
Y -connected if and only if for every α ∈ A, the c-space Xα is Y -connected.

Theorem 6. If A is a Y -connected sub c-space of a c-space X, then A is
also Y -connected.

Proof. Let X be the given c-space. Well-order X. Let ⩽ be a well-order
on X. Let A be a Y -connected sub c-space of X and f : A → Y be
any c-continuous function. f being c-continuous on A and since A is
Y -connected, f is constant on A. Let f(x) = a for every x ∈ A. Let
K = {x ∈ A : f(x) = a}. We claim that K = A.

We know that A = tγ(A) where γ is the least ordinal such that
tγ(A) = tγ+1(A). Let x ∈ A. If x ∈ A, our claim trivially follows. So let
x /∈ A. Then there exists an ordinal λ such that x ∈ tλ(A) and x /∈ tα(A)
for every α < λ.

Case I. Let λ is not a limit ordinal. Since x ∈ tλ(A), x is a touching
point of tλ−1(A). Then there exits a subset C of tλ−1(A) such that K1 =
C ∪ {x} is connected in X. Clearly K1 ⊆ A.

Assume that y < x implies y ∈ K for every y ∈ X. As tλ−1(A) ⊊ tλ(A),
we have y < x for every y ∈ C. Then by our assumption y ∈ K and hence
f(y) = a. Now

f(K1) = f(C) ∪ {f(x)} = {a, f(x)}

with f being c-continuous, and since Y is a C1 c-space, {a, f(x)} is
connected if and only if f(x) = a. Hence x ∈ K. Thus by Principle of
Transőnite Induction K = A.

Case II. Let λ be a limit ordinal. Then

tλ(A) =
⋃

α<λ

tα(A)

Since x ∈ tλ(A), x ∈ tα(A) for some α < λ. By Case I above, we have
K = A.

From above cases, it follows that f(x) = a for every x ∈ A. That is, f
is a constant function on A and hence A is Y -connected.

Remark 4. Let A be a Y -connected sub c-space of a c-space X and
B be a sub c-space of X such that A ⊂ B ⊂ A. Then B need not be
Y -connected.

Consider the c-space X = {1, 2, 3} endowed with the c-structure
CX = DX ∪ {{1, 2}, {2, 3}, X}. Observe that for the sub c-space A = {1},
we have t(A) = {1, 2} and A = t(t(A)) = X. On the other hand, the sub
c-space B = {1, 3} of X is not Y -connected as it is not connected.
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Conclusion

In the present study, a stronger notion of connecteness is produced by
replacing the discrete c-space {0, 1} by a C1 c-space Y with more than one
point. One can think about achieving stronger connecteness in alternate
ways and can try to correlate these various notions. In a similar way, we
can also think about the concept of weaker form of connectedness too.
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