An identity on automorphisms of Lie ideals in prime rings*

N. Rehman

Communicated by A. P. Petravchuk

Abstract. In the present paper it is shown that a prime ring R with center Z satisfies s_{4}, the standard identity in four variables if R admits a non-identity automorphism σ such that $[u, v]-u^{m}\left[u^{\sigma}, u\right]^{n} u^{\sigma} \in Z$ for all u in some noncentral ideal L of R, whenever $\operatorname{char}(R)>n+m$ or $\operatorname{char}(R)=0$, where n and m are fixed positive integer.

Introduction

Throughout this article, R is a prime ring with center Z. For given $x, y \in R$, the Lie commutator of x, y is denoted by $[x, y]$ and defied by $[x, y]=x y-y x$. Recall that a ring R is prime if for any $a, b \in R, a R b=(0)$ implies $a=0$ or $b=0$. The standard identity s_{4} in four variables is defined as follows:

$$
s_{4}=\sum(-1)^{\tau} X_{\tau(1)} X_{\tau(2)} X_{\tau(3)} X_{\tau(4)}
$$

where $(-1)^{\tau}$ is the sign of a permutation τ of the symmetric group of degree 4.

The theory of commuting and centralizing maps on (semi-)prime rings was motivated by the result of Posner [20] and was developed by

[^0]Bres̆ar [4-6]. Posner's second theorem sates that if there exists a nonzero centralizing derivation on a prime ring R, then R is commutative. Mayne [18] obtained an analogous result for automorphisms of prime rings. Many people have extended Posner's result in various ways and obtained many powerful results. In [16], Lee and Lee generalized Posner's result by showing that if $\operatorname{char}(R) \neq 2$ and $[d(x), x] \in Z$ for all x in a noncentral Lie ideal of R, then R is commutative. In [15], Lanski proved that if $[d(x), x]_{n}=0$ for all x in a noncommutative Lie ideal of R, then $\operatorname{char}(R)=2$ and $R \subseteq M_{2}(\mathbb{F})$ for \mathbb{F} a field. A similar extension for Lie ideals in automorphism case was obtained by Mayne [19].

In [7], Carini and De Filippis studied the power-centralizing derivations on noncentral Lie ideals of prime rings. They proved that, if $\operatorname{char}(R) \neq 2$ and $[d(x), x]^{n} \in Z$ for all x in a noncentral Lie ideal of R, then R satisfies s_{4}, the standard identity in four variables. Recently, Wang [22], obtained similar result for automorphisms of prime rings. To be more specific, Wang discussed the following: Let R be a prime ring with center Z, L a noncentral Lie ideal of R and σ a nontrivial automorphism of R such that $\left[u^{\sigma}, u\right]^{n} \in Z$ for all $u \in L$. If either $\operatorname{Char}(R)>n$ or $\operatorname{char}(R)=0$, then R satisfies s_{4}.

On other hand, the representative work of Herstein should be mention at least. Herstein [12], proved that if there exists a nonzero derivation d on a prime ring R such that the map $x \mapsto d(x)$ is commuting on R, then R may be noncommutative. That is, the following relation $[d(x), x] d(x)+d(x)[d(x), x]=0$ for all $x \in R$ does not imply that $d=0$. Motivated by the above result Cheng [10] proved the following, which can be considered as an extension of Posner's second theorem: if R is a 2-torsion free noncommutative prime ring and d be a derivation of R such that $[d(x), x] d(x)=0$ for all $x \in R$, then $d=0$.

The property $x^{n}=x$ has been among the favourites of many ring theorists over the last many decades since Jacobson [14] first studied the commutativity of rings satisfying this condition in order to generalize the classical Wedderburn theorem [23]. This result was further generalized by Sercoid and MacHale [21] who proved that commutativity of an arbitrary ring R (not necessarily prime) follows even if the above condition is weakened as $(x y)^{n}=x y$ for all $x, y \in R$ and integer $n=n(x, y)>1$. Further, Bell and Ligh [3] obtained direct sum decomposition of ring satisfying the property $x y=(x y)^{2} f(x, y)$, where $f(X, Y) \in \mathbb{Z}\langle X, Y\rangle$, the ring of polynomial in two non-commuting indeterminates. Later, Ashraf [1] established a decomposition theorem for ring satisfying $y x=x^{m} f(x y) x^{n}$ or $x y=x^{m} f(x y) x^{n}$ where m, n are non-negative integers and $f(X) \in$
$X^{2} \mathbb{Z}[X]$, which in turn allows us to determine the commutativity of R. Now in this perspective and inspired by Wang [22] and Cheng [10] works, one can consider the following related ring property:

Let $m \geqslant 0, n \geqslant 0$ be fixed integers and L a Lie ideal of prime ring R which admits an automorphism σ such that $[u, v]-u^{m}\left[u^{\sigma}, u\right]^{n} u^{\sigma} \in Z$.

In the present paper, it is shown that if R admits an automorphism σ satisfy the above condition, if $\operatorname{char}(R)>n+m$ or $\operatorname{char}(R)=0$, then R satisfies s_{4}, the standard identity in four variables.

1. Preliminaries

For the sake of completeness we shall touch upon a few preliminary notions required for the exposition of the main theorem. Some of these notions are classical and we present them briefly, R will be prime ring with center Z and maximal right ring of quotients $Q=Q_{m r}(R)$. Note that Q is also a prime ring and the center C of Q, which is called the extended centroid of R, is a field. Moreover, $Z \subseteq C$ (for more explanation we refer to [2]). It is well known that any automorphism of R can be uniquely extended to an automorphism of Q. An automorphism σ of R is called Q-inner if there exists an invertible element $g \in Q$ such that $x^{\sigma}=g x g^{-1}$ for all $x \in R$. Otherwise, σ is called Q-outer. We denote by G the group of all automorphisms of R and by A_{i} the group consisting of all Q-inner automorphisms of R. Recall that a subset \mathfrak{A} of G is said to be independent (modulo A_{i}) if for any $a_{1}, a_{2} \in \mathfrak{A}, a_{1} a_{2}^{-1} \in A_{i}$ implies $a_{1}=a_{2}$. For instance, if a is an outer automorphism of R, then 1 and a are independent (modulo A_{i}). We present some well-known facts that will be used in the sequel.

Fact 1. It is well known that any automorphisms of R can be extended to Q.

Fact 2. Let R be a prime ring and I a two-sided ideal of R. Then I, R, and Q satisfy the same generalized polynomial identities with coefficients in Q (see [8]).

Fact 3. Suppose that R is a prime ring and \mathfrak{A} an independent subset of G modulo A_{i}. Let $\phi=\chi\left(x_{i}^{a_{j}}\right)=0$ be a generalized identity with automorphisms of R reduced with respect to \mathfrak{A}. If for all $x_{i} \in X, a_{j} \in \mathfrak{A}$, the $x_{i}^{a_{j}}$-word degree of $\phi=\chi\left(x_{i}^{a_{j}}\right)$ is strictly less than $\operatorname{char}(R)$ when $\operatorname{char}(R) \neq 0$, then $\chi\left(z_{i j}\right)=0$ is also a generalized polynomial identity of R (see [9, Theorem 3]).

Fact 4. Recall that, in case $\operatorname{char}(R)=0$, an automorphism σ of Q is called Frobenius if $(x)^{\sigma}=x$ for all $x \in C$. Moreover, in case $\operatorname{char}(R)=p \geqslant 2$, an automorphism σ is Frobenius if there exists a fixed integer t such that $(x)^{\sigma}=x^{p^{t}}$ for all $x \in C$. In [9, Theorem 2] Chuang proves that if $\Phi\left(x_{i}, \alpha\left(x_{i}\right)\right)$ is a generalized polynomial identity for R, where R is a prime ring and $\sigma \in \operatorname{Aut}(R)$ an automorphism of R which is not Frobenius, then R also satisfies the non-trivial generalized polynomial identity $\Phi\left(x_{i}, y_{i}\right)$, where x_{i} and y_{i} are distinct indeterminates.

Fact 5. Let R be a prime ring and L a noncentral Lie ideal of R. If $\operatorname{char}(R) \neq 2$, then there exists a nonzero ideal I of R such that $0 \neq$ $[I, R] \subseteq L$. If $\operatorname{char}(R)=2$ and $\operatorname{dim}_{c} R C>4$, then there exists a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. Thus if either $\operatorname{char}(R) \neq 2$ or $\operatorname{dim}_{C} R C>4$, then we may conclude that there exists a nonzero ideal I of R such that $[I, I] \subseteq L$.

Fact 6. Let R be a prime ring with extended centroid C. Then the following conditions are equivalent:
(i) $\operatorname{dim}_{C} R C \leqslant 4$.
(ii) R satisfies S_{4}, the standard identity in four variables.
(iii) R is commutative or R embeds in $M_{2}(\mathbb{F})$, where \mathbb{F} is a field.
(iv) R is algebraic of bounded degree 2 over C.
(v) R satisfies $\left[\left[x^{2}, y\right],[x, y]\right]$.

2. The results in prime rings

We begin with the following results which are imperative to establish of our main theorem.

Theorem 1. Let R be a prime ring and σ a non-identity automorphism of R such that $[u, v]-u^{m}\left[u^{\sigma}, u\right]^{n} u^{\sigma}=0$ for all u, v in a noncentral Lie ideal L of R, where n, m are fixed positive integer. If either $\operatorname{char}(R)>n+m$ or $\operatorname{char}(R)=0$, then R satisfies s_{4}, the standard identity in four variables.

Proof. We assume that $\operatorname{dim}_{C} R C>4$. In view of Fact 5, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Using our hypothesis, we find that

$$
\begin{equation*}
[[x, y],[z, w]]-[x, y]^{m}\left[\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma}=0 \text { for all } x, y \in I\right. \tag{1}
\end{equation*}
$$

Firstly, if σ is Q-inner, then there exists an invertible element $q \in Q$ such that $x^{\sigma}=q x q^{-1}$ for all $x \in R$. By [8, Theorem 2],

$$
[[x, y],[z, w]]-[x, y]^{m}\left[q[x, y] q^{-1},[x, y]\right]^{n} q[x, y] q^{-1}=0
$$

is also an identity for $R C$. By Martindale's theorem in [17], $R C$ is a primitive ring with nonzero socle. Since $R C$ is primitive, there exist a vector space \mathcal{V} over a division ring \mathcal{D} such that $R C$ is a dense ring of \mathcal{D}-linear transformations over \mathcal{V}. We divide the proof into two steps:
Step 1. Our aim is to show that for any $v \in \mathcal{V}, v$ and $v q$ are linearly \mathcal{D}-dependent. If v and $v q$ are linearly \mathcal{D}-independent for some $v \in \mathcal{V}$, then we consider the following cases:

If $v q^{-1} \notin \operatorname{Span}_{\mathcal{D}}\{v, v q\}$, then the set $\left\{v, v q, v q^{-1}\right\}$ is linearly \mathcal{D} independent. By the density of $R C$ there exist $x_{0}, y_{0} \in R C$ such that

$$
\begin{array}{lllll}
v x_{0}=v, & v q x_{0}=0, & v z_{0}=v q & v q z=v & v q^{-1} x_{0}=-v q \\
v y_{0}=v, & v q y_{0}=-v, & v w_{0}=v & v q w=0 & v q^{-1} y_{0}=0 .
\end{array}
$$

We can easily see that

$$
0=v\left([[x, y],[z, w]]-[x, y]^{m}\left[q\left[x_{0}, y_{0}\right] q^{-1},\left[x_{0}, y_{0}\right]\right]^{n} q\left[x_{0}, y_{0}\right] q^{-1}\right)=v \neq 0
$$

a contradiction.
On the other hand if $v q^{-1} \in \operatorname{Span}_{\mathcal{D}}\{v, v q\}$, then $v q^{-1}=v \alpha+v q \beta$ for some $\alpha, \beta \in \mathcal{D}$. In view of the density of $R C$, there exist $x_{0}, y_{0}, z_{0}, w_{0} \in R C$ such that

$$
\begin{array}{llll}
v x_{0}=v, & v q x_{0}=0 & v z_{0}=q v & v q z_{0}=v \\
v y_{0}=v, & v q y_{0}=v & v w_{0}=v & v q w_{0}=0
\end{array}
$$

Hence we find that

$$
0=v\left(\left[q\left[x_{0}, y_{0}\right] q^{-1},\left[x_{0}, y_{0}\right]\right]^{n} q\left[x_{0}, y_{0}\right] q^{-1}\right)=\gamma v \neq 0
$$

for some $\gamma \in \mathcal{D}$, again a contradiction.
Step 2. We have that v and $q v$ are \mathcal{D}-dependent for every $v \in \mathcal{V}$. For each $v \in \mathcal{V}$, we write $v q=v \lambda_{v}$ where $\lambda_{v} \in \mathcal{D}$. Fix $0 \neq u \in \mathcal{V}$. Let $0 \neq v \in \mathcal{V}$ and write $v q=v \lambda_{v}$. Suppose first that v and u are \mathcal{D} independent. Then $(u+v) \lambda_{u+v}=(u+v) q=u q+v q=u \lambda_{u}+v \lambda_{v}$. So $u\left(\lambda_{u+v}-\lambda_{u}\right)=v\left(\lambda_{v}-\lambda_{u+v}\right)$, and hence $\lambda_{u+v}=\lambda_{u}=\lambda_{v}$. Suppose next that u and v are \mathcal{D}-dependent. Indeed, for any $w \in \mathcal{V}, w$ and u are \mathcal{D}-independent, and then, by the proof above, we have $\lambda_{w}=\lambda_{v}$. Clearly, w and v are \mathcal{D}-independent. So $\lambda_{w}=\lambda_{v}$, implying that $\lambda_{u}=\lambda_{v}$. Thus λ_{v} is the independent choice of $v \in \mathcal{V}$. Consequently, $v q=v \lambda$ for all $v \in \mathcal{V}$, where $\lambda=\lambda_{v}$. By standard argument we see that $q \in C$, a contradiction. Thus $\operatorname{dim}_{C} R C \leqslant 4$, and by Fact $6, R$ satisfies s_{4}, the standard identity in four variables.

Next we assume that σ is not Q-inner, then by Chuang [10, Main Theorem $], R$ satisfies $[[x, y],[z, w]]-[x, y]^{m}\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma}=0$. Since either $\operatorname{char}(R)>n$ or $\operatorname{char}(R)=0$, it follows from Fact 3 that $[[x, y],[z, w]]-$ $[x, y]^{m}\left[\left[w_{1}, z_{1}\right],[x, y]\right]^{n}\left[w_{1}, z_{1}\right]=0$ for all $x, y, z, w \in R$. Note that this is a polynomial identity and thus there exists a field \mathbb{F} such that $R \subseteq M_{k}(\mathbb{F})$, the ring of $k \times k$ matrices over a field \mathbb{F}, where $k \geqslant 1$. Moreover, R and $M_{k}(\mathbb{F})$ satisfy the same polynomial identity [15, Lemma 1], that is $[[x, y],[z, w]]-[x, y]^{m}\left[\left[w_{1}, z_{1}\right],[x, y]\right]^{n}\left[w_{1}, z_{1}\right]=0$ for all $x, y, w, z, z_{1}, w_{1} \in$ $M_{k}(\mathbb{F})$. But by choosing $x=e_{11}, y=e_{21}, w=e_{12}, z=e_{12}, w_{1}=e_{11}$, $z_{1}=e_{12}$ we get

$$
\begin{aligned}
0 & =\left[\left[e_{11}, e_{21}\right],\left[e_{12}, e_{12}\right]\right]-\left[e_{11}, e_{21}\right]^{m}\left[\left[e_{11}, e_{12}\right],\left[e_{11}, e_{21}\right]\right]^{n}\left[e_{11}, e_{12}\right] \\
& =(-1)^{n} e_{12}
\end{aligned}
$$

a contradiction. This completes the proof.
Let $\mathcal{V}_{\mathcal{D}}$ be a right vector space over a division $\operatorname{ring} \mathcal{D}$. We denote $\operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$ the ring of \mathcal{D}-linear transformations on $\mathcal{V}_{\mathcal{D}}$. A map $T: \mathcal{V} \rightarrow \mathcal{V}$ is called a semilinear transformation if T is additive and there is an automorphism ζ of \mathcal{D} such that $T(v \gamma)=(T v) \zeta(\gamma)$ for all $v \in \mathcal{V}$ and $\gamma \in \mathcal{D}$. Moreover, by a theorem of Jacobson [13, Isomorphism Theorem, p.79], there exists an invertible semilinear transformation $T: \mathcal{V} \rightarrow \mathcal{V}$ such that $\sigma(x)=T x T^{-1}$ for all $x \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$, where σ is an automorphism of $\operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$.

Lemma 1. Let σ be an automorphism of $\operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$ such that for every $x, y, z, w, z_{1} \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$,

$$
[[x, y],[z, w]]-[x, y]^{m}\left[\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma}, z_{1}\right]=0
$$

where n, m are fixed positive integer. If $\operatorname{dim}\left(\mathcal{V}_{\mathcal{D}}\right) \geqslant 2$, then σ is identity map of $\operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$.

Proof. By a theorem of Jacobson [13, Isomorphism Theorem, p.79], there exists an invertible semilinear transformation $T: \mathcal{V} \rightarrow \mathcal{V}$ such that $\sigma(x)=T x T^{-1}$ for all $x \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$, where σ is an automorphism of $\operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$. In particular, there exists an automorphism ζ of \mathcal{D} such that $T(v \gamma)=(T v) \zeta(\gamma)$ for all $v \in \mathcal{V}$ and $\gamma \in \mathcal{D}$. Using our hypothesis, we find that $0=[[x, y],[z, w]]-[x, y]^{m}\left[\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma}, z_{1}\right]=[[x, y],[z, w]]-$ $[x, y]^{m}\left[\left[T[x, y] T^{-1},[x, y]\right]^{n} T[x, y]^{-1}, z_{1}\right]$ for all $x, y, z, w, z_{1} \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$. We divide our proof into the following cases:

There exists $v \in \mathcal{V}$ such that v and $T^{-1} v$ are \mathcal{D}-independent. Suppose first that $\left\{v, v T, v T^{-1}\right\}$ is \mathcal{D}-independent. Let $x, y, z \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$ such that

$$
\begin{array}{lll}
x v=T v, & x T^{-1} v=-v, & x T v=0 \\
y v=T v, & y T^{-1} v=0, & y T v=v \\
w v=T v & z_{1} T^{-1} v=0 & z T v=T v \\
z v=0 & w_{1} T^{-1}=0 & w T v=0 \\
z_{1} v=0, & z_{1} T^{-1} v=v, & z_{1} T v=-v .
\end{array}
$$

Then $[x, y] v=0,[x, y] T^{-1} v=v,[x, y] T v=T v,[z, w] v=T v$ and hence

$$
0=\left(\left[[[x, y],[z, w]]-[x, y]^{m}\left[T[x, y] T^{-1},[x, y]\right]^{n} T[x, y] T^{-1}, z\right]\right) v=v,
$$

a contradiction.
Suppose next that $\left\{v, T v, T^{-1} v\right\}$ is \mathcal{D}-dependent. Then there exist $\mu, \chi \in \mathcal{D}$ such that $T v=v \mu+T^{-1} v \chi$. Moreover, we claim that $\chi \neq 0$. Indeed, if $\chi=0$, then $T v=v \mu$ and $v=T^{-1} v \mu$, a contradiction. Let $x, y, z, w, z_{1} \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$ such that

$$
\begin{array}{lll}
x v=T v, & x T^{-1} v=-v, & z_{1} v=0 \\
y v=T v, & y T^{-1} v=0, & z_{1} T^{-1} v=-v \\
z v=0 & w v=T v & z T^{-1} v=v .
\end{array}
$$

We can easily see that

$$
0=\left(\left[\left[[[x, y],[z, w]]-[x, y]^{m}\left[T[x, y] T^{-1},[x, y]\right]^{n} T[x, y] T^{-1}, z\right]\right) v=\eta v,\right.
$$

for some $\eta \in \mathcal{D}$, a contradiction.
We have that v and $T^{-1} v$ are \mathcal{D}-dependent for every $v \in \mathcal{V}$. For each $v \in \mathcal{V}$, we write $T^{-1} v=v \alpha_{v}$ where $\alpha_{v} \in \mathcal{D}$. Fix $0 \neq u \in \mathcal{V}$. Let $0 \neq v \in \mathcal{V}$ and write $T^{-1} v=v \alpha_{v}$. Suppose first that v and u are \mathcal{D} independent. Then $(u+v) \alpha_{u+v}=(u+v) q=u q+v q=u \alpha_{u}+v \alpha_{v}$. So $u\left(\alpha_{u+v}-\alpha_{u}\right)=v\left(\alpha_{v}-\alpha_{u+v}\right)$, and hence $\alpha_{u+v}=\alpha_{u}=\alpha_{v}$. Suppose next that u and v are \mathcal{D}-dependent. Since $\operatorname{dim}\left(\mathcal{V}_{\mathcal{D}}\right) \geqslant 2$, there exists $w \in \mathcal{V}$ such that w and u are \mathcal{D}-independent, and then, by the proof above, we have $\alpha_{w}=\alpha_{v}$. Clearly, w and v are \mathcal{D}-independent. So $\alpha_{w}=\alpha_{v}$, implying that $\alpha_{u}=\alpha_{v}$. Thus α_{v} is independent of the choice of $v \in \mathcal{V}$. Consequently, $T^{-1} v=v \alpha$ for all $v \in \mathcal{V}$, where $\alpha=\alpha_{v}$. Now we have $\sigma(x) v=T(x(v \alpha))=T((x v) \alpha)=x v$ for all $x \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$ and $v \in \mathcal{V}$. In particular, $(\sigma(x)-x) V=0$ for all $x \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$. Thus $\sigma(x)=x$ for all $x \in \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$. This implies σ is the identity map of $\operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$, proving the lemma.

Using both of these lemmas, we are ready to prove our main theorem.
Theorem 2. Let R be a prime ring with center Z which admits a nonidentity automorphism σ such that $[u, v]-u^{m}\left[u^{\sigma}, u\right]^{n} u^{\sigma} \in Z$ for all u in a noncentral ideal L of R, where n, m are fixed positive integer. If $\operatorname{char}(R)>n+m$ or $\operatorname{char}(R)=0$, then R satisfies s_{4}, the standard identity in four variables.

Proof. We assume that $\operatorname{dim}_{C} R C>4$. Then by Fact 5, there exists a nonzero ideal I of R such that $0 \neq[I, I] \subseteq L$. By assumption, we get

$$
\begin{equation*}
[[x, y],[z, w]]-[x, y]^{m}\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma} \in Z \text { for all } x, y \in I \tag{2}
\end{equation*}
$$

Suppose σ is Q-inner automorphism, there exists an invertible element $g \in Q$ such that $x^{\sigma}=g x g^{-1}$ for all $x \in R$. Then I satisfies

$$
\begin{equation*}
[[x, y],[z, w]]-[x, y]^{m}\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma} \in Z \tag{3}
\end{equation*}
$$

By a Theorem of Chuang[8], I and Q satisfy the same generalized polynomial identities. Thus Q satisfied

$$
\begin{equation*}
[[x, y],[z, w]]-[x, y]^{m}\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma} \in C \tag{4}
\end{equation*}
$$

Since $g \notin C$, therefore

$$
\phi(t)=\left[[[x, y],[z, w]]-[x, y]^{m}\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma}, z_{1}\right]
$$

for all $x, y, z, w, z_{1} \in Q$ is a nontrivial generalized polynomial identity on Q. Denote by F the algebraic closure of C if C is infinite and set $F=C$ for C finite. Then $Q \otimes_{C} F$ is a prime ring with extended centroid F [11, Theorem 3.5]. Clearly $Q \cong Q \otimes_{C} C \subseteq Q \otimes_{C} F$. So we may regards Q as a subring $Q \otimes_{C} F$ and hence $\phi(t)$ is also a nontrivial generalized polynomial identity of $Q \otimes_{C} F$. Let $\mathcal{Q}=Q_{m r}\left(Q \otimes_{C} F\right)$, the maximal right ring of quotients of $Q \otimes_{C} F$. By [2, Theorem 6.4.4], $\phi(t)$ is also a nontrivial generalized polynomial identity on \mathcal{Q}. By Martindale's theorem [17], $\mathcal{Q} \cong \operatorname{End}\left(\mathcal{V}_{\mathcal{D}}\right)$, where \mathcal{V} is a vector space over a division ring \mathcal{D} and \mathcal{D} is finite dimension over its center F. Recall that F is either algebraically closed or finite. From the finite dimensionality of D over F, it follows that $\mathcal{D}=F$. Hence $\mathcal{Q} \cong \operatorname{End}\left(\mathcal{V}_{F}\right)$. By Lemma 1, we get a contradiction.

We now assume that σ is Q-outer automorphism, due to Chuang [8, Main Theorem], I and Q satisfies the same polynomial identity and hence R as well. Therefore R satisfies

$$
\left[[[x, y],[z, w]]-[x, y]^{m}\left[[x, y]^{\sigma},[x, y]\right]^{n}[x, y]^{\sigma}, z_{1}\right]=0 .
$$

Since either $\operatorname{char}(R)>n+m$ or $\operatorname{char}(R)=0$, it follows from Lemma 1 that

$$
\left[[[x, y],[z, w]]-[x, y]^{m}[[s, t],[x, y]]^{n}[s, t], z\right]=0
$$

for all $x, y, s, t, z, w, z_{1} \in R$. Note that this is a polynomial identity and thus there exists a field \mathbb{F} such that $R \subseteq M_{k}(\mathbb{F})$, the ring of $k \times k$ matrices over a field \mathbb{F}, where $k>1$. Moreover, R and $M_{k}(\mathbb{F})$ satisfy the same polynomial identity [15, Lemma 1], that is

$$
\left[[[x, y],[z, w]]-[x, y]^{m}[[s, t],[x, y]]^{n}[s, t], z\right]=0
$$

for all $x, y, s, t, z \in M_{k}(\mathbb{F})$. Let $e_{i j}$ be a matrix unit with 1 in the (i, j) entry and zero elsewhere. Since $\operatorname{dim}_{C} R C>4$, we see that $k>2$. By choosing $x=e_{11}, y=e_{21}, z=e_{12}, w=e_{12}, s=e_{11}, t=e_{12}, z_{1}=e_{31}$ we get

$$
\begin{aligned}
0 & =\left[[[x, y],[z, w]]-[x, y]^{m}[[s, t],[x, y]]^{n}[s, t], z\right] \\
& =\left[\left[\left[e_{11}, e_{21},\left[e_{12}, e_{12}\right]\right]-\left[e_{11}, e_{21}\right]^{m}\left[\left[e_{11}, e_{12}\right],\left[e_{11}, e_{21}\right]\right]^{n}\left[e_{11}, e_{12}\right], e_{31}\right]\right. \\
& =(-1)^{n+1} e_{31},
\end{aligned}
$$

a contradiction. Thus $\operatorname{dim}_{C} R C \leqslant 4$. In View of Fact 6, we get required result. With this the proof is complete.

References

[1] M. Ashraf, Structure of certain periodic rings and near-rings, Rend. Sem. Mat. Univ. Pol. Torino 53 (1995), pp.61-67.
[2] K. I. Beidar, W. S. Martindale III, A. K. Mikhalev, Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker 196, New York, 1996.
[3] H. E. Bell, S. Ligh, Some decomposition theorems for periodic rings and near-rings, Math. J. Okayama Univ. 31 (1989), pp.93-99.
[4] M. Bres̆ar, Centralizing mappings and derivations in prime ring, J. Algebra 156 (1993), pp.385-394.
[5] M. Bres̆ar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer Math. Soc. 335 (1993), pp.525-546.
[6] M. Bres̆ar, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), pp.641-649.
[7] L. Carini, V. De Filliippis, Commutators with power central values on a Lie ideals, Pacfic J. Math. 193 (2000), pp.269-278.
[8] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), pp.723-728.
[9] C. L. Chuang, Differential identities with automorphism and anti-automorphism-II, J. Algebra 160 (1993), pp.291-335.
[10] H. Cheng, Some results about derivations of prime rings, J. Math. Reser. Expos. 25(4) (2005), pp.625-633.
[11] T. S. Erickson, W. S. Martindale III, J. M. Osborn , Prime nonassociative algebras, Pacfic. J. Math. 60 (1975), pp.49-63.
[12] I. N. Herstein, Derivations of prime rings having poer central values, Contemp. Math. 13 (1982), pp.163-171.
[13] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37 Rhode Island (1964).
[14] N. Jacobson, Structure theory of algebraic algebras of bounded degree, Ann. of Math. 46 (1945), pp.695-707.
[15] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), pp.731-734.
[16] P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sin. 11 (1983), pp.75-80.
[17] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), pp.576-584.
[18] J. H. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), pp.113-115.
[19] J. H. Mayne, Centralizing automorphisms of Lie ideals in prime rings, Canad. Math. Bull. 35 (1992), pp.510-514.
[20] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), pp.1093-1100.
[21] M. O. Searcoid, D. MacHale, Two elementary generalizations for Boolean rings, Amer. Math. Monthly 93 (1986), pp.121-122.
[22] Y. Wang, Power-centralizing automorphisma of Lie ideals in prime rings, Comm. Algebra 34 (2006), pp.609-615.
[23] J. H. M. Wedderburn, A theorem on finite algebras, Trans. Amer. Math. Soc. 6(1905), pp.349-352.

Contact information

N. Rehman
Aligarh Muslim University, Aligarh-202002
India
E-Mail(s): nu.rehman.mm@amu.ac.in
Web-page(s): www.amu.ac.in/faculty/ mathematics/ nadeem-ur-rehman

Received by the editors: 15.05 .2020
and in final form 24.08.2022.

[^0]: *This research is supported by the National Board of Higher Mathematics (NBHM), India, Grant No. 02011/16/2020 NBHM (R. P.) R \& D II/7786.

 2020 MSC: 16N60, 16W20, 16R50.
 Key words and phrases: prime ring, automorphisms; maximal right ring of quotients, generalized polynomial identity.

