© Algebra and Discrete Mathematics Volume **33** (2022). Number 2, pp. 118–127 DOI:10.12958/adm1612

An identity on automorphisms of Lie ideals in prime rings^{*}

N. Rehman

Communicated by A. P. Petravchuk

ABSTRACT. In the present paper it is shown that a prime ring R with center Z satisfies s_4 , the standard identity in four variables if R admits a non-identity automorphism σ such that $[u, v] - u^m [u^{\sigma}, u]^n u^{\sigma} \in Z$ for all u in some noncentral ideal L of R, whenever char(R) > n + m or char(R) = 0, where n and m are fixed positive integer.

Introduction

Throughout this article, R is a prime ring with center Z. For given $x, y \in R$, the Lie commutator of x, y is denoted by [x, y] and defied by [x, y] = xy - yx. Recall that a ring R is prime if for any $a, b \in R$, aRb = (0) implies a = 0 or b = 0. The standard identity s_4 in four variables is defined as follows:

$$s_4 = \sum (-1)^{\tau} X_{\tau(1)} X_{\tau(2)} X_{\tau(3)} X_{\tau(4)}$$

where $(-1)^{\tau}$ is the sign of a permutation τ of the symmetric group of degree 4.

The theory of commuting and centralizing maps on (semi-)prime rings was motivated by the result of Posner [20] and was developed by

^{*}This research is supported by the National Board of Higher Mathematics (NBHM), India, Grant No. 02011/16/2020 NBHM (R. P.) R & D II/7786.

²⁰²⁰ MSC: 16N60, 16W20, 16R50.

Key words and phrases: prime ring, automorphisms; maximal right ring of quotients, generalized polynomial identity.

Brešar [4–6]. Posner's second theorem sates that if there exists a nonzero centralizing derivation on a prime ring R, then R is commutative. Mayne [18] obtained an analogous result for automorphisms of prime rings. Many people have extended Posner's result in various ways and obtained many powerful results. In [16], Lee and Lee generalized Posner's result by showing that if char $(R) \neq 2$ and $[d(x), x] \in Z$ for all x in a noncentral Lie ideal of R, then R is commutative. In [15], Lanski proved that if $[d(x), x]_n = 0$ for all x in a noncommutative Lie ideal of R, then char(R) = 2 and $R \subseteq M_2(\mathbb{F})$ for \mathbb{F} a field. A similar extension for Lie ideals in automorphism case was obtained by Mayne [19].

In [7], Carini and De Filippis studied the power-centralizing derivations on noncentral Lie ideals of prime rings. They proved that, if $\operatorname{char}(R) \neq 2$ and $[d(x), x]^n \in Z$ for all x in a noncentral Lie ideal of R, then R satisfies s_4 , the standard identity in four variables. Recently, Wang [22], obtained similar result for automorphisms of prime rings. To be more specific, Wang discussed the following: Let R be a prime ring with center Z, L a noncentral Lie ideal of R and σ a nontrivial automorphism of R such that $[u^{\sigma}, u]^n \in Z$ for all $u \in L$. If either $\operatorname{Char}(R) > n$ or $\operatorname{char}(R) = 0$, then Rsatisfies s_4 .

On other hand, the representative work of Herstein should be mention at least. Herstein [12], proved that if there exists a nonzero derivation d on a prime ring R such that the map $x \mapsto d(x)$ is commuting on R, then R may be noncommutative. That is, the following relation [d(x), x]d(x) + d(x)[d(x), x] = 0 for all $x \in R$ does not imply that d = 0. Motivated by the above result Cheng [10] proved the following, which can be considered as an extension of Posner's second theorem: if R is a 2-torsion free noncommutative prime ring and d be a derivation of R such that [d(x), x]d(x) = 0 for all $x \in R$, then d = 0.

The property $x^n = x$ has been among the favourites of many ring theorists over the last many decades since Jacobson [14] first studied the commutativity of rings satisfying this condition in order to generalize the classical Wedderburn theorem [23]. This result was further generalized by Sercoid and MacHale [21] who proved that commutativity of an arbitrary ring R (not necessarily prime) follows even if the above condition is weakened as $(xy)^n = xy$ for all $x, y \in R$ and integer n = n(x, y) > 1. Further, Bell and Ligh [3] obtained direct sum decomposition of ring satisfying the property $xy = (xy)^2 f(x, y)$, where $f(X, Y) \in \mathbb{Z}\langle X, Y \rangle$, the ring of polynomial in two non-commuting indeterminates. Later, Ashraf [1] established a decomposition theorem for ring satisfying $yx = x^m f(xy)x^n$ or $xy = x^m f(xy)x^n$ where m, n are non-negative integers and $f(X) \in$ $X^2\mathbb{Z}[X]$, which in turn allows us to determine the commutativity of R. Now in this perspective and inspired by Wang [22] and Cheng [10] works, one can consider the following related ring property:

Let $m \ge 0$, $n \ge 0$ be fixed integers and L a Lie ideal of prime ring R which admits an automorphism σ such that $[u, v] - u^m [u^\sigma, u]^n u^\sigma \in Z$.

In the present paper, it is shown that if R admits an automorphism σ satisfy the above condition, if char(R) > n + m or char(R) = 0, then R satisfies s_4 , the standard identity in four variables.

1. Preliminaries

For the sake of completeness we shall touch upon a few preliminary notions required for the exposition of the main theorem. Some of these notions are classical and we present them briefly, R will be prime ring with center Z and maximal right ring of quotients $Q = Q_{mr}(R)$. Note that Q is also a prime ring and the center C of Q, which is called the extended centroid of R, is a field. Moreover, $Z \subseteq C$ (for more explanation we refer to [2]). It is well known that any automorphism of R can be uniquely extended to an automorphism of Q. An automorphism σ of Ris called Q-inner if there exists an invertible element $q \in Q$ such that $x^{\sigma} = gxg^{-1}$ for all $x \in R$. Otherwise, σ is called Q-outer. We denote by G the group of all automorphisms of R and by A_i the group consisting of all Q-inner automorphisms of R. Recall that a subset \mathfrak{A} of G is said to be independent (modulo A_i) if for any $a_1, a_2 \in \mathfrak{A}, a_1a_2^{-1} \in A_i$ implies $a_1 = a_2$. For instance, if a is an outer automorphism of R, then 1 and a are independent (modulo A_i). We present some well-known facts that will be used in the sequel.

Fact 1. It is well known that any automorphisms of R can be extended to Q.

Fact 2. Let R be a prime ring and I a two-sided ideal of R. Then I, R, and Q satisfy the same generalized polynomial identities with coefficients in Q (see [8]).

Fact 3. Suppose that R is a prime ring and \mathfrak{A} an independent subset of G modulo A_i . Let $\phi = \chi(x_i^{a_j}) = 0$ be a generalized identity with automorphisms of R reduced with respect to \mathfrak{A} . If for all $x_i \in X$, $a_j \in \mathfrak{A}$, the $x_i^{a_j}$ -word degree of $\phi = \chi(x_i^{a_j})$ is strictly less than char(R) when char $(R) \neq 0$, then $\chi(z_{ij}) = 0$ is also a generalized polynomial identity of R (see [9, Theorem 3]). **Fact 4.** Recall that, in case char(R) = 0, an automorphism σ of Q is called *Frobenius* if $(x)^{\sigma} = x$ for all $x \in C$. Moreover, in case char $(R) = p \ge 2$, an automorphism σ is *Frobenius* if there exists a fixed integer t such that $(x)^{\sigma} = x^{p^{t}}$ for all $x \in C$. In [9, Theorem 2] Chuang proves that if $\Phi(x_{i}, \alpha(x_{i}))$ is a generalized polynomial identity for R, where R is a prime ring and $\sigma \in \operatorname{Aut}(R)$ an automorphism of R which is not Frobenius, then R also satisfies the non-trivial generalized polynomial identity $\Phi(x_{i}, y_{i})$, where x_{i} and y_{i} are distinct indeterminates.

Fact 5. Let R be a prime ring and L a noncentral Lie ideal of R. If $\operatorname{char}(R) \neq 2$, then there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. If $\operatorname{char}(R) = 2$ and $\dim_c RC > 4$, then there exists a nonzero ideal I of R such that $0 \neq [I, R] \subseteq L$. Thus if either $\operatorname{char}(R) \neq 2$ or $\dim_C RC > 4$, then we may conclude that there exists a nonzero ideal I of R such that $[I, I] \subseteq L$.

Fact 6. Let R be a prime ring with extended centroid C. Then the following conditions are equivalent:

- (i) $\dim_C RC \leq 4$.
- (ii) R satisfies S_4 , the standard identity in four variables.
- (iii) R is commutative or R embeds in $M_2(\mathbb{F})$, where \mathbb{F} is a field.
- (iv) R is algebraic of bounded degree 2 over C.
- (v) R satisfies $[[x^2, y], [x, y]].$

2. The results in prime rings

We begin with the following results which are imperative to establish of our main theorem.

Theorem 1. Let R be a prime ring and σ a non-identity automorphism of R such that $[u, v] - u^m [u^\sigma, u]^n u^\sigma = 0$ for all u, v in a noncentral Lie ideal L of R, where n, m are fixed positive integer. If either char(R) > n + m or char(R) = 0, then R satisfies s_4 , the standard identity in four variables.

Proof. We assume that $\dim_C RC > 4$. In view of Fact 5, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Using our hypothesis, we find that

$$[[x,y],[z,w]] - [x,y]^m [[[x,y]^{\sigma},[x,y]]^n [x,y]^{\sigma} = 0 \text{ for all } x, y \in I.$$
(1)

Firstly, if σ is Q-inner, then there exists an invertible element $q \in Q$ such that $x^{\sigma} = qxq^{-1}$ for all $x \in R$. By [8, Theorem 2],

$$[[x, y], [z, w]] - [x, y]^m [q[x, y]q^{-1}, [x, y]]^n q[x, y]q^{-1} = 0$$

is also an identity for RC. By Martindale's theorem in [17], RC is a primitive ring with nonzero socle. Since RC is primitive, there exist a vector space \mathcal{V} over a division ring \mathcal{D} such that RC is a dense ring of \mathcal{D} -linear transformations over \mathcal{V} . We divide the proof into two steps:

Step 1. Our aim is to show that for any $v \in \mathcal{V}$, v and vq are linearly \mathcal{D} -dependent. If v and vq are linearly \mathcal{D} -independent for some $v \in \mathcal{V}$, then we consider the following cases:

If $vq^{-1} \notin Span_{\mathcal{D}}\{v, vq\}$, then the set $\{v, vq, vq^{-1}\}$ is linearly \mathcal{D} independent. By the density of RC there exist $x_0, y_0 \in RC$ such that

$$vx_0 = v, vqx_0 = 0, vz_0 = vq vqz = v vq^{-1}x_0 = -vq$$

 $vy_0 = v, vqy_0 = -v, vw_0 = v vqw = 0 vq^{-1}y_0 = 0.$

We can easily see that

$$0 = v([[x, y], [z, w]] - [x, y]^m [q[x_0, y_0]q^{-1}, [x_0, y_0]]^n q[x_0, y_0]q^{-1}) = v \neq 0,$$

a contradiction.

On the other hand if $vq^{-1} \in Span_{\mathcal{D}}\{v, vq\}$, then $vq^{-1} = v\alpha + vq\beta$ for some $\alpha, \beta \in \mathcal{D}$. In view of the density of RC, there exist $x_0, y_0, z_0, w_0 \in RC$ such that

$$vx_0 = v, vqx_0 = 0 vz_0 = qv vqz_0 = v$$

 $vy_0 = v, vqy_0 = v vw_0 = v vqw_0 = 0.$

Hence we find that

$$0 = v([q[x_0, y_0]q^{-1}, [x_0, y_0]]^n q[x_0, y_0]q^{-1}) = \gamma v \neq 0$$

for some $\gamma \in \mathcal{D}$, again a contradiction.

Step 2. We have that v and qv are \mathcal{D} -dependent for every $v \in \mathcal{V}$. For each $v \in \mathcal{V}$, we write $vq = v\lambda_v$ where $\lambda_v \in \mathcal{D}$. Fix $0 \neq u \in \mathcal{V}$. Let $0 \neq v \in \mathcal{V}$ and write $vq = v\lambda_v$. Suppose first that v and u are \mathcal{D} independent. Then $(u + v)\lambda_{u+v} = (u + v)q = uq + vq = u\lambda_u + v\lambda_v$. So $u(\lambda_{u+v} - \lambda_u) = v(\lambda_v - \lambda_{u+v})$, and hence $\lambda_{u+v} = \lambda_u = \lambda_v$. Suppose next that u and v are \mathcal{D} -dependent. Indeed, for any $w \in \mathcal{V}$, w and u are \mathcal{D} -independent, and then, by the proof above, we have $\lambda_w = \lambda_v$. Clearly, w and v are \mathcal{D} -independent. So $\lambda_w = \lambda_v$, implying that $\lambda_u = \lambda_v$. Thus λ_v is the independent choice of $v \in \mathcal{V}$. Consequently, $vq = v\lambda$ for all $v \in \mathcal{V}$, where $\lambda = \lambda_v$. By standard argument we see that $q \in C$, a contradiction. Thus dim_C $RC \leq 4$, and by Fact 6, R satisfies s_4 , the standard identity in four variables. Next we assume that σ is not Q-inner, then by Chuang [10, Main Theorem], R satisfies $[[x, y], [z, w]] - [x, y]^m [[x, y]^{\sigma}, [x, y]]^n [x, y]^{\sigma} = 0$. Since either char(R) > n or char(R) = 0, it follows from Fact 3 that $[[x, y], [z, w]] - [x, y]^m [[w_1, z_1], [x, y]]^n [w_1, z_1] = 0$ for all $x, y, z, w \in R$. Note that this is a polynomial identity and thus there exists a field \mathbb{F} such that $R \subseteq M_k(\mathbb{F})$, the ring of $k \times k$ matrices over a field \mathbb{F} , where $k \ge 1$. Moreover, Rand $M_k(\mathbb{F})$ satisfy the same polynomial identity [15, Lemma 1], that is $[[x, y], [z, w]] - [x, y]^m [[w_1, z_1], [x, y]]^n [w_1, z_1] = 0$ for all $x, y, w, z, z_1, w_1 \in$ $M_k(\mathbb{F})$. But by choosing $x = e_{11}, y = e_{21}, w = e_{12}, z = e_{12}, w_1 = e_{11},$ $z_1 = e_{12}$ we get

$$0 = [[e_{11}, e_{21}], [e_{12}, e_{12}]] - [e_{11}, e_{21}]^m [[e_{11}, e_{12}], [e_{11}, e_{21}]]^n [e_{11}, e_{12}] = (-1)^n e_{12},$$

a contradiction. This completes the proof.

Let $\mathcal{V}_{\mathcal{D}}$ be a right vector space over a division ring \mathcal{D} . We denote End($\mathcal{V}_{\mathcal{D}}$) the ring of \mathcal{D} -linear transformations on $\mathcal{V}_{\mathcal{D}}$. A map $T: \mathcal{V} \to \mathcal{V}$ is called a semilinear transformation if T is additive and there is an automorphism ζ of \mathcal{D} such that $T(v\gamma) = (Tv)\zeta(\gamma)$ for all $v \in \mathcal{V}$ and $\gamma \in \mathcal{D}$. Moreover, by a theorem of Jacobson [13, Isomorphism Theorem, p.79], there exists an invertible semilinear transformation $T: \mathcal{V} \to \mathcal{V}$ such that $\sigma(x) = TxT^{-1}$ for all $x \in \text{End}(\mathcal{V}_{\mathcal{D}})$, where σ is an automorphism of End($\mathcal{V}_{\mathcal{D}}$).

Lemma 1. Let σ be an automorphism of $\operatorname{End}(\mathcal{V}_{\mathcal{D}})$ such that for every $x, y, z, w, z_1 \in \operatorname{End}(\mathcal{V}_{\mathcal{D}})$,

$$[[x, y], [z, w]] - [x, y]^m [[[x, y]^{\sigma}, [x, y]]^n [x, y]^{\sigma}, z_1] = 0,$$

where n, m are fixed positive integer. If $\dim(\mathcal{V}_{\mathcal{D}}) \ge 2$, then σ is identity map of $\operatorname{End}(\mathcal{V}_{\mathcal{D}})$.

Proof. By a theorem of Jacobson [13, Isomorphism Theorem, p.79], there exists an invertible semilinear transformation $T : \mathcal{V} \to \mathcal{V}$ such that $\sigma(x) = TxT^{-1}$ for all $x \in \operatorname{End}(\mathcal{V}_{\mathcal{D}})$, where σ is an automorphism of $\operatorname{End}(\mathcal{V}_{\mathcal{D}})$. In particular, there exists an automorphism ζ of \mathcal{D} such that $T(v\gamma) = (Tv)\zeta(\gamma)$ for all $v \in \mathcal{V}$ and $\gamma \in \mathcal{D}$. Using our hypothesis, we find that $0 = [[x, y], [z, w]] - [x, y]^m [[[x, y]^{\sigma}, [x, y]]^n [x, y]^{\sigma}, z_1] = [[x, y], [z, w]] - [x, y]^m [[T[x, y]^{-1}, [x, y]]^n T[x, y]^{-1}, z_1]$ for all $x, y, z, w, z_1 \in \operatorname{End}(\mathcal{V}_{\mathcal{D}})$. We divide our proof into the following cases:

$$\square$$

There exists $v \in \mathcal{V}$ such that v and $T^{-1}v$ are \mathcal{D} -independent. Suppose first that $\{v, vT, vT^{-1}\}$ is \mathcal{D} -independent. Let $x, y, z \in \text{End}(\mathcal{V}_{\mathcal{D}})$ such that

$$\begin{array}{lll} xv = Tv, & xT^{-1}v = -v, & xTv = 0 \\ yv = Tv, & yT^{-1}v = 0, & yTv = v \\ wv = Tv & z_1T^{-1}v = 0 & zTv = Tv \\ zv = 0 & w_1T^{-1} = 0 & wTv = 0 \\ z_1v = 0, & z_1T^{-1}v = v, & z_1Tv = -v \end{array}$$

Then [x, y]v = 0, $[x, y]T^{-1}v = v$, [x, y]Tv = Tv, [z, w]v = Tv and hence

$$0 = ([[[x, y], [z, w]] - [x, y]^m [T[x, y]T^{-1}, [x, y]]^n T[x, y]T^{-1}, z])v = v,$$

a contradiction.

Suppose next that $\{v, Tv, T^{-1}v\}$ is \mathcal{D} -dependent. Then there exist $\mu, \chi \in \mathcal{D}$ such that $Tv = v\mu + T^{-1}v\chi$. Moreover, we claim that $\chi \neq 0$. Indeed, if $\chi = 0$, then $Tv = v\mu$ and $v = T^{-1}v\mu$, a contradiction. Let $x, y, z, w, z_1 \in \text{End}(\mathcal{V}_{\mathcal{D}})$ such that

$$\begin{aligned} xv &= Tv, \quad xT^{-1}v = -v, \quad z_1v = 0 \\ yv &= Tv, \quad yT^{-1}v = 0, \quad z_1T^{-1}v = -v \\ zv &= 0 \quad wv = Tv \quad zT^{-1}v = v. \end{aligned}$$

We can easily see that

$$0 = ([[[[x, y], [z, w]] - [x, y]^m [T[x, y]T^{-1}, [x, y]]^n T[x, y]T^{-1}, z])v = \eta v,$$

for some $\eta \in \mathcal{D}$, a contradiction.

We have that v and $T^{-1}v$ are \mathcal{D} -dependent for every $v \in \mathcal{V}$. For each $v \in \mathcal{V}$, we write $T^{-1}v = v\alpha_v$ where $\alpha_v \in \mathcal{D}$. Fix $0 \neq u \in \mathcal{V}$. Let $0 \neq v \in \mathcal{V}$ and write $T^{-1}v = v\alpha_v$. Suppose first that v and u are \mathcal{D} independent. Then $(u + v)\alpha_{u+v} = (u + v)q = uq + vq = u\alpha_u + v\alpha_v$. So $u(\alpha_{u+v} - \alpha_u) = v(\alpha_v - \alpha_{u+v})$, and hence $\alpha_{u+v} = \alpha_u = \alpha_v$. Suppose next that u and v are \mathcal{D} -dependent. Since $\dim(\mathcal{V}_{\mathcal{D}}) \geq 2$, there exists $w \in \mathcal{V}$ such that w and u are \mathcal{D} -independent, and then, by the proof above, we have $\alpha_w = \alpha_v$. Clearly, w and v are \mathcal{D} -independent. So $\alpha_w = \alpha_v$, implying that $\alpha_u = \alpha_v$. Thus α_v is independent of the choice of $v \in \mathcal{V}$. Consequently, $T^{-1}v = v\alpha$ for all $v \in \mathcal{V}$, where $\alpha = \alpha_v$. Now we have $\sigma(x)v = T(x(v\alpha)) = T((xv)\alpha) = xv$ for all $x \in \operatorname{End}(\mathcal{V}_{\mathcal{D}})$ and $v \in \mathcal{V}$. In particular, $(\sigma(x) - x)V = 0$ for all $x \in \operatorname{End}(\mathcal{V}_{\mathcal{D}})$, proving the lemma. \Box Using both of these lemmas, we are ready to prove our main theorem.

Theorem 2. Let R be a prime ring with center Z which admits a nonidentity automorphism σ such that $[u, v] - u^m [u^{\sigma}, u]^n u^{\sigma} \in Z$ for all uin a noncentral ideal L of R, where n, m are fixed positive integer. If $\operatorname{char}(R) > n + m$ or $\operatorname{char}(R) = 0$, then R satisfies s_4 , the standard identity in four variables.

Proof. We assume that $\dim_C RC > 4$. Then by Fact 5, there exists a nonzero ideal I of R such that $0 \neq [I, I] \subseteq L$. By assumption, we get

$$[[x,y],[z,w]] - [x,y]^m [[x,y]^{\sigma}, [x,y]]^n [x,y]^{\sigma} \in Z \text{ for all } x, y \in I.$$
(2)

Suppose σ is Q-inner automorphism, there exists an invertible element $g \in Q$ such that $x^{\sigma} = gxg^{-1}$ for all $x \in R$. Then I satisfies

$$[[x, y], [z, w]] - [x, y]^m [[x, y]^\sigma, [x, y]]^n [x, y]^\sigma \in Z.$$
(3)

By a Theorem of Chuang[8], I and Q satisfy the same generalized polynomial identities. Thus Q satisfied

$$[[x, y], [z, w]] - [x, y]^m [[x, y]^\sigma, [x, y]]^n [x, y]^\sigma \in C.$$
(4)

Since $g \notin C$, therefore

$$\phi(t) = [[[x,y],[z,w]] - [x,y]^m [[x,y]^\sigma,[x,y]]^n [x,y]^\sigma,z_1]$$

for all $x, y, z, w, z_1 \in Q$ is a nontrivial generalized polynomial identity on Q. Denote by F the algebraic closure of C if C is infinite and set F = C for C finite. Then $Q \otimes_C F$ is a prime ring with extended centroid F [11, Theorem 3.5]. Clearly $Q \cong Q \otimes_C C \subseteq Q \otimes_C F$. So we may regards Q as a subring $Q \otimes_C F$ and hence $\phi(t)$ is also a nontrivial generalized polynomial identity of $Q \otimes_C F$. Let $Q = Q_{mr}(Q \otimes_C F)$, the maximal right ring of quotients of $Q \otimes_C F$. By [2, Theorem 6.4.4], $\phi(t)$ is also a nontrivial generalized polynomial identity on Q. By Martindale's theorem [17], $Q \cong \operatorname{End}(\mathcal{V}_D)$, where \mathcal{V} is a vector space over a division ring \mathcal{D} and \mathcal{D} is finite dimension over its center F. Recall that F is either algebraically closed or finite. From the finite dimensionality of D over F, it follows that $\mathcal{D} = F$. Hence $Q \cong \operatorname{End}(\mathcal{V}_F)$. By Lemma 1, we get a contradiction.

We now assume that σ is *Q*-outer automorphism, due to Chuang [8, Main Theorem], *I* and *Q* satisfies the same polynomial identity and hence *R* as well. Therefore *R* satisfies

$$[[[x,y],[z,w]] - [x,y]^m [[x,y]^{\sigma},[x,y]]^n [x,y]^{\sigma}, z_1] = 0.$$

Since either char(R) > n + m or char(R) = 0, it follows from Lemma 1 that

 $[[[x,y],[z,w]]-[x,y]^m[[s,t],[x,y]]^n[s,t],z]=0$

for all $x, y, s, t, z, w, z_1 \in R$. Note that this is a polynomial identity and thus there exists a field \mathbb{F} such that $R \subseteq M_k(\mathbb{F})$, the ring of $k \times k$ matrices over a field \mathbb{F} , where k > 1. Moreover, R and $M_k(\mathbb{F})$ satisfy the same polynomial identity [15, Lemma 1], that is

$$[[[x,y],[z,w]] - [x,y]^m [[s,t],[x,y]]^n [s,t], z] = 0$$

for all $x, y, s, t, z \in M_k(\mathbb{F})$. Let e_{ij} be a matrix unit with 1 in the (i, j)entry and zero elsewhere. Since $\dim_C RC > 4$, we see that k > 2. By choosing $x = e_{11}, y = e_{21}, z = e_{12}, w = e_{12}, s = e_{11}, t = e_{12}, z_1 = e_{31}$ we get

$$0 = [[[x, y], [z, w]] - [x, y]^m [[s, t], [x, y]]^n [s, t], z]$$

= [[[e₁₁, e₂₁, [e₁₂, e₁₂]] - [e₁₁, e₂₁]^m [[e₁₁, e₁₂], [e₁₁, e₂₁]]ⁿ [e₁₁, e₁₂], e₃₁]
= (-1)ⁿ⁺¹e₃₁,

a contradiction. Thus $\dim_C RC \leq 4$. In View of Fact 6, we get required result. With this the proof is complete.

References

- M. Ashraf, Structure of certain periodic rings and near-rings, Rend. Sem. Mat. Univ. Pol. Torino 53 (1995), pp.61-67.
- [2] K. I. Beidar, W. S. Martindale III, A. K. Mikhalev, Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker 196, New York, 1996.
- [3] H. E. Bell, S. Ligh, Some decomposition theorems for periodic rings and near-rings, Math. J. Okayama Univ. 31 (1989), pp.93-99.
- [4] M. Brešar, Centralizing mappings and derivations in prime ring, J. Algebra 156 (1993), pp.385-394.
- [5] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer Math. Soc. 335 (1993), pp.525-546.
- [6] M. Brešar, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), pp.641-649.
- [7] L. Carini, V. De Fillippis, Commutators with power central values on a Lie ideals, Pacfic J. Math. 193 (2000), pp.269-278.
- [8] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), pp.723-728.
- C. L. Chuang, Differential identities with automorphism and anti-automorphism-II, J. Algebra 160 (1993), pp.291-335.

- [10] H. Cheng, Some results about derivations of prime rings, J. Math. Reser. Expos. 25(4) (2005), pp.625-633.
- [11] T. S. Erickson, W. S. Martindale III, J. M. Osborn, *Prime nonassociative algebras*, Pacfic. J. Math. **60** (1975), pp.49-63.
- [12] I. N. Herstein, Derivations of prime rings having poer central values, Contemp. Math. 13 (1982), pp.163-171.
- [13] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37 Rhode Island (1964).
- [14] N. Jacobson, Structure theory of algebraic algebras of bounded degree, Ann. of Math. 46 (1945), pp.695-707.
- [15] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), pp.731-734.
- [16] P. H. Lee, T. K. Lee, *Lie ideals of prime rings with derivations*, Bull. Inst. Math. Acad. Sin. **11** (1983), pp.75-80.
- [17] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), pp.576-584.
- [18] J. H. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), pp.113-115.
- [19] J. H. Mayne, Centralizing automorphisms of Lie ideals in prime rings, Canad. Math. Bull. 35 (1992), pp.510-514.
- [20] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), pp.1093-1100.
- [21] M. O. Searcoid, D. MacHale, Two elementary generalizations for Boolean rings, Amer. Math. Monthly 93 (1986), pp.121-122.
- [22] Y. Wang, Power-centralizing automorphisma of Lie ideals in prime rings, Comm. Algebra 34 (2006), pp.609-615.
- [23] J. H. M. Wedderburn, A theorem on finite algebras, Trans. Amer. Math. Soc. 6(1905), pp.349-352.

CONTACT INFORMATION

N. Rehman	Aligarh Muslim University, Aligarh-202002
	India
	E-Mail(s): nu.rehman.mm@amu.ac.in
	Web- $page(s)$: www.amu.ac.in/faculty/
	mathematics/
	nadeem-ur-rehman

Received by the editors: 15.05.2020 and in final form 24.08.2022.