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An identity on automorphisms of Lie ideals

in prime rings∗

N. Rehman

Communicated by A. P. Petravchuk

Abstract. In the present paper it is shown that a prime

ring R with center Z satisfies s4, the standard identity in four

variables if R admits a non-identity automorphism σ such that

[u, v] − um[uσ, u]nuσ ∈ Z for all u in some noncentral ideal L of

R, whenever char(R) > n+m or char(R) = 0, where n and m are

fixed positive integer.

Introduction

Throughout this article, R is a prime ring with center Z. For given
x, y ∈ R, the Lie commutator of x, y is denoted by [x, y] and defied by
[x, y] = xy−yx. Recall that a ring R is prime if for any a, b ∈ R, aRb = (0)
implies a = 0 or b = 0. The standard identity s4 in four variables is defined
as follows:

s4 =
∑

(−1)τXτ(1)Xτ(2)Xτ(3)Xτ(4)

where (−1)τ is the sign of a permutation τ of the symmetric group of
degree 4.

The theory of commuting and centralizing maps on (semi-)prime
rings was motivated by the result of Posner [20] and was developed by
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Bres̆ar [4ś6]. Posner’s second theorem sates that if there exists a nonzero
centralizing derivation on a prime ring R, then R is commutative. Mayne
[18] obtained an analogous result for automorphisms of prime rings. Many
people have extended Posner’s result in various ways and obtained many
powerful results. In [16], Lee and Lee generalized Posner’s result by showing
that if char(R) ̸= 2 and [d(x), x] ∈ Z for all x in a noncentral Lie ideal of R,
then R is commutative. In [15], Lanski proved that if [d(x), x]n = 0 for all
x in a noncommutative Lie ideal of R, then char(R) = 2 and R ⊆ M2(F)
for F a field. A similar extension for Lie ideals in automorphism case was
obtained by Mayne [19].

In [7], Carini and De Filippis studied the power-centralizing derivations
on noncentral Lie ideals of prime rings. They proved that, if char(R) ̸= 2
and [d(x), x]n ∈ Z for all x in a noncentral Lie ideal of R, then R satisfies
s4, the standard identity in four variables. Recently, Wang [22], obtained
similar result for automorphisms of prime rings. To be more specific,
Wang discussed the following: Let R be a prime ring with center Z, L a
noncentral Lie ideal of R and σ a nontrivial automorphism of R such that
[uσ, u]n ∈ Z for all u ∈ L. If either Char(R) > n or char(R) = 0, then R
satisfies s4.

On other hand, the representative work of Herstein should be men-
tion at least. Herstein [12], proved that if there exists a nonzero deriva-
tion d on a prime ring R such that the map x 7→ d(x) is commuting
on R, then R may be noncommutative. That is, the following relation
[d(x), x]d(x) + d(x)[d(x), x] = 0 for all x ∈ R does not imply that d = 0.
Motivated by the above result Cheng [10] proved the following, which
can be considered as an extension of Posner’s second theorem: if R is a
2-torsion free noncommutative prime ring and d be a derivation of R such
that [d(x), x]d(x) = 0 for all x ∈ R, then d = 0.

The property xn = x has been among the favourites of many ring
theorists over the last many decades since Jacobson [14] first studied the
commutativity of rings satisfying this condition in order to generalize the
classical Wedderburn theorem [23]. This result was further generalized by
Sercoid and MacHale [21] who proved that commutativity of an arbitrary
ring R (not necessarily prime) follows even if the above condition is
weakened as (xy)n = xy for all x, y ∈ R and integer n = n(x, y) > 1.
Further, Bell and Ligh [3] obtained direct sum decomposition of ring
satisfying the property xy = (xy)2f(x, y), where f(X,Y ) ∈ Z⟨X,Y ⟩, the
ring of polynomial in two non-commuting indeterminates. Later, Ashraf [1]
established a decomposition theorem for ring satisfying yx = xmf(xy)xn

or xy = xmf(xy)xn where m, n are non-negative integers and f(X) ∈
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X2
Z[X], which in turn allows us to determine the commutativity of R.

Now in this perspective and inspired by Wang [22] and Cheng [10] works,
one can consider the following related ring property:

Let m ⩾ 0, n ⩾ 0 be fixed integers and L a Lie ideal of prime ring R
which admits an automorphism σ such that [u, v]− um[uσ, u]nuσ ∈ Z.

In the present paper, it is shown that if R admits an automorphismσ
satisfy the above condition, if char(R) > n+m or char(R) = 0, then R
satisfies s4, the standard identity in four variables.

1. Preliminaries

For the sake of completeness we shall touch upon a few preliminary
notions required for the exposition of the main theorem. Some of these
notions are classical and we present them brieŕy, R will be prime ring
with center Z and maximal right ring of quotients Q = Qmr(R). Note
that Q is also a prime ring and the center C of Q, which is called the
extended centroid of R, is a field. Moreover, Z ⊆ C (for more explanation
we refer to [2]). It is well known that any automorphism of R can be
uniquely extended to an automorphism of Q. An automorphism σ of R
is called Q-inner if there exists an invertible element g ∈ Q such that
xσ = gxg−1 for all x ∈ R. Otherwise, σ is called Q-outer. We denote by
G the group of all automorphisms of R and by Ai the group consisting
of all Q-inner automorphisms of R. Recall that a subset A of G is said
to be independent (modulo Ai) if for any a1, a2 ∈ A, a1a

−1
2 ∈ Ai implies

a1 = a2. For instance, if a is an outer automorphism of R, then 1 and a
are independent (modulo Ai). We present some well-known facts that will
be used in the sequel.

Fact 1. It is well known that any automorphisms of R can be extended
to Q.

Fact 2. Let R be a prime ring and I a two-sided ideal of R. Then I, R,
and Q satisfy the same generalized polynomial identities with coefficients
in Q (see [8]).

Fact 3. Suppose that R is a prime ring and A an independent subset
of G modulo Ai. Let ϕ = χ(x

aj
i ) = 0 be a generalized identity with

automorphisms of R reduced with respect to A. If for all xi ∈ X, aj ∈ A,
the x

aj
i -word degree of ϕ = χ(x

aj
i ) is strictly less than char(R) when

char(R) ̸= 0, then χ(zij) = 0 is also a generalized polynomial identity of
R (see [9, Theorem 3]).
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Fact 4. Recall that, in case char(R) = 0, an automorphism σ of Q is called
Frobenius if (x)σ = x for all x ∈ C. Moreover, in case char(R) = p ⩾ 2,
an automorphism σ is Frobenius if there exists a fixed integer t such
that (x)σ = xp

t

for all x ∈ C. In [9, Theorem 2] Chuang proves that if
Φ(xi, α(xi)) is a generalized polynomial identity for R, where R is a prime
ring and σ ∈ Aut(R) an automorphism of R which is not Frobenius, then
R also satisfies the non-trivial generalized polynomial identity Φ(xi, yi),
where xi and yi are distinct indeterminates.

Fact 5. Let R be a prime ring and L a noncentral Lie ideal of R. If
char(R) ̸= 2, then there exists a nonzero ideal I of R such that 0 ̸=
[I, R] ⊆ L. If char(R) = 2 and dimcRC > 4, then there exists a nonzero
ideal I of R such that 0 ̸= [I, R] ⊆ L. Thus if either char(R) ̸= 2 or
dimC RC > 4, then we may conclude that there exists a nonzero ideal I
of R such that [I, I] ⊆ L.

Fact 6. Let R be a prime ring with extended centroid C. Then the
following conditions are equivalent:

(i) dimC RC ⩽ 4.
(ii) R satisfies S4, the standard identity in four variables.
(iii) R is commutative or R embeds in M2(F), where F is a field.
(iv) R is algebraic of bounded degree 2 over C.
(v) R satisfies [[x2, y], [x, y]].

2. The results in prime rings

We begin with the following results which are imperative to establish
of our main theorem.

Theorem 1. Let R be a prime ring and σ a non-identity automorphism of

R such that [u, v]− um[uσ, u]nuσ = 0 for all u, v in a noncentral Lie ideal

L of R, where n,m are fixed positive integer. If either char(R) > n+m or

char(R) = 0, then R satisfies s4, the standard identity in four variables.

Proof. We assume that dimC RC > 4. In view of Fact 5, there exists a
nonzero ideal I of R such that [I, I] ⊆ L. Using our hypothesis, we find
that

[[x, y], [z, w]]− [x, y]m[[[x, y]σ, [x, y]]n[x, y]σ = 0 for all x, y ∈ I. (1)

Firstly, if σ is Q-inner, then there exists an invertible element q ∈ Q such
that xσ = qxq−1 for all x ∈ R. By [8, Theorem 2],

[[x, y], [z, w]]− [x, y]m[q[x, y]q−1, [x, y]]nq[x, y]q−1 = 0
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is also an identity for RC. By Martindale’s theorem in [17], RC is a
primitive ring with nonzero socle. Since RC is primitive, there exist a
vector space V over a division ring D such that RC is a dense ring of
D-linear transformations over V . We divide the proof into two steps:

Step 1. Our aim is to show that for any v ∈ V, v and vq are linearly
D-dependent. If v and vq are linearly D-independent for some v ∈ V , then
we consider the following cases:

If vq−1 /∈ SpanD{v, vq}, then the set {v, vq, vq−1} is linearly D-
independent. By the density of RC there exist x0, y0 ∈ RC such that

vx0 = v, vqx0 = 0, vz0 = vq vqz = v vq−1x0 = −vq
vy0 = v, vqy0 = −v, vw0 = v vqw = 0 vq−1y0 = 0.

We can easily see that

0 = v([[x, y], [z, w]]− [x, y]m[q[x0, y0]q
−1, [x0, y0]]

nq[x0, y0]q
−1) = v ̸= 0,

a contradiction.

On the other hand if vq−1 ∈ SpanD{v, vq}, then vq−1 = vα+ vqβ for
some α, β ∈ D. In view of the density of RC, there exist x0, y0, z0, w0 ∈ RC
such that

vx0 = v, vqx0 = 0 vz0 = qv vqz0 = v
vy0 = v, vqy0 = v vw0 = v vqw0 = 0.

Hence we find that

0 = v([q[x0, y0]q
−1, [x0, y0]]

nq[x0, y0]q
−1) = γv ̸= 0

for some γ ∈ D, again a contradiction.

Step 2. We have that v and qv are D-dependent for every v ∈ V. For
each v ∈ V, we write vq = vλv where λv ∈ D. Fix 0 ̸= u ∈ V. Let
0 ̸= v ∈ V and write vq = vλv. Suppose first that v and u are D-
independent. Then (u + v)λu+v = (u + v)q = uq + vq = uλu + vλv.
So u(λu+v − λu) = v(λv − λu+v), and hence λu+v = λu = λv. Suppose
next that u and v are D-dependent. Indeed, for any w ∈ V, w and u are
D-independent, and then, by the proof above, we have λw = λv. Clearly,
w and v are D-independent. So λw = λv, implying that λu = λv. Thus λv

is the independent choice of v ∈ V. Consequently, vq = vλ for all v ∈ V,
where λ = λv. By standard argument we see that q ∈ C, a contradiction.
Thus dimC RC ⩽ 4, and by Fact 6, R satisfies s4, the standard identity
in four variables.
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Next we assume that σ is not Q-inner, then by Chuang [10, Main The-
orem], R satisfies [[x, y], [z, w]]− [x, y]m[[x, y]σ, [x, y]]n[x, y]σ = 0. Since ei-
ther char(R) > n or char(R) = 0, it follows from Fact 3 that [[x, y], [z, w]]−
[x, y]m[[w1, z1], [x, y]]

n[w1, z1] = 0 for all x, y, z, w ∈ R. Note that this is a
polynomial identity and thus there exists a field F such that R ⊆ Mk(F),
the ring of k × k matrices over a field F, where k ⩾ 1. Moreover, R
and Mk(F) satisfy the same polynomial identity [15, Lemma 1], that is
[[x, y], [z, w]]− [x, y]m[[w1, z1], [x, y]]

n[w1, z1] = 0 for all x, y, w, z, z1, w1 ∈
Mk(F). But by choosing x = e11, y = e21, w = e12, z = e12, w1 = e11,
z1 = e12 we get

0 = [[e11, e21], [e12, e12]]− [e11, e21]
m[[e11, e12], [e11, e21]]

n[e11, e12]
= (−1)ne12,

a contradiction. This completes the proof.

Let VD be a right vector space over a division ring D. We denote
End(VD) the ring of D-linear transformations on VD. A map T : V → V
is called a semilinear transformation if T is additive and there is an
automorphism ζ of D such that T (vγ) = (Tv)ζ(γ) for all v ∈ V and
γ ∈ D. Moreover, by a theorem of Jacobson [13, Isomorphism Theorem,
p.79], there exists an invertible semilinear transformation T : V → V such
that σ(x) = TxT−1 for all x ∈ End(VD), where σ is an automorphism of
End(VD).

Lemma 1. Let σ be an automorphism of End(VD) such that for every

x, y, z, w, z1 ∈ End(VD),

[[x, y], [z, w]]− [x, y]m[[[x, y]σ, [x, y]]n[x, y]σ, z1] = 0,

where n,m are fixed positive integer. If dim(VD) ⩾ 2, then σ is identity

map of End(VD).

Proof. By a theorem of Jacobson [13, Isomorphism Theorem, p.79], there
exists an invertible semilinear transformation T : V → V such that
σ(x) = TxT−1 for all x ∈ End(VD), where σ is an automorphism of
End(VD). In particular, there exists an automorphism ζ of D such that
T (vγ) = (Tv)ζ(γ) for all v ∈ V and γ ∈ D. Using our hypothesis, we find
that 0 = [[x, y], [z, w]]− [x, y]m[[[x, y]σ, [x, y]]n[x, y]σ, z1] = [[x, y], [z, w]]−
[x, y]m[[T [x, y]T−1, [x, y]]nT [x, y]−1, z1] for all x, y, z, w, z1 ∈ End(VD).
We divide our proof into the following cases:
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There exists v ∈ V such that v and T−1v are D-independent. Suppose first
that {v, vT, vT−1} is D-independent. Let x, y, z ∈ End(VD) such that

xv = Tv, xT−1v = −v, xTv = 0
yv = Tv, yT−1v = 0, yTv = v
wv = Tv z1T

−1v = 0 zTv = Tv
zv = 0 w1T

−1 = 0 wTv = 0
z1v = 0, z1T

−1v = v, z1Tv = −v.

Then [x, y]v = 0, [x, y]T−1v = v, [x, y]Tv = Tv, [z, w]v = Tv and hence

0 = ([[[x, y], [z, w]]− [x, y]m[T [x, y]T−1, [x, y]]nT [x, y]T−1, z])v = v,

a contradiction.
Suppose next that {v, Tv, T−1v} is D-dependent. Then there exist

µ, χ ∈ D such that Tv = vµ + T−1vχ. Moreover, we claim that χ ̸= 0.
Indeed, if χ = 0, then Tv = vµ and v = T−1vµ, a contradiction. Let
x, y, z, w, z1 ∈ End(VD) such that

xv = Tv, xT−1v = −v, z1v = 0
yv = Tv, yT−1v = 0, z1T

−1v = −v
zv = 0 wv = Tv zT−1v = v.

We can easily see that

0 = ([[[[x, y], [z, w]]− [x, y]m[T [x, y]T−1, [x, y]]nT [x, y]T−1, z])v = ηv,

for some η ∈ D, a contradiction.
We have that v and T−1v are D-dependent for every v ∈ V. For

each v ∈ V, we write T−1v = vαv where αv ∈ D. Fix 0 ̸= u ∈ V. Let
0 ̸= v ∈ V and write T−1v = vαv. Suppose first that v and u are D-
independent. Then (u+ v)αu+v = (u+ v)q = uq + vq = uαu + vαv. So
u(αu+v − αu) = v(αv − αu+v), and hence αu+v = αu = αv. Suppose next
that u and v are D-dependent. Since dim(VD) ⩾ 2, there exists w ∈ V
such that w and u are D-independent, and then, by the proof above,
we have αw = αv. Clearly, w and v are D-independent. So αw = αv,
implying that αu = αv. Thus αv is independent of the choice of v ∈ V.
Consequently, T−1v = vα for all v ∈ V, where α = αv. Now we have
σ(x)v = T (x(vα)) = T ((xv)α) = xv for all x ∈ End(VD) and v ∈ V. In
particular, (σ(x) − x)V = 0 for all x ∈ End(VD). Thus σ(x) = x for all
x ∈ End(VD). This implies σ is the identity map of End(VD), proving the
lemma.



N. Rehman 125

Using both of these lemmas, we are ready to prove our main theorem.

Theorem 2. Let R be a prime ring with center Z which admits a non-

identity automorphism σ such that [u, v] − um[uσ, u]nuσ ∈ Z for all u
in a noncentral ideal L of R, where n,m are fixed positive integer. If

char(R) > n + m or char(R) = 0, then R satisfies s4, the standard

identity in four variables.

Proof. We assume that dimC RC > 4. Then by Fact 5, there exists a
nonzero ideal I of R such that 0 ̸= [I, I] ⊆ L. By assumption, we get

[[x, y], [z, w]]− [x, y]m[[x, y]σ, [x, y]]n[x, y]σ ∈ Z for all x, y ∈ I. (2)

Suppose σ is Q-inner automorphism, there exists an invertible element
g ∈ Q such that xσ = gxg−1 for all x ∈ R. Then I satisfies

[[x, y], [z, w]]− [x, y]m[[x, y]σ, [x, y]]n[x, y]σ ∈ Z. (3)

By a Theorem of Chuang[8], I and Q satisfy the same generalized polyno-
mial identities. Thus Q satisfied

[[x, y], [z, w]]− [x, y]m[[x, y]σ, [x, y]]n[x, y]σ ∈ C. (4)

Since g /∈ C, therefore

ϕ(t) = [[[x, y], [z, w]]− [x, y]m[[x, y]σ, [x, y]]n[x, y]σ, z1]

for all x, y, z, w, z1 ∈ Q is a nontrivial generalized polynomial identity
on Q. Denote by F the algebraic closure of C if C is infinite and set
F = C for C finite. Then Q⊗C F is a prime ring with extended centroid
F [11, Theorem 3.5]. Clearly Q ∼= Q⊗C C ⊆ Q⊗C F . So we may regards
Q as a subring Q ⊗C F and hence ϕ(t) is also a nontrivial generalized
polynomial identity of Q ⊗C F . Let Q = Qmr(Q ⊗C F ), the maximal
right ring of quotients of Q ⊗C F . By [2, Theorem 6.4.4], ϕ(t) is also a
nontrivial generalized polynomial identity on Q. By Martindale’s theorem
[17], Q ∼= End(VD), where V is a vector space over a division ring D and D
is finite dimension over its center F . Recall that F is either algebraically
closed or finite. From the finite dimensionality of D over F , it follows that
D = F . Hence Q ∼= End(VF ). By Lemma 1, we get a contradiction.

We now assume that σ is Q-outer automorphism, due to Chuang
[8, Main Theorem], I and Q satisfies the same polynomial identity and
hence R as well. Therefore R satisfies

[[[x, y], [z, w]]− [x, y]m[[x, y]σ, [x, y]]n[x, y]σ, z1] = 0.
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Since either char(R) > n+m or char(R) = 0, it follows from Lemma 1
that

[[[x, y], [z, w]]− [x, y]m[[s, t], [x, y]]n[s, t], z] = 0

for all x, y, s, t, z, w, z1 ∈ R. Note that this is a polynomial identity and
thus there exists a field F such that R ⊆ Mk(F), the ring of k×k matrices
over a field F, where k > 1. Moreover, R and Mk(F) satisfy the same
polynomial identity [15, Lemma 1], that is

[[[x, y], [z, w]]− [x, y]m[[s, t], [x, y]]n[s, t], z] = 0

for all x, y, s, t, z ∈ Mk(F). Let eij be a matrix unit with 1 in the (i, j)-
entry and zero elsewhere. Since dimC RC > 4, we see that k > 2. By
choosing x = e11, y = e21,z = e12, w = e12, s = e11, t = e12, z1 = e31 we
get

0 = [[[x, y], [z, w]]− [x, y]m[[s, t], [x, y]]n[s, t], z]

= [[[e11, e21, [e12, e12]]− [e11, e21]
m[[e11, e12], [e11, e21]]

n[e11, e12], e31]

= (−1)n+1e31,

a contradiction. Thus dimC RC ⩽ 4. In View of Fact 6, we get required
result. With this the proof is complete.
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