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Abstract. We introduce self-similar algebras and groups

closely related to the Thue–Morse sequence, and begin their investi-

gation by describing a character on them, the łspreadž character.

1. Introduction

Fix an alphabet X = {x0, . . . , xq−1}. The Thue–Morse substitution is
the free monoid morphism θ : X∗ → X∗ given by

θ(xi) = xixi+1 . . . xq−1x0 . . . xi−1,

and the Thue–Morse word Wq ∈ Xω is the limit of all words θn(x0).
For example, if q = 2 then θ(x0) = x0x1 and θ(x1) = x1x0 and W2 =
x0x1x1x0x1x0x0x1 . . . is the classical, ubiquitous Thue–Morse sequence,
see [1, 6].

We construct some self-similar algebraic objects Ð groups and asso-
ciative algebras Ð and report on a curious connection between them and
the Thue–Morse substitution.

Fix an alphabet A = {a0, . . . , aq−1}. Recall that a self-similar group

is a group G endowed with a group homomorphism ϕ : G → G ≀A SA,
the decomposition: every element of G may be written, via ϕ, as an
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A-tuple of elements of G decorating a permutation of A. Likewise, a self-

similar algebra is an associative algebra A endowed with an algebra
homomorphism ϕ : A → Mq(A) also called the decomposition: every
element of A may be written as an A×A matrix with entries in A. For
more details see [3, 9].

We insist that self-similarity is an attribute of a group or algebra, and
not a property: it is legal to consider for G or A a free group (respectively
algebra), and then the decomposition ϕ may be deőned at will on G or A’s
generators. There will then exist a maximal quotient (called the injective

quotient) of G or A on which ϕ induces an injective decomposition. This
is the approach we follow in deőning our self-similar group.

Consider the free group F = ⟨x0, . . . , xq−1⟩, the alphabet A = Z/q,
and deőne ϕ : F → F ≀A SA by

ϕ(x0) = ⟨⟨x0, . . . , xq−1⟩⟩(j 7→ j + 1)

and

ϕ(xi) = ⟨⟨1, . . . , 1⟩⟩(j 7→ j + 1) for all i ⩾ 1.

Here and below we denote by ⟨⟨g0, . . . , gq−1⟩⟩π the element of F ≀SA with
decorations gi on the permutation π. We denote by Gq the injective
quotient of F , with self-similarity structure still written ϕ. Note that it is
a proper quotient; for example, the image of x1 has order q in Gq.

There is a standard construction of a self-similar algebra from a self-
similar group, by mapping decorated permutations to monomial matrices.
Fix a commutative ring k, consider the free associative (tensor) algebra
T = k⟨x0, . . . , xq−1⟩, and deőne ϕ : T → Mq(T ) by

ϕ(x0) =













0 · · · 0 xq−1

x0
. . .

. . . 0
...

. . .
. . .

...
0 · · · xq−2 0













, ϕ(xi) =













0 · · · 0 1

1
. . .

. . . 0
...

. . .
. . .

...
0 · · · 1 0













.

We denote by Aq the injective quotient of T , with self-similarity structure
still written ϕ. Our main result is a description of a natural character,
the łspreadž, on Aq, see §3.1; roughly speaking, it measures the number
of non-zeros in matrix rows or column.

Theorem A. The łspreadž character on Aq has image Z[1/q] ∩ R+.
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The proof crucially uses the fact that the decomposition of Gq admits
a partial splitting deőned using the Thue–Morse endomorphism θ; the
same holds for Aq. This is embodied in the following Lemma, proved in
the next section:

Lemma 1.1. For all w ∈ F we have ϕ(θ(w)) = ⟨⟨w, γ(w), . . . , γq−1(w)⟩⟩,
where γ : F → F is the automorphism permuting cyclically the generators

xi 7→ xi+1 mod q.

We conclude with some variants of the construction, and in particu-
lar relations to iterated monodromy groups of rational functions in one
complex variable.

2. The groups

As sketched in the introduction, a self-similar group is a group G
endowed with a homomorphism ϕ : G → G ≀A SA, the decomposition. The
range of ϕ is the permutational wreath product of G with A; its elements
may be represented as permutations of A with a decoration in G on each
strand. We write ϕ(g) = ⟨⟨g0, . . . , gq−1⟩⟩π.

Starting from the free group F = ⟨x0, . . . , xq−1⟩ and the alphabet
A = {a0, . . . , aq−1}, we deőne ϕ : F → F ≀A SA by

ϕ(x0) = ⟨⟨x0, . . . , xq−1⟩⟩(j 7→ j + 1), ϕ(xi) = ⟨⟨1, . . . , 1⟩⟩(j 7→ j + 1),

turning F into a self-similar group. Write K0 = 1 and Kn+1 = ϕ−1(KA
n );

these form then an ascending sequence of normal subgroups of F , and
G := F/

⋃

nKn is again a self-similar group, but now on which the map
induced by ϕ is injective. We christen the group G just constructed
the qth Thue–Morse group. The decompositions may be written, using
permutations, as

ϕ(x0) = x0x0
x1x1 xq−1xq−1

, ϕ(xi) = .

Note that in the injective quotient Gq the generators x1, . . . , xq−1 coincide
and have order q. We thus have a presentation

Gq = ⟨x0, x1 | x
q
1, [(x0x

−1
1 )q, (x−1

1 x0)
q], . . . ⟩,

where producing an explicit presentation of the group is beyond our current
goals, but could be done following the lines of [2].
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It is straightforward to prove Lemma 1.1: for generator xi, we have
ϕ(θ(xi)) = ⟨⟨xi, xi+1, . . . , xi−1⟩⟩ = ⟨⟨xi, γ(xi), . . . , γ

q−1(xi)⟩⟩, so

ϕ(θ(w)) = ⟨⟨w, γ(w), . . . , γq−1(w)⟩⟩ for all w ∈ F.

A self-similar group G is called contracting if there exists a őnite subset
N ⊆ G with the following property: for every g ∈ G there exists n ∈ N,
such that if one iterates the decomposition at least n times on g then all
entries belong to N . The minimal admissible such N is called the nucleus.

Lemma 2.1. The Thue–Morse group Gq is contracting with N =
{x±1

0 , x±1
1 }.

Proof. It suffices to check contraction on words in N2, and this is direct.

Let G be a self-similar group, and consider an element g ∈ G. Iterating
n times the map ϕ on g yields a permutation of An decorated by #An

elements. The element g is called bounded if only a bounded number of
these decorations are non-trivial, independently of n. The group G itself
is called bounded if all its elements are bounded; by an easy argument, it
suffices to check this property on generators of G. It is classical [5] that if
G is bounded and őnitely generated then it is contracting.

2.1. Characters

Recall that a character χ : G → C on a group is a function that is
normalized (χ(1) = 1), central (χ(gh) = χ(hg) for all g, h ∈ G) and
positive semideőnite (

∑n
i,j=1

χ(gig
−1
j )λiλj ⩾ 0 for all gi ∈ G, λi ∈ C).

A model example of character are the łőxed pointsž: if G acts on a measure
space (X,µ), set χ(g) = µ({x ∈ X : g(x) = x}). By the Gelfand-Naimark-
Segal construction, every character may be written as χ(g) = ⟨ξ, π(g)ξ⟩ for
some unitary representation π : G → U(H) and some unit vector ξ ∈ H.

Let now G be self-similar, with decomposition ϕ : G → G≀ASA. A char-
acter χ will be called self-similar if there exists a positive semideőnite
kernel k(·, ·) ∈ C

A×A such that

(#A)χ(g) =
∑

a∈A

k(a, π(a))χ(ga) whenever ϕ(g) = ⟨⟨ga⟩⟩π.

We also note the following easy property of characters.
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Lemma 2.2. If G is a contracting, self-similar group, then every self-

similar character on G is determined by its values on the nucleus. If

moreover G is bounded and őnitely generated, then every self-similar

character on G is determined by the kernel k.

Proof. For each element g ∈ G, write the linear relation imposed on χ(g)
by self-similarity of the character χ. Substituting sufficiently many times,
χ(g) may be expressed in terms of χ ↾ N .

If G is bounded, then furthermore the nucleus may be decomposed as
N = N0 ⊔N1 with the property that for every g ∈ N0, all decorations of
g are eventually trivial, while if g ∈ N1, then a single decoration g′ of g
is in N1 and all the others are in N0. Clearly χ ↾ N0 is determined by k,
while for g ∈ N1 we obtain a linear relation χ(g) = χ(g′)/#A+ Cg with
Cg depending only on k; this linear system is non-degenerate, yielding
a unique solution for χ ↾ N1.

Let us check that Gq is bounded. For the generators x1, . . . , xq−1 this
is obvious, since all their decorations are trivial starting from level n = 1.
Then x0 has a single decoration which is x0 itself on top of the x1, . . . , xq−1,
so in fact for all n ∈ N there are at most q non-trivial decorations in the
n-fold decomposition of x0.

Note that every self-similar group acts on a #A-regular rooted tree,
as follows. The group őxes the empty sequence ε. To determine the action
of g ∈ G on a word v = v1v2 . . . vn, compute ϕ(g) = ⟨⟨ga⟩⟩π; then deőne
recursively g(v) = π(v1) gv1(v2 . . . vn).

This action extends naturally to the boundary of the rooted tree,
which is identiőed with the space of inőnite sequences A∞. This space
comes naturally equipped with the Bernoulli measure µ, assigning mass
1/#A to each of the elementary cylinders Ci,a = {v ∈ A∞ : vi = a}, and
G acts by measure-preserving transformations. It is easy to see that the
constant kernel (k(a, b) = 1/#A for all a, b) induces the trivial self-similar
character χ(g) ≡ 1, and that the identity kernel (k(a, b) = δa=b) induces
the őxed-point self-similar character χ(g) = µ{v ∈ A∞ : g(v) = v}.

Recall that every self-similar group G admits an injective quotient,
on which the decomposition ϕ induces an injection G →֒ G ≀A SA. The
group G also admits a faithful quotient, deőned as the quotient of G by
the kernel of the natural map to SA∞ given by the action deőned above; it
is the largest self-similar quotient of G that acts faithfully on A∞. Clearly
the faithful quotient is a quotient of the injective quotient, but they need
not coincide.
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It is easy to see that, for Gq, the injective and faithful quotients coincide,
using the contraction property and the fact that the action on A∞ is
faithful on the nucleus.

3. The algebras

We őx once and for all a commutative ring k. We are particularly
interested in the example k = Fq.

As in the case of groups, we start by considering the free associative
(tensor) algebra T = k⟨x0, . . . , xq−1⟩, and deőne ϕ : T → Mq(T ) by

ϕ(x0) =













0 · · · 0 xq−1

x0
. . .

. . . 0
...

. . .
. . .

...
0 · · · xq−2 0













, ϕ(xi) =













0 · · · 0 1

1
. . .

. . . 0
...

. . .
. . .

...
0 · · · 1 0













.

Write J0 = 0 and Jn+1 = ϕ−1(Mq(Jn)); these form then an ascending
sequence of ideals in T , and Aq := T/

⋃

n Jn is a self-similar algebra, on
which the map induced by ϕ is injective.

The construction of Aq from Gq should be transparent: both algebraic
objects have the same generating set, and if ϕ(g) = ⟨⟨ga⟩⟩π in Gq, then
the decomposition ϕ(g) in Aq is a monomial matrix with permutation π
and non-zero entries ga.

It may be convenient to extend Aq into a *-algebra, namely an algebra
Bq equipped with an anti-involution x 7→ x∗. This may easily be done by
extending T to kF , the group ring of F , and extending the decomposition
by

ϕ(x−1
0 ) =













0 x−1
0 · · · 0

...
. . .

. . .
...

0
. . .

. . . x−1
q−2

x−1
q−1 0 · · · 0













, ϕ(x−1
i ) =













0 1 · · · 0
...

. . .
. . .

...

0
. . .

. . . 1
1 0 · · · 0













.

We then have a natural group homomorphism Gq → B×
q given by xi 7→ xi

on the generating set. In particular, Bq is a quotient of the group ring
kGq. A presentation of Bq begins as

Bq = ⟨x±1
0 , x1 | x

q
1 − 1, (x0x

−1
1 )q − 1)(x−1

1 x0)
q − 1), . . . ⟩;

we see in particular that Bq is a proper quotient of kGq, since in kGq

the elements (x0x
−1
1 )q − 1 and (x−1

1 x0)
q − 1 commute while in Bq their
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product vanishes, being a product of two matrices each with a single
non-zero entry. As in the case of groups, a presentation of Aq and of Bq

could be computed following the techniques in [3], but this is beyond our
purposes.

We naturally extend the Thue–Morse endomorphism θ to T ; and note
then, similarly to Lemma 1.1, the easy

Lemma 3.1. We have

ϕ(θ(w)) =











w 0 · · · 0
0 γ(w) · · · 0
... 0

. . .
...

0 0 · · · γq−1(w),











where γ is the endomorphism of T permuting cyclically the generators

xi 7→ xi+1 mod q.

A self-similar algebra A is called contracting if there exists a őnite-rank
submodule N ⩽ A with the following property: for every s ∈ A there
exists n ∈ N, such that iterating the decomposition at least n times on s
gives a matrix with all entries in N . The minimal admissible such N is
called the nucleus.

Lemma 3.2. The Thue–Morse algebras Aq and Bq are contracting, with

respective nuclei k{x0, x1} and k{x±1
0 , x±1

1 }.

Proof. It suffices to check contraction on monomials in N2, and this is
direct.

Let A be a self-similar algebra, and consider an element x ∈ A.
Iterating n times the map ϕ on x yields an An ×An-matrix with entries
in A. The element x is called row-bounded if only a bounded number of
entries are non-trivial on each row of that matrix, independently of n
and the row; and is called column-bounded if the same property holds
for columns. The algebra A itself is called bounded if all its elements
are bounded. Evidently, the product of row-bounded elements in row-
bounded, and the same holds for column-bounded elements; so it suffices,
to prove that A is bounded, to check that property on its generators.
The same argument as in the case of groups shows that row-bounded or
column-bounded self-similar algebras are contracting.

It is again easy to see that the algebras Aq and Bq are bounded. This
will play a major role in the computations below.
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3.1. Characters

We begin by introducing some concepts. A character on k is a semi-
group homomorphism χ : (k, ·) → C satisfying χ(1) = 1 and χ(0) = 0.
Recall that the group of units in Fq is cyclic; so may be embedded in C

×

by mapping a generator to a primitive (q − 1)th root of unity. The trivial
character, mapping all non-zero elements to 1, is also a valid choice.

By characters we think of extensions to a group ring kG of Brauer
characters, rather than algebra homomorphisms. For our purposes, the
following deőnition suffices:

Deőnition 3.3. A character on a k-self-similar algebra A is a map
χ : A → C satisfying, for some character χ0 on k,

1) χ(1) = 1;
2) χ(λs) = χ0(λ)χ(s) for all λ ∈ k, s ∈ A;
3) χ(x∗x) ⩾ 0 for all x ∈ A, if A is a *-algebra.

Note in particular that we do not require χ(xy) = χ(x)χ(y) (this holds
only for łlinear charactersž) nor χ(x+ y) = χ(x) + χ(y) (this would be
meaningless if k has positive characteristic), and we also do not require
χ(xy) = χ(yx) (this holds only for łdiagonalizable elementsž).

A character χ on A is called self-similar if there is a character χ0 on
k and a positive semideőnite kernel k(·, ·) ∈ C

q×q such that

q · χ(s) =

q
∑

i,j=0

k(i, j)χ(ϕ(s)i,j).

We also note the following easy property of characters:

Lemma 3.4. If A is a contracting, self-similar algebra, then every self-

similar character on A is determined by its values on the nucleus. If

moreover A is row- or column-bounded, then every self-similar character

on A is determined by the kernel k.

We concentrate on two speciőc characters, which are both self-similar,
with trivial character χ0(λ) = 1− δλ=0, and determined (via Lemma 3.4)
respectively by the kernels k(i, j) = δi=j and k(i, j) ≡ 1. We denote the
őrst character by χf since it measures in some sense the őxed points of
an element, and the second one by χs since it measures in some sense
the łspreadž of an element. For ease of reference, the łspreadž character is
characterized by

q · χs(λs) =

q
∑

i,j=0

χs(ϕ(s)i,j) for all λ ∈ k
×.
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3.2. The łspreadž character

We embark in the proof of Theorem A, which will occupy this whole
subsection.

The łspreadž character is in fact tightly connected to the boundedness
property of A. In the case of Aq, or more generally self-similar algebras
whose generators decompose as monomial matrices, the recursion formula
of χs implies χs(x0) = χs(x1) = 1, and in fact in Bq we have χs(x) = 1
for any monomial x ∈ Gq.

It follows that χs may be related to the growth of languages in (A×A)∗:
for each x ∈ A, set

Lx = {(u, v) ∈ Ak ×Ak | ϕk(x)u,v ∈ k
× ∪ k

×x0 ∪ k
×x1}.

Lemma 3.5. For all x ∈ A, the language Lx is related to the łspreadž

character χs(x) as follows: there is a constant C such that

#((A×A)k ∩ Lx) = qkχs(x)− C for all k large enough.

Proof. This follows from a slight reőnement of the contraction property:
in fact, for every x ∈ A, if one iterates sufficiently many times ϕ on x then
the resulting matrix (of size qk × qk) has entries in k∪ kx0 ∪ kx1, and the
language Lx counts those entries that are not trivial. On the other hand,
the łspreadž character also counts (up to normalizing by a factor qk) the
number of non-trivial entries. From then on, increasing k multiplies the
number of words in Lx by q so the relationship between the growth of Lx

and χs(x) remains the same.

Note that we could have considered a large number of different other
languages: counting the number of entries (u, v) ∈ Ak ×Ak such that the
(u, v)-coefficient of ϕk(x) is, at choice,

• a scalar in A;
• a non-zero element in A;
• an element not in the augmentation ideal ⟨xi − 1⟩ of A;
• a monomial in A;
• an invertible element of A;
• a unitary element of A.

All these choices would yield essentially equivalent languages, with com-
parable growth.

Lemma 3.6. For all integers k ⩾ 1, the łspreadž character satisőes

χs(1− xq
k

0 ) = 2/qk−1, χs(1− γi(x0 · · ·xq−1)
qk) = 2/qk.
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Proof. We compute recursively some values of χs. First, χs(x1) = 1 since
ϕ(x1) is a permutation matrix. Then χs(x0) = 1 since self-similarity of χs

yields qχs(x0) = χs(x0)+q−1. We next note χs(1−x0) = χs(1−x1) = 2;
indeed self-similarity yields qχs(x0) = 2q = qχs(x1).

Next, ϕ(xq0) = ⟨⟨x0 · · ·xq−1, x1 · · ·xq−1x0, . . . , xq−1x0 · · ·xq−2⟩⟩, and
ϕ(x0 · · ·xq−1) = ⟨⟨x0, . . . , xq−1⟩⟩ and similarly for its cyclic permutations;
so self-similarity yields

qχs(1− γi(x0 · · ·xq−1)) = 2q, qχs(1− xq0) = 2q

so χs(1− γi(x0 · · ·xq−1)) = χs(1− xq0) = 2.

This is the beginning of induction: for k ⩾ 1, the matrix ϕ(xq
k+1

0 ) is

diagonal, with diagonal entries γi(x0 · · ·xq−1)
qk , and ϕ(γi(x0 · · ·xq−1)

qk)

is also diagonal, with diagonal entries xq
k

0 , . . . , xq
k

q−1; so self-similarity yields

qχs(1− xq
k+1

0 ) =

q−1
∑

i=0

χs(1− γi(x0 · · ·xq−1)
qk),

qχs(1− (x0 · · ·xq−1)
qk) = χs(1− xq

k

0 ) + q(q − 1)χs(1− xq
k

1 ).

Now xq1 = 1 so the last term vanishes because k ⩾ 1, and we get

χs(1− xq
k+1

0 ) = χs(1− γi(x0 · · ·xq−1)
qk) = χs(1− xq

k

0 )/q.

Consider next the map σ : T × · · · × T → T given by

σ(s0, . . . , sq−1) = θ(s0) + x1θ(s1) + · · ·+ xq−1

1 θ(sq−1).

Recalling that γ is the automorphism of T permuting cyclically all gener-
ators, we get

ϕ(σ(s0, . . . , sq−1)) =











s0 γ(sq−1) · · · γq−1(s1)
s1 γ(s0) · · · γq−1(s2)
...

...
. . .

...
sq−1 γ(sq−2) · · · γq−1(s0)











.

We are ready to prove Theorem A. Deőne subsets Ωn of T by

Ω0 = {0, 1− γi(x0 · · ·xq−1)
qk for all i, k},

Ωn+1 =

q−1
⋃

i=0

γiσ(Ωq
n)

and őnally Ω =
⋃

n⩾0
Ωn.
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Lemma 3.7. For all x ∈ Ω and all i the matrix ϕ(x) is diagonal and

χs(s) = χs(γ
i(x)).

Lemma 3.8. For all s0, . . . , sq−1 ∈ Ω we have

χs(σ(s0, . . . , sq−1)) = χs(s0) + · · ·+ χs(sq−1).

Proof. This follows directly from the form of ϕ(σ(s0, . . . , sq−1)) given
above, and the fact that χs is γ-invariant on Ω.

Proof of Theorem A. Since Aq is contracting, every element s ∈ A de-
composes in őnitely many steps into elements of the nucleus; and χs takes
values in Z[1/q]∩R+ on the nucleus; so χs(A) is contained in Z[1/q]∩R+.

On the other hand, by Lemma 3.6 the values of χs include all 2/qk,
and Lemma 3.8 its values form a semigroup under addition. It follows
(considering separately q even and q odd) that all fractions of the form
i/qk with i, k ⩾ 0 are in the range of χs.

4. Variants

Essentially the same methods apply to numerous other examples; we
have concentrated, here, on the one with the closest connection to the
Thue–Morse sequence.

Here is another example we considered: write the alphabet A =
{a0, . . . , aq−1}, and deőne ϕ : F → F ≀A SA by

ϕ(x0) = ⟨⟨x0, . . . , xq−1⟩⟩(ai 7→ ai−1 mod q), ϕ(xi) = ⟨⟨1, . . . , 1⟩⟩(a0 ↔ ai),

or in terms of matrices

ϕ(x0) =



















0 x1 0 · · · 0

0 0 x2 · · ·
...

...
...

. . .
. . . 0

0
...

. . .
. . . xq−1

x0 0 · · · · · · 0



















, ϕ(xi) =



















0 · · · 1 · · · 0
... 1

... · · ·
...

1 · · · 0
. . . 0

...
...

. . .
. . .

...
0 · · · 0 · · · 1



















.

If furthermore one applies the automorphism that inverts every gen-
erator (noting that the xi are involutions for i ⩾ 1), we may deőne an
injective self-similar group Hq, isomorphic to the above, by

ϕ(x0) = ⟨⟨x−1
0 , . . . , x−1

q−1⟩⟩(ai 7→ ai−1 mod q),

ϕ(xi) = ⟨⟨1, . . . , 1⟩⟩(a0 ↔ ai).
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We now note that Hq is a contracting łiterated monodromy groupž.
As such, it possesses a limit space Ð a topological space equipped with an
expanding self-covering, whose iterated monodromy group is isomorphic
to Hq. Note that H2 and G2 are isomorphic. It is tempting to try to łreadž
the Thue–Morse sequence, and in particular the Thue–Morse word, within
the dynamics of the self-covering map.

Iterated monodromy groups

Let f be a rational function, seen as a self-map of P1(C), and write
P = {fn(z) : n ⩾ 1, f ′(z) = 0} the post-critical set of f . For simplicity,
assume that P is őnite. Choose a basepoint ∗ ∈ P

1(C) \ P , and write
F = π1(P

1(C) \ P, ∗), a free group of rank #P − 1.

The choice of a family of paths λx : [0, 1] → P
1(C) \ P from ∗ to

x ∈ f−1(∗) for all choices of x naturally leads to a self-similar structure
on F , following [7]: the decomposition of γ ∈ F has as permutation the
monodromy action of F on f−1(∗), and the deg(f) elements of F are all
λx#f−1(γ)#λ−1

γ·x, with # denoting concatenation of paths. The faithful
quotient of F is called the iterated monodromy group of G.

Proposition 4.1. The Thue–Morse group Hq is the iterated monodromy

group of a degree-q branched covering of the sphere.

Proof. This follows from the general theory of [4]. The branched covering,
and its iterated monodromy group, may be explicitly described as follows.

Consider as post-critical set {0,∞, ζ0, . . . , ζq−2} for the primitive (q−
1)th root of unity ζ = exp(2πi/(q − 1)). Put the basepoint ∗ inside the
unit disk, in such a way that it sees ζ0, ζ1, . . . , ζq−2, 0,∞ in cyclic CCW
order. Put the preimages of ∗ at ∗ and points ∗i inside the unit disk but
very close to ζi. As connections between ∗ and its preimages choose paths
ℓi as straight lines. Consider as generators gx a straight path from ∗ to x,
following by a small CCW loop around x, and back, in the order mentioned
above.

The lift of each gζi will be two homotopic paths exchanging ∗ and ∗i
(all other lifts are trivial) and the lifts of g∞ will be g0 and a straight path
from ∗i to ζi encircling it once CCW before coming back. It is clear that
we have deőned a branched covering of the sphere with the appropriate
recursion.

Conjecture 4.2. The branched covering described above is isotopic to

a rational map of degree q.
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We could verify this conjecture for small q; the maps corresponding
to q ⩽ 5 are

f2 ≈
1

z − 0.5z2
,

f3 ≈
0.128775 + 0.0942072i

z + (−1.74702 + 0.285702i)z2 + (0.831347− 0.190468i)z3
,

f4 ≈
0.0232438 + 0.0757918i

z + (−2.67804 + 1.10938i)z2 + (2.37852− 1.93187i)z3

+ (−0.694865 + 0.89421i)z4

,

f5 ≈
−0.00877156 + 0.0526634i

z + (−3.22614 + 2.0417i)z2 + (3.13076− 5.12089i)z3

+ (−0.677772 + 4.35662i)z4 + (−0.245783− 1.22944i)z5

.

For q = 2, when the groups H2 and G2 agree, it would be particularly
interesting to relate the Thue–Morse word W2 with the geometry of the
Julia set of f2. Here is a graph approximating this Julia set; the path W2

may be traced in it, and may be seen to explore neighbourhoods of the
large Fatou regions:
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