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On Herstein’s identity in prime rings
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Abstract. A celebrated result of Herstein [10, Theorem 6]
states that a ring R must be commutative if [x, y]n(x,y) = [x, y]
for all x, y ∈ R, where n(x, y) > 1 is an integer. In this paper,
we investigate the structure of a prime ring satisőes the identity
F ([x, y])n = F ([x, y]) and σ([x, y])n = σ([x, y]), where F and σ
are generalized derivation and automorphism of a prime ring R,
respectively and n > 1 a őxed integer.

introduction

Throughout this article, R will always denote an associative prime
ring with center Z(R), Utumi quotient ring U and the extended centroid
C. Note that in case R is prime, C is a őeld. For more details of these
notions, one can see [3]. Recall, a ring R is said to be prime if aRb = (0)
for any a, b ∈ R, implies either a = 0 or b = 0. In other words, a ring in
which (0) is prime ideal is called prime ring. A mapping d : R → R is
called derivation of R if d(x+ y) = d(x)+ d(y) and d(xy) = d(x)y+xd(y)
for all x, y ∈ R. An immediate example of a derivation is the mapping
x 7→ qx − xq, where q ∈ R is a őxed element; such a mapping is called
the inner derivation associated with the element q. Moreover, for őxed
elements p, q ∈ R, a mapping x 7→ px + xq is called the generalized
inner derivation. In general, an additive mapping F : R → R is called
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generalized derivation if there exists a unique derivation d of R such that
F (xy) = F (x)y+xd(y) for all x, y ∈ R. For any x, y ∈ R, the Lie product
in R is deőned as xy− yx and is denoted by [x, y]. By a Lie ideal of R, we
mean an additive subgroup L of R, which satisőes the condition [x, r] ∈ L
for all x ∈ L and r ∈ R. It is straight forward to see that every ideal is a
Lie ideal but converse is not true in general.

During the decade 1940-1950, after the development of general structure
theory for rings, much attention has been devoted to explore the conditions
that őnally imply the commutativity of rings. In this view, a classical
theorem of Jacobson states that a ring R is commutative if there exists
an integer n(x) > 1 such that xn(x) = x for all x ∈ R. Later, Herstein [9]
gave a complete generalization of this result as: If R is a ring with
center Z(R), and if xn − x ∈ Z(R) for all x ∈ R, n > 1 a őxed integer,
then R is commutative. In 1957, Herstein [10] proved another result of
same ŕavour in a more general way. Precisely, Herstein obtained the
commutativity of rings that satisfy the condition [x, y]n(x,y) = [x, y],
where n(x, y) > 1 is a őxed positive integer. These results has led to
the development of several techniques to őnd the conditions that force a
ring to be commutative; for instance, generalizing Herstein’s conditions,
using certain polynomial constraints, using restrictions on automorphisms,
introducing identities involving derivations and generalized derivations etc.
Continuing in this line of investigation, recently, Scudo and Ansari [19]
studied generalized derivations of prime rings that satisfy an idempotent
valued condition. More precisely, they proved the following theorem: Let R
be a noncommutative prime ring with Char(R) ̸= 2, U the Utumi quotient
ring of R, C the extended centroid of R and L a noncentral Lie ideal of
R. If G is a generalized derivation of R associated with a derivation d
such that [G(u), u]n = [G(u), u] for all u ∈ L, where n > 1 a őxed positive
integer, then one of the following holds true:

(i) R satisőes the s4 (the standard identity in four noncommuting
variables), and there exists a ∈ U and λ ∈ C such that G(x) =
ax+ xa+ λx for all x ∈ R.

(ii) there exists γ ∈ C such that G(x) = γx for all x ∈ R.

Further, Ashraf et al. [1] obtained a result with automorphisms in
this direction. They proved the following: Let R be a prime ring with
Char(R) ̸= 2, 3 and L a noncentral Lie ideal of R. If σ is an automorphism
of R such that [σ(x), x]m = [σ(x), x] for all x ∈ L, where m > 1 a őxed
integer, then R is commutative.
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Motivated by the above cited papers, we present the study of gen-
eralized derivations and automorphisms of prime rings that satisfy the
identity G(u)n = G(u) on Lie ideals, where n > 1 is a őxed integer.

1. A result on generalized derivations

Fact 1. [5, Theorem 2] If I is a nonzero ideal of a prime ring R,
then I, R and U satisfy the same generalized polynomial identities with
coefficients in U.

Fact 2. [16, Theorem 2] If I is a nonzero ideal of a prime ring R,
then I, R and U satisfy the same differential identities.

Fact 3. [17, Theorem 4] Let R be a semiprime ring and Dr a dense
right ideal of R. Then every generalized derivation F : Dr → U can be
uniquely extended to U and assumes the form F (x) = ax+ δ(x) for some
a ∈ U and a derivation δ of U.

Fact 4. [4, Lemma 1] If R is a prime ring of Char(R) ̸= 2 and L a
noncentral Lie ideal of R, then there exists a nonzero ideal I of R such
that 0 ̸= [I, R] ⊆ L.

Theorem 1. Let R be a prime ring with Char(R) ̸= 2, L a noncentral
Lie ideal of R, U the Utumi quotient ring and C the extended centroid of
R. Suppose that R admits a generalized derivation F associated with a
derivation δ such that F (u)n = F (u) for all u ∈ L, where n > 1 is a őxed
integer, then R satisőes s4.

Proof. Suppose that R does not satisfy s4. By hypothesis, we have

F (u)n = F (u), ∀ u ∈ L.

In view of Fact 3, it follows that

(au+ δ(u))n = au+ δ(u), ∀ u ∈ L.

By Fact 4, there exists a nonzero ideal I of R such that 0 ̸= [I, R] ⊆ L.
Therefore, we őnd that

(a[x, y] + δ([x, y]))n = a[x, y] + δ([x, y]), ∀ x, y ∈ I.

In light of Fact 2, we have

(a[x, y] + δ([x, y]))n = a[x, y] + δ([x, y]), ∀ x, y ∈ U.
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That can be rewritten as

(a[x, y] + [δ(x), y] + [x, δ(y)])n = a[x, y] + [δ(x), y] + [x, δ(y)], ∀ x, y ∈ U.
(1)

We now apply Kharchenko’s theory of differential identities [13, Theorem
2] and divide the proof into the following two parts.

Case 1. We őrst assume that δ is the inner derivation of U, i.e., there
exists some q ∈ U such that δ(x) = [q, x] for all x ∈ U. In this case we
shall show that q ∈ C and hence δ = 0. With this, equation (1) yields
that U satisőes the generalized polynomial identity

Ω(x, y) = (a[x, y] + [[q, x], y] + [x, [q, y]])n − a[x, y]− [[q, x], y]− [x, [q, y]].

In case C is inőnite, we have that Ω(x, y) is a generalized polynomial
identity for U ⊗C C, where C denotes the algebraic closure of C. Notice
that, Ω(x, y) is a generalized polynomial identity for U if and only if it is so
for R (see Fact 1). Therefore in order to prove our claim, we may replace
R by U or U ⊗C C according as C is őnite or inőnite. In fact both U and
U ⊗C C are prime and centrally closed (see Theorem 2.5 and Theorem
3.5 of [8]). Thus we may assume that R is centrally closed over C (i.e.,
RC = R) which is either őnite or algebraic closed and Ω(x, y) = 0 for all
x, y ∈ R. By a result due to Martindale [[18], Theorem 3], RC (and so is
R) is a primitive ring having nonzero socle H associated with the division
ring D. Hence R is isomorphic to a dense ring of linear transformations
of some vector space V over D. If V is őnite dimensional over D, then
density of R on V implies that R ∼=Mj(D), where j =dim(VD). Clearly
if j = 1, R is commutative, a contradiction.

We now suppose that dim(VD) ⩾ 3. Our őrst goal is to show that
for any v ∈ V, the set {v, qv} is linearly D-dependent. For this purpose,
we assume that v and qv are linearly D-independent vectors in V. Since
dim(VD) ⩾ 3, there exists some w ∈ V such that the set {v, qv, w} is a
linearly D-independent set. By density of R, there exist x, y ∈ R such
that

xv = 0, xqv = w, xw = v, yv = 0, yqv = w, yw = v.

With all this, we see that a[x, y]v = 0, [[q, x], y]v = v and [x, [q, y]] = v.
Thus we have

0 = ((a[x, y] + [[q, x], y] + [x, [q, y]])n − a[x, y]− [[q, x], y]− [x, [q, y]])v

= (2n − 2)v,
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a contradiction. It implies that v and qv are linearly D-dependent and
so there exists ξv ∈ D such that qv = vξv. We now show that ξv does
not depend on the choice of v, i.e., there exists ξ ∈ D such that qv = vξ
for all v ∈ V. Let us choose linearly D-independent vectors v and w in
V. Since dim(VD) ⩾ 3, we can őnd u ∈ V such that the set {u, v, w} is
linearly D-independent. Then there exist ξu, ξv, ξw ∈ D such that

qu = uξu, qv = vξv, qw = wξw.

It implies that

q(u+ v + w) = (u+ v + w)ξu+v+w

qu+ qv + qw = uξu+v+w + vξu+v+w + wξu+v+w

uξu + vξv + wξw = uξu+v+w + vξu+v+w + wξu+v+w

0 = ua1 + va2 + wa3,

where a1 = ξu − ξu+v+w, a2 = ξv − ξu+v+w and a3 = ξw − ξu+v+w. It
implies that ai = 0 for all i = 1, 2, 3. Thus ξu = ξu+v+w, ξv = ξu+v+w and
ξw = ξu+v+w. It proves our claim. Now we see that for any r ∈ R and
v ∈ V,

rqv = r(qv) = r(vξ) = (rv)ξ = q(rv) = qrv.

It implies that [r, q]v = 0 for all r ∈ R and v ∈ V. Since V is a left faithful
irreducible module, we őnd that [r, q] = 0 for all r ∈ R. Hence q ∈ R and
so δ = 0.

With this, we get the situation (a[x, y])n = a[x, y] for all x, y ∈ R.
Suppose that there exists v ∈ V such that the vectors v and av are linearly
D-independent. Again as dim(VD) ⩾ 3, there exists u ∈ V such that the
set {v, av, u} is linearly D-independent. By density of R, we have x, y ∈ R
such that

vx = 0, vax = w, wx = v, vy = w, vay = 0, wy = 2v.

It implies that 0 = v((a[x, y])n − a[x, y]) = (2n − 2)v, which is a con-
tradiction. Therefore, one can easily őnd that a ∈ C, by repeating the
similar arguments as above. Thus, we obtain an−1[x, y]n− [x, y] = 0 for all
x, y ∈ R. Again choosing linearly D-independent variables ρ1, ρ2, ρ3 ∈ V
such that

xρ1 = 0, xρ2 = ρ3, xρ3 = 0, yρ1 = ρ2, yρ2 = ρ3, yρ3 = 0.

It yields that ρ3 = (an−1[x, y]n − [x, y])ρ1 = 0, a contradiction.
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We now assume that dim(VD) ⩽ 2. In this case R is a simple GPI-ring
with unity and so is a central simple őnite dimensional algebra over its
center. In light of Lemma 2 of [14], it follows that there exists a suitable
őeld F (say) such that R ⊆Mi(F ), ring of i× i matrices with entries from
F, moreover R and Mi(F ) satisfy same generalized polynomial identities.
Therefore Mi(F ) satisőes Ω(x, y). If i ⩾ 3, a contradiction follows as
above. If i = 1, then R is commutative and if i = 2, then R satisőes s4,
both of these cases also take us to a contradiction.

Finally, we consider the case when dimD(V ) = ∞. By Wong [20,
Lemma 2], R satisőes (ax+ [q, x])n − (ax+ [q, x]) = 0. Let v and qv be
the linearly D-independent vectors. By density of R, we have x ∈ R such
that xv = 0 and xqv = 2v. It follows that

0 = (ax+ [q, x])n − (ax+ [q, x])v = (2n − 2)v,

since Char(R) ̸= 2, we get (2n−1 − 1)v = 0, again a contradiction.
Case 2. Suppose that δ is not the inner derivation of U, i.e., δ is outer.

By Kharchenko’s result [13], U must satisőes the following generalized
polynomial identity

(a[x, y] + [r, y] + [x, s])n − (a[x, y] + [r, y] + [x, s]). (2)

As we mentioned earlier, R may be replaced by U and U ⊗C C according
as C is őnite or inőnite, and assume that R is centrally closed over C.
Therefore R satisőes the GPI (2). In particular R satisőes the blended
component [r, y]n − [r, y]. That means, R is a PI-ring. With the aid
of Lanski’s result [14, Lemma 2], we őnd a suitable őled F such that
R ⊆ Mi(F ) and Mi(F ) satisőes the identity [r, y]n − [r, y]. Obviously
k ≠ 1, 2. For k > 2, we choose r = eij and y = ejj , we get 0 = [eij , ejj ]

n −
[eij , ejj ] = −eij ≠ 0, which is again a contradiction. It completes the proof
of the theorem.

Proceeding in same way with necessary variations, the following theo-
rem can be easily proved.

Theorem 2. Let R be a prime ring with Char(R) ̸= 2. If R admits a
generalized derivation F associated with a derivation δ such that F (x)n =
F (x) for all x ∈ R, where n > 1 is a őxed integer, then R is commutative.

Corollary 1. Let R be a prime ring with Char(R) ̸= 2. If for some őxed
integer n > 1, [x, y]n = [x, y] for all x, y ∈ R, then R is commutative.

Proof. Let us őx x. Then we have Ix(y)
n = Ix(y) for all y ∈ R, where Ix

denotes the inner derivation associated with x. In view of Theorem 2, R
is commutative.
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2. A result on automorphisms

It is well-known that every automorphism of R can be uniquely ex-
tended to U. An automorphism of R is called U -inner if there exists an
invertible element q ∈ U such that σ(x) = qxq−1 for all x ∈ R. Otherwise
σ is called U -outer. Let us denote the group of all automorphisms of R
by G and the group consisting of all the U -inner automorphisms of R
by GInn. Recall that a subset A of G is said to be independent (modulo
GInn) if for any u1, u2 ∈ A, u1u

−1
2 ∈ GInn implies u1 = u2. We begin our

discussion with some important facts of this subject that will be used in
the development of our main proof.

Fact 5. [7, Theorem 3] Let ϕ = Φ(x
uj

i ) be a generalized polynomial
identity with automorphisms of R reduced with respect to A. If for all
xi ∈ X and uj ∈ A, the x

uj

i -word degree of ϕ = Φ(x
uj

i ) is strictly less than
Char(R), when Char(R) ̸= 0, then Φ(yij) = 0 is a generalized polynomial
identity of R.

Fact 6. [7, Theorem 1] Let R be a prime ring and I a two sided ideal
of R. Then I, R and U satisfy the same generalized polynomial identities
with automorphisms.

Fact 7. [2, Lemma 7.1] Let VD be a vector space over a division ring
D with dimD(V ) ⩾ 2 and ψ ∈ End(V ). If v and ψv are D-dependent for
every v ∈ V , then there exists ℓ ∈ D such that ψv = ℓv for every v ∈ V .

Fact 8. [12] Let R be a domain and σ be an automorphism of R which is
outer. If R satisőes a GPI Φ(xi, σ(xi)), then R also satisőes the nontrivial
GPI Φ(xi, yi), where xi and yi are distinct indeterminates.

Let VD be a right vector space over a division ring D. We denote by
End(VD) the ring of D-linear transformations on VD. A map q : VD → VD
is said to be a semi-linear transformation if q is additive and there exists
an automorphism σ of D such that q(vλ) = (qv)σ(λ) for every v ∈ V
and λ ∈ D. By a theorem of Jacobson [11, Isomorphism Theorem, p.79],
σ(x) = qxq−1 for every x ∈ End(VD), where σ is an automorphism of
End(VD) and q is the invertible semi-linear transformation.

We őrst prove the following lemmas which are crucial in our discussion.

Lemma 1. Let σ : End(VD) → End(VD) be an automorphism such that
for some őxed integer n ⩾ 2, σ([x, y])n = σ([x, y]) for all x, y ∈ End(VD).
If dim(VD) ⩾ 2, then σ is the identity map.
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Proof. As discussed above, we have σ(x) = qxq−1 for all x ∈ End(VD)
and q(vλ) = (qv)σ(λ) for all v ∈ V and λ ∈ D. By the given hypothesis,
we őnd that

(q[x, y]q−1)n − q[x, y]q−1 = 0 ∀ x, y ∈ End(VD).

Since dim(VD) ⩾ 2, suppose that for any v ∈ V, the vectors v, qv are
linearly D-independent. Further, we assume that q−1v /∈ SpanD{v, qv},
so the set {v, qv, q−1v} is linearly D-independent. By density of R, there
exist x, y ∈ End(VD) such that

xv = v, xqv = v, xq−1v = 0, yv = 0, yqv = v, yq−1v = v.

In this view, it follows that

0 = ((q[x, y]q−1)n − q[x, y]q−1)v = −qv ̸= 0,

a contradiction. Therefore the set {v, qv, q−1v} is linearly D-dependent
and so there exist α, β ∈ D such that q−1v = vα+ qvβ. We notice that
β ̸= 0, because otherwise we have q−1v = vα implies v = qvα, which is
an absurd. Now we choose x, y ∈ End(VD) such that

xv = v, xqv = v, yv = 0, yqv = v.

It implies that

0 = ((q[x, y]q−1)n − q[x, y]q−1)v = −βqv,

a contradiction. Therefore v and q−1v are linearly D-dependent. By Fact 7,
q−1v = vℓ, where ℓ ∈ D and for all v ∈ V. Thus for each x ∈ End(VD),
we have q−1(xv) = xvℓ. It implies that

xv = q−1(qxv) = (qxv)ℓ = qx(vℓ) = qx(q−1v) = (qxq−1)v = σ(x)v

for all x ∈ End(VD) and v ∈ V. It implies that (σ(x) − x)V = (0), and
hence we get σ(x) = x for all x ∈ End(VD).

Lemma 2. Let R be a prime ring with Char(R) ̸= 2. If R admits an outer
automorphism σ such that for a őxed integer n > 1, σ([x, y])n = σ([x, y])
for all x, y ∈ R, then R is commutative.

Proof. In case σ is the identity map, we have [x, y]n = [x, y] for all x, y ∈ R.
In view of Corollary 1, R is commutative. Suppose that σ is a non-identity
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map. Thus σ([x, y])n − σ([x, y]) is a nontrivial differential identity for R,
by Chaung [6, Main Theorem], R must satisfy a nontrivial generalized
polynomial identity. In fact, U satisőes the same generalized polynomial
identity (see Fact 1). Moreover, U is a primitive ring and isomorphic to a
dense ring of linear transformations of some vector space V over a division
ring D (see [18, Theorem 3]).

In case U is a domain, by Kharchenko [12], U satisőes the polynomial
identity [x, y]m − [x, y]. With the aid of Corollary 1, we are done.

Assume that U is not a domain, then we have σ(x) = qxq−1 for all
x ∈ U. In this view, it follows that U satisőes the nontrivial GPI

(q[x, y]q−1)n − q[x, y]q−1.

Notice that if for any v ∈ V, the vectors v and q−1v are linearly D-
dependent, then σ becomes the identity map by Lemma 1, and we have
[x, y]n = [x, y] for all x, y ∈ R, hence the conclusion follows as above.
Thus we assume that there exists some v ∈ V such that v and q−1v are
linearly D-independent vectors. Let us őrst assume that dimD(V ) ⩾ 3.
Then there exists some w ∈ V such that the set {v, q−1v, w} is linearly
D-independent. In view of density of U, we őnd x, y ∈ U such that

xv = 0, xq−1v = −v, xw = 0, yv = v, yq−1v = 0, yw = q−1v.

From the hypothesis, we őnd that 0 = ((q[x, y]q−1)n − q[x, y]q−1)v = qv,
and hence v = 0, a contradiction. Now assume that dim(VD) = 2, i.e.,
U ∼=M2(D). Therefore σ([x, y])n − σ([x, y]) = 0 for all x, y ∈ U, since sσ-
word degree is 2 and characteristic of R is > 2, invoking Fact 5, U satisőes
the polynomial identity [x, y]n − [x, y]. As above, R is commutative, it
completes the proof.

Finally, we are ready to prove our main result.

Theorem 3. Let R be a prime ring with Char(R) ̸= 2, L a nonzero Lie
ideal of R, U the Utumi quotient ring and C the extended centroid of R.
Suppose that R admits an automorphism σ such that σ(u)n = σ(u) for all
u ∈ L, where n > 1 is a őxed positive integer, then either L ⊆ Z(R) or L
is commutative and R satisőes s4.

Proof. If L ⊆ Z(R), then we are done. Let us suppose that L ̸⊆ Z(R). By
hypothesis, we have σ(u)n = σ(u) for all u ∈ L. If L is not commutative,
then by Fact 4 and Fact 6, it follows that σ([x, y])n = σ([x, y]) for all
x ∈ R. We now have the following two cases (see [12]).
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Case 1. Let us assume that σ is not U -inner, i.e., σ is U -outer. Then
a contradiction follows from Lemma 2.

Case 2. If σ is U -inner, i.e., there exists an invertible q ∈ U such that
σ(x) = qxq−1 for all x ∈ R, then for all x, y ∈ R, we have

(q[x, y]q−1)n = q[x, y]q−1.

Further if q ∈ C, then we have nothing to prove. Thus q /∈ C. It implies that
Λ(x, y) = (q[x, y]q−1)n − q[x, y]q−1 is a nontrivial generalized polynomial
identity for R as well as for U .

As in the case of generalized derivations, we mention that C is the
algebraic closure of C if C is inőnite and C = C if C is őnite. One may
observe that U ∼= U ⊗C C ⊆ U ⊗C C, and U ⊗C C is a prime ring with
extended centroid C (see [8, Theorem 3.5]). Thus Λ(x, y) is a nontrivial
generalized polynomial identity for U ⊗C C. In view of Theorem 6.4.4
of [3], U ′ (the Utumi quotient ring of U ⊗C C) also satisőes the nontrivial
generalized polynomial identity Λ(x, y). In addition, by Martindale [18],
we őnd that U ′ ∼= End(VD). Therefore by invoking Lemma 1, we have
[x, y]n = [x, y] for all x, y ∈ R, which implies that R is commutative,
a contradiction. Hence L is commutative and by [15, Theorem 4], R
satisőes s4.

Corollary 2. Let R be a prime ring with Char(R) ̸= 2. If R admits an
automorphism σ such that σ(x)n = σ(x) for all x ∈ R, where n > 1 is a
őxed positive integer, then R is commutative.
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