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Central and non central codes of dihedral 2-groups
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Abstract. In this paper, the central and non central codes

of semisimple dihedral group algebra FqG, over a őnite őeld Fq, are

constructed. Further the distances of these central and non central

codes are computed.

Introduction

Let Fq be a őnite őeld with q elements and G be the dihedral group
of order 2m+1 coprime to q, so that the group algebra FqG is semisimple.
A group code over a őnite őeld Fq is an ideal of the group algebra FqG.
Semisimplicity of the group algebra ensures that every ideal is generated by
an idempotent element. Central(resp. non central) idempotents correspond
to central(resp. non central) codes. A code is said to be cyclic, abelian,
non abelian, metacyclic or dihedral code if the underlying group is of that
kind. The Hamming distance between two codewords of the code is the
number of places at which they are different and distance of the code is
minimum distance between any pair of distinct codewords. A code with
higher minimum distance can correct more errors and hence considered
an efficient code.

A minimal central code is an ideal which is minimal in the set of all two
sided ideals of the semisimple group algebra and is generated by primitive
central idempotent. A description of primitive central idempotents of FqG,
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G metacyclic, has been given by Bakshi et al. ([1], Theorem 4) in terms of
Shoda pairs. In [2], Dutra et al. expressed primitive central idempotents as
elements of the group algebra FqG, where G is the dihedral group of order
2m+1 and q ≡ 3 or 5 (mod 8) and computed distances of the corresponding
codes. In this paper, we will express primitive central idempotents of the
group algebra FqG, where G is the dihedral group of order 2m+1 and
q ≡ ±1 (mod 2m), as elements of group algebra and will further compute
the distances of codes generated by these primitive central idempotents.
We will prove in Theorem 3 that the distances of these central codes are
higher than the distances of the central codes computed in [2].

In [3], Sabin and Lomonaco proved that central metacyclic codes are
combinatorially equivalent to abelian codes which are not desirable. This
motivated the search for non central codes. In [4], Assuena and Milies
studied certain left codes with the help of primitive central idempotents
obtained by Dutra et al. in [2] and also proved the existence of certain
non central codes that are combinatorially equivalent to cyclic codes. In
continuation of the work in [2] and [4], we construct certain non central
idempotents with the help of central ones and compare the distances of
corresponding non central codes with the central ones in section 4.

1. Primitive central idempotents

It is known that if a group G is cyclic then the set Irr(G) of ir-
reducible characters of G over Fq forms a group with the operation:
λλ∗(g) = λ(g)λ∗(g) for λ, λ∗ ∈ Irr(G) and g ∈ G. Moreover G ∼= Irr(G).
For subgroups H and K of őnite group G, H ⊴ K ⩽ G, K/H cyclic,
Irr(K/H) is a cyclic group. For a generator λ of Irr(K/H), let Cq(λ) =

{λ, λq, λq2 , . . . , λqo−1

} be the q-cyclotomic coset of λ, where o is the mul-
tiplicative order of q modulo order of K/H. Let C (K/H) be the set of
q-cyclotomic cosets of Irr(K/H) containing the generators of Irr(K/H)
and R(K/H) be the set of distinct orbits of C (K/H) under the action
(∗) of NG(H) ∩NG(K) on C (K/H) given by g ∗ C = g−1Cg.

For each C ∈ R(K/H), set
• εc(K,H) = [K : H]−1Ĥ

∑
X∈K/H trFq(ξ)/Fq

(χ(X)) g−1
X , where χ is

representative of q-cyclotomic coset C , ξ is primitive [K : H]-th
root of unity in Fq, gX denotes a representative of X ∈ K/H and

Ĥ = |H|−1
∑

h∈H h;
• eC(G,K,H) is the sum of distinct G-conjugates of εc(K,H).

Let

G = ⟨a, b | a2
m

= e, b2 = e, b−1ab = a2
m
−1⟩ (1)
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and Fq be a őeld with q elements and q ≡ ±1 (mod 2m). The result
[1, Theorem 4] gives the complete set of primitive central idempotents of
semisimple group algebra FqG in terms of Shoda pairs as follows:

{ec(G,G,G)|C ∈ R (G/G)} ∪ {ec(G,G, ⟨a2, b⟩)|C ∈ R
(
G/⟨a2, b⟩

)
}

∪ {ec(G,G, ⟨a2, ab⟩)|C ∈ R
(
G/⟨a2, ab⟩

)
}

∪ {ec(G,G, ⟨a⟩)|C ∈ R (G/⟨a⟩)}

∪ {ec(G, ⟨a⟩, ⟨av⟩)|C ∈ R (⟨a⟩/⟨av⟩) , v = 2i, 2 ⩽ i ⩽ m}

Now we will express these primitive central idempotents in simpler form
as elements of the group algebra. It is easy to see that the idempotent

corresponding to ec(G,G,G) is ⟨̂b⟩⟨̂a⟩, the idempotent corresponding

to ec(G,G, ⟨a2, b⟩) is ⟨̂a2, b⟩ − Ĝ, the idempotent corresponding to

ec(G,G, ⟨a2, ab⟩) is ̂⟨a2, ab⟩ − Ĝ, the idempotent corresponding to

ec(G,G, ⟨a⟩) is ⟨̂a⟩ − Ĝ.

Let us now compute the idempotent corresponding to ec(G, ⟨a⟩, ⟨av⟩),
v = 2i, 2 ⩽ i ⩽ m, C representative of an orbit of R(⟨a⟩/⟨av⟩). Let
Irr(⟨a⟩/⟨av⟩) be generated by λ, where λ is an irreducible character of
⟨a⟩/⟨av⟩ over Fq, deőned by λ

(
ak
)
= ξk, 0 ⩽ k ⩽ v−1 and ξ is a primitive[

⟨a⟩ : ⟨av⟩
]
-th, i.e., v-th root of unity in Fq.

Case I: Let q ≡ 1(mod 2m).

In this case, C (⟨a⟩/⟨av⟩) = {Cq(λ), Cq(λ
3), · · · , Cq(λ

v−1)}, Cq(λ
j) =

{λj} and R(⟨a⟩/⟨av⟩) = {orb(Cq(λ)), orb(Cq(λ
3)), · · · , orb(Cq(λ

v
2
−1))},

where orb(Cq(λ
j)) = {Cq(λ

j), Cq(λ
−j)}.

For Cq(λ
j), representative of orb(Cq(λ

j)) ∈ R(⟨a⟩/⟨av⟩) and j an odd
natural number strictly less than v

2 , we have

ϵCq(λj)(⟨a⟩, ⟨a
v⟩) =

1

2m
[
1 + av + a2v + · · ·+ a2

m
−v

][
λj(e) + λj(a)a−1

+ λj(a2)a−2 + · · ·+ λj(av−1)a−(v−1)
]

=
1

2m
[
1 + av + a2v + · · ·+ a2

m
−v

][
1 + ξja−1

+ ξ2ja−2 + · · ·+ ξj(v−1)a−(v−1)
]

=
1

2m
[1 + ξj(v−1)a+ ξj(v−2)a2 + · · ·+ ξjav−1

+ av + ξj(v−1)av+1 + · · ·+ a2v + · · ·+ a2
m
−v

+ ξj(v−1)a2
m
−v+1 + · · ·+ ξja2

m
−1]
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Since eCq(λj)(G, ⟨a⟩, ⟨av⟩) is the sum of distinct G-conjugates of
ϵcq(λj)(⟨a⟩, ⟨a

v⟩, we have

eCq(λj)(G, ⟨a⟩, ⟨av⟩) = ϵCq(λj)(⟨a⟩, ⟨a
v⟩) + ϵCq(λj)(⟨a⟩, ⟨a

v⟩)b

=
1

2m
[
1 + ξj(v−1)a+ · · ·+ ξjav−1 + av

+ ξj(v−1)av+1 + · · ·+ a2v + · · ·+ a2
m
−v

+ ξj(v−1)a2
m
−v+1 + · · ·+ ξja2

m
−1

]

+
1

2m
[
1 + ξja+ · · ·+ ξj(v−1)av−1

+ av + ξjav+1 + · · ·+ a2v + · · ·+ a2
m
−v

+ ξja2
m
−v+1 + · · ·+ ξj(v−1)a2

m
−1

]

=
1

2m
[
2 + (ξj + ξ−j)a+ (ξ2j + ξ−2j)a2 + · · ·

+ (ξj + ξ−j)av−1 + 2av + (ξj + ξ−j)av+1

+ (ξ2j + ξ−2j)av+2 + · · ·+ 2a2v + · · ·

+ 2a2
m
−v + (ξj + ξ−j)a2

m
−v+1 + · · ·

+ (ξj + ξ−j)a2
m
−1

]

=
1

2m
[
1 + av + a2v + · · ·+ a2

m
−v

][
2 + (ξj + ξ−j)a

+ (ξ2j + ξ−2j)a2 + · · ·+ (ξj + ξ−j)av−1
]

We will denote eCq(λj)(G, ⟨a⟩, ⟨av⟩) for v = 2i, 2 ⩽ i ⩽ m by eji and take

αj(k) = ξjk + ξ−jk, 1 ⩽ k ⩽ 2i − 1.

eji =
1

2m




2m−i
−1∑

l=0

a2
il







2i−1∑

k=0

αj(k)a
k




For 1 ⩽ l ⩽ 2i−1 − 1, αj(2i−1+l) = ξj(2
i−1+l) + ξ−j(2i−1+l)) = −ξjl − 1

ξjl
=

−αj(l),

eji =
1

2m




2m−i
−1∑

l=0

a2
il







2i−1
−1∑

k=0

αj(k)

{
ak − a2

i−1+k
}
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=
1

2m

(
1− a2

i−1
)



2m−i
−1∑

l=0

a2
il







2i−1
−1∑

k=0

αj(k)a
k




= 21−i
(
⟨̂a2i⟩ − ⟨̂a2i−1⟩

)



2i−1
−1∑

k=0

αj(k)a
k




where j is an odd natural number strictly less than 2i−1.
Case II: Let q ≡ −1(mod 2m).
In this case, C (⟨a⟩/⟨av⟩) = {Cq(λ), Cq(λ

3), · · · , Cq(λ
v
2
−1)}, where

Cq(λ
j) = {λj , λ−j} and R(⟨a⟩/⟨av⟩) = {orb(Cq(λ)), orb(Cq(λ

3)), . . . ,
orb(Cq(λ

v
2
−1))}, orb(Cq(λ

j)) = {Cq(λ
j), Cq(λ

−j)}.
For Cq(λ

j) ∈ R(⟨a⟩/⟨av⟩), j an odd natural number strictly less than v
2 ,

we have

ϵcq(λj)(⟨a⟩, ⟨a
v⟩) =

1

2m
[
1 + av + a2v · · ·+ a2

m
−v

]

[
2 + trFq(ξ)/Fq

(
ξj
)
a−1 + trFq(ξ)/Fq

(
ξ2j

)
a−2

+ · · ·+ trFq(ξ)/Fq

(
ξj(v−1)

)
a−(v−1)

]

=
1

2m
[
1 + av + a2v · · ·+ a2

m
−v

]

[
2 + (ξj + ξ−j)a−1 + (ξ2j + ξ−2j)a−2

+ · · ·+ (ξj + ξ−j)a−(v−1)
]

=
1

2m
[
2 + (ξj + ξ−j)a+ (ξ2j + ξ−2j)a2

+ · · ·+ 2av + (ξj + ξ−j)av+1

+ (ξ2j + ξ−2j)av+2 + · · ·+ 2a2v + · · ·

+ 2a2
m
−v + (ξj + ξ−j)a2

m
−v+1

+ (ξ2j + ξ−2j)a2
m
−v+2 + · · ·

+ (ξj + ξ−j)a2
m
−1

]

Since eCq(λj)(G, ⟨a⟩, ⟨av⟩) is the sum of distinct G-conjugates of
ϵcq(λj)(⟨a⟩, ⟨a

v⟩ which gives us

eCq(λj)(G, ⟨a⟩, ⟨av⟩) = ϵCq(λj)(⟨a⟩, ⟨a
v⟩)

The primitive central idempotent eji = eCq(λj)(G, ⟨a⟩, ⟨av⟩) for v = 2i, 2 ⩽

i ⩽ m will have same expression as in Case I. Thus we have the following
theorem.
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Theorem 1. Let G be the dihedral group of order 2m+1 and Fq be a
őnite őeld with q elements such that q ≡ ±1 (mod 2m). Then the primitive
central idempotents of FqG are as follows:

idempotent

e
′

1 b̂â

e
′

2 ⟨̂a2, b⟩ − Ĝ

e
′

3
̂⟨a2, ab⟩ − Ĝ

e
′

4 ⟨̂a⟩ − Ĝ

eji 21−i
(
⟨̂a2i⟩ − ⟨̂a2i−1⟩

)(∑2i−1
−1

k=0 αj(k)a
k
)

where 2 ⩽ i ⩽ m, j is odd natural number strictly less than 2i−1, αj(k) =

ξjk + ξ−jk, ξ is a primitive 2i-th root of unity and 0 ⩽ k ⩽ 2i−1 − 1,
k ̸= 2i−2.

2. Central codes

In [2], Dutra et al. computed the complete set of primitive central
idempotents of group algebra FqG, where G is the dihedral group of order
2m+1 and q ≡ 3 or 5 (mod 8) and computed the distances of the codes
using these primitive central idempotents as follows:

Theorem 2 ([2]). Let Fq be a őnite őeld with q elements and G be the
dihedral group of order 2m+1, m ⩾ 3 and q ≡ 3 or 5 (mod 8). Then the
complete set of primitive central idempotents and the distances of respective
codes in the group algebra FqG is:

e distance of d[(FqG)e]

e
′

1 b̂â 2m+1

e
′

2 ⟨̂a2, b⟩ − Ĝ 2m+1

e
′

3
̂⟨a2, ab⟩ − Ĝ 2m+1

e
′

4 ⟨̂a⟩ − Ĝ 2m+1

ei ⟨̂a2i⟩ − ⟨̂a2i−1⟩ 2m−i+1

where 2 ⩽ i ⩽ m.

In the following theorem, we will compute bounds on the distances
of codes generated by the primitive central idempotents of FqG, G is the
dihedral group of order 2m+1, q ≡ ±1(mod 2m). We will prove that in
this case, central codes possess higher minimum distance than the central
codes with the condition q ≡ 3 or 5 (mod 8).
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Theorem 3. In the semisimple group algebra deőned FqG, G is the
dihedral group of order 2m+1 and q ≡ ±1(mod 2m), the distances of codes
generated by primitive central idempotents of the group algebra FqG deőned
in Theorem 1 are as follows:

idempotent distance of C ′

l(or Cj
i )

e
′

1 b̂â 2m+1

e
′

2 ⟨̂a2, b⟩ − Ĝ 2m+1

e
′

3
̂⟨a2, ab⟩ − Ĝ 2m+1

e
′

4 ⟨̂a⟩ − Ĝ 2m+1

eji 21−i
(
⟨̂a2i⟩ − ⟨̂a2i−1⟩

)
2m−i+1 ⩽ d(Cj

i ) ⩽ 2m(1− 21−i)(∑2i−1
−1

k=0 αj(k)a
k
)

where C
′

l (resp. Cj
i ) is the code corresponding to an ideal FqGe

′

l(resp.

FqGeji ) generated by primitive central idempotent e
′

l(resp. e
j
i ), 2 ⩽ i ⩽ m,

1 ⩽ l ⩽ 4, j is odd natural number strictly less than 2i−1, αj(k) = ξjk+ξ−jk,
ξ is a primitive 2i-th root of unity and 0 ⩽ k ⩽ 2i−1 − 1, k ̸= 2i−2.

Proof. It follows from [4, Lemma 2.3] that d(C
′

l ) = 2m+1, 1 ⩽ l ⩽ 4.
Now we will compute bounds for the distance of the codes generated by
primitive central idempotents eji .

eji = 21−i
(
⟨̂a2i⟩ − ⟨̂a2i−1⟩

)



2i−1
−1∑

k=0

αj(k)a
k




Distance of the codes generated by the idempotents ⟨̂a2i⟩ − ⟨̂a2i−1⟩, 2 ⩽

i ⩽ m is 2m−i+1 so d(Cj
i ) ⩾ 2m−i+1. Since αj(k) = 0 only when k = 2i−2,

the number of non-zero coefficients of eji are 2m − 2m

2i−1 = 2m(1 − 21−i)

which implies that d(Cj
i ) ⩽ 2m(1 − 21−i). We conclude that 2m−i+1 ⩽

d(Cj
i ) ⩽ 2m(1− 21−i).

2.1. Dihedral codes of order 16

In [2], Dutra et al. proved that the number of simple components of
rational group algebra QG and FqG are equal when G is dihedral group
of order 16 and q ≡ 3 or 5 (mod 8). Further they have computed the
distances of codes generated by primitive central idempotents of FqG,
q ≡ 3 or 5 (mod 8). In the following theorem, we will compute distances
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of codes generated by primitive central idempotents of group algebra FqG
for gcd(q, 16) = 1 thus modifying the result of Dutra et al.:

Theorem 4. Let G be the dihedral group of order 16 and Fq be a őnite őeld
with q elements . Then the complete set of primitive central idempotents
of the semisimple group algebra FqG and the distances of respective codes
in the group algebra FqG are as follows:

q ≡ 1 or 7 (mod 8), q ≡ 3 or 5 (mod 8)

e d[(FqG)e] e d[(FqG)e]

b̂â 16 b̂â 16

⟨̂a2, b⟩ − Ĝ 16 ⟨̂a2, b⟩ − Ĝ 16
̂⟨a2, ab⟩ − Ĝ 16 ̂⟨a2, ab⟩ − Ĝ 16

⟨̂a⟩ − Ĝ 16 ⟨̂a⟩ − Ĝ 16

⟨̂a4⟩ − ⟨̂a2⟩ 4 ⟨̂a4⟩ − ⟨̂a2⟩ 4
1
8(1− a4) 2 ⩽ d[(FqG)e] ⟨̂e⟩ − ⟨̂a4⟩ 2

(2 + αa− αa3) ⩽ 6
1
8(1− a4) 2 ⩽ d[(FqG)e] - -

(2− αa+ αa3) ⩽ 6

where α2 = 2.

3. Non central codes

Now we turn our attention towards certain non central codes that
will give us codes of higher minimum distance than the codes generated
by central ones. In [4], Assuena and Milies computed some non central
idempotents with the help of central ones of the semisimple group algebra
FqG, where G is split metacyclic group of order pmln, p and l distinct odd
primes and also for dihedral group of order 2pm, p odd. In continuation of
the work done in [4], we will construct certain non central dihedral codes
that will give us higher minimum distance than the distance of central
codes obtained in Theorems 2 and 3.
Let G be the dihedral group of order 2m+1 given by presentation (1),

q ≡ 3 or 5 (mod 8) and ei = ⟨̂a2i⟩ − ⟨̂a2i−1⟩, 2 ⩽ i ⩽ m be as in Theorem 2.
It is easy to see that b̂ei and (1− b̂)ei are non central idempotens of FqG.

Theorem 5. With the notations above, (FqG) b̂ei and (FqG) (1− b̂)ei are
isomorphic to abelian codes as vector spaces.
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Proof. Consider an abelian group C = C2m × C2, where C2m = ⟨u⟩ is a
cyclic group of order 2m and C2 = ⟨v⟩ of order 2. Denote by ki = ⟨u2

i

⟩ −
⟨u2

i−1

⟩, 2 ⩽ i ⩽ m. Consider a map Λ : G → C, where Λ(aibj) = uivj . It
follows directly from the deőnition of Λ that Λ(ei) = ki. We claim that

Λ(gb̂ei) = Λ(g)v̂ki ∀ g ∈ G.

If g is of the form ar, 1 ⩽ r ⩽ 2m,

Λ(gb̂ei) = Λ(ar b̂ei) =
1

2

[
Λ(arei) + Λ(arbei)

]
=

1

2

[
Λ(arei) + Λ(areib)

]

=
1

2

[
urki + urvki)

]
= urv̂ki = Λ(g)̂bei

If g is of the form arb, 1 ⩽ r ⩽ 2m,

Λ(arbb̂ei) = Λ(ar b̂ei) = Λ(g)̂bei

and

Λ(g(1− b̂)ei) = Λ(gei)− Λ(gb̂ei) = Λ(g)ki − Λ(g)v̂ki = Λ(g)(1− v̂)

This completes the proof.

Now we will construct more non central idempotents of dihedral group
algebra with the help of central ones.

Theorem 6. Let G be the dihedral group of order 2m+1, m ⩾ 3 given
by presentation (1) and Fq be őnite őeld with q elements. Then x̂ke are
non central idempotents of semisimple group algebra FqG where xk = akb,
0 ⩽ k ⩽ 2m − 1 and e is a primitive central idempotent of FqG.

x̂ke d[(FqG)x̂ke]

x̂kei 2m−i+2

x̂ke
j
i d[(FqG)eji ] ⩽ d[(FqG)x̂ke

j
i ] ⩽ 2m+1(1− 21−i)

where ei and eji are deőned in Theorems 2 and 3.

Proof. Let 0 ⩽ k ⩽ 2m − 1.
Case I: q ≡ 3 or 5 (mod 8)

x̂kei =
1

2m−i+2

[
1− a2

i−1

+ a2
i

− a3.2
i−1

+ · · ·+ a2
m
−2i − a2

m
−2i−1

+ akb− ak+2i−1

b+ ak+2ib− ak+3.2i−1

b+ · · ·+ ak+2m−2ib

− ak+2m−2i−1

b
]

a · x̂kei = −x̂kei · a.
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Since x̂kei are not commuting with a, hence x̂kei are non central idempo-
tents and w (x̂kei) = 2m−i+2 so distance of the code is atmost 2m−i+2.

An arbitrary element γ ∈ (FqG)x̂kei is of the form
∑2m−1

l=0 {αla
l +

βla
lb}x̂kei then

γ =
1

2m−i+2

2i−1
−1∑

j=0

{
(αj − αj+2i−1 + αj+2.2i−1 − · · · − αj+2m−2i−1

+ βj+k − βj+k+2i−1 + βj+k+2.2i−1 · · · − βj+k+2m−2i−1)

(aj − aj+2i−1

+ aj+2i − · · ·+ aj+2m−2i − aj+2m−2i−1

+ aj+kb− aj+k+2i−1

b+ aj+k+2ib− · · ·+ aj+k+2m−2ib

− aj+k+2m−2i−1

b)
}

where αl = αl+2m , βl = βl+2m .

Since each coefficient is shared by 2m−i+2 elements of the group. So
distance of the code is at least 2m−i+2. So we conclude that distance of
the code is 2m−i+2.

Case II: q ≡ ±1(mod 2m).

Note that if x̂ke
j
i = 0 then eji + xke

j
i = 0. But supp(eji ) ∈ ⟨a⟩ and

supp(xke
j
i ) ∈ ⟨a⟩b, so these elements have disjoint support. Consequently,

x̂ke
j
i ̸= 0 for all indices i and j mentioned above. So x̂ke

j
i are non zero

and non central idempotents. Moreover w
(
x̂ke

j
i

)
= 2m+1(1− 21−i). So

distance of the code is atmost 2m+1(1−21−i). Hence the result follows.

Theorem 7. The elements e+ x̂ka(1− x̂k)e are units inside the ideals
(FqG)e, where xk = akb, 0 ⩽ k ⩽ 2m − 1 and e is an idempotent deőned
in Theorems 2 and 3 other than e

′

l, 1 ⩽ l ⩽ 4.

Proof. Take ∆k = e+ x̂ka(1− x̂k)e and ∆
′

k = e− x̂ka(1− x̂k)e. We will
prove that ∆k∆

′

k = ∆
′

k∆k = e.

∆k∆
′

k = {e+ x̂ka(1− x̂k)e} {e− x̂ka(1− x̂k)e}

= e2 − ex̂ka(1− x̂k)e+ x̂ka(1− x̂k)e
2 + 0

= e− x̂ka(1− x̂k)e+ x̂ka(1− x̂k)e

= e

Similarly ∆
′

k∆k = e which tells us ∆
′

k is inverse of ∆k.
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It is easy to see that ∆k(x̂ke)∆
−1
k and ∆−1

k (x̂ke)∆k are equal to
(x̂k ± x̂ka(1− x̂k)) e and these elements are non central idempotents of
(FqG)e. The codes corresponding to idempotents (x̂k ± x̂ka(1− x̂k)) e are
better than central codes in terms of distance.

4. Examples

In the following examples, we will show that the distances of non
central codes of dihedral groups of order 8 and 16 are better than the
distances of central ones.

Example 1. Set G = ⟨a, b | a4 = e, b2 = e, b−1ab = a3⟩. The primitive
central idempotents of the semisimple group algebra FqG by [2, Table

1.1] are e
′

1 = b̂â, e
′

2 = ⟨̂a2, b⟩ − Ĝ, e
′

3 = ̂⟨a2, ab⟩ − Ĝ, e
′

4 = ⟨̂a⟩ − Ĝ
and e1 = 1

2 [1 − a2]. It follows from [4, Lemma 2.3] that d[(FqG)e
′

l] = 8,
1 ⩽ l ⩽ 4. For xk = akb,

e d[(FqG)e]

e1 2

x̂ke1 4

f1 2 ⩽ d[(FqG)f1]

f2 2 ⩽ d[(FqG)f2]

where f1 = (x̂k + x̂ka(1− x̂k)) e1 and f2 = (x̂k − x̂ka(1− x̂k)) e1.

Example 2. Set G = ⟨a, b | a8 = e, b2 = e, b−1ab = a7⟩.
Case I: When q ≡ 1 or 7 (mod 8).
The primitive central idempotents of the semisimple group algebra

FqG by Theorem 3 are e
′

1 = b̂â, e
′

2 = ⟨̂a2, b⟩ − Ĝ, e
′

3 = ̂⟨a2, ab⟩ − Ĝ,

e
′

4 = ⟨̂a⟩ − Ĝ and e12 = 1
4 [1− a2 + a4 − a6], e13 = 1

8(1− a4)(2 + αa− αa3)
and e33 =

1
8(1− a4)(2− αa+ αa3). For xk = akb,

e d[(FqG)e]

x̂ke
1
2 4 ⩽ d[(FqG)x̂ke

1
2] ⩽ 8

x̂ke
1
3 d[(FqG)e13] ⩽ d[(FqG)x̂ke

1
3] ⩽ 12

x̂ke
3
3 d[(FqG)e33] ⩽ d[(FqG)x̂ke

3
3] ⩽ 12

f1 4 ⩽ d[(FqG)f1] ⩽ 12

f2 d[(FqG)e13] ⩽ d[(FqG)f2]

f3 d[(FqG)e33] ⩽ d[(FqG)f3]

where f1 = (x̂k ± x̂ka(1− x̂k)) e
1
2, f2 = (x̂k ± x̂ka(1− x̂k)) e

1
3 and f3 =

(x̂k ± x̂ka(1− x̂k)) e
3
3.
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Case II: When q ≡ 3 or 5 (mod 8).
The primitive central idempotents of the semisimple group algebra FqG

by Theorem 2 are e
′

1 = b̂â, e
′

2 = ⟨̂a2, b⟩−Ĝ, e
′

3 = ̂⟨a2, ab⟩−Ĝ, e
′

4 = ⟨̂a⟩−Ĝ,
e1 =

1
4 [1− a2 + a4 − a6] and e2 =

1
2(1− a4). For xk = akb,

e d[(FqG)e]

x̂ke1 8

x̂ke2 4

f1 4 ⩽ d[(FqG)f1]

f2 2 ⩽ d[(FqG)f2] ⩽ 12

where f1 = (x̂k ± x̂ka(1− x̂k)) e1 and f2 = (x̂k ± x̂ka(1− x̂k)) e2.
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