© Algebra and Discrete Mathematics Volume **29** (2020). Number 2, pp. 173–179 DOI:10.12958/adm1545

Morita equivalent unital locally matrix algebras^{*} O. Bezushchak and B. Oliynyk

Communicated by A. P. Petravchuk

ABSTRACT. We describe Morita equivalence of unital locally matrix algebras in terms of their Steinitz parametrization. Two countable-dimensional unital locally matrix algebras are Morita equivalent if and only if their Steinitz numbers are rationally connected. For an arbitrary uncountable dimension α and an arbitrary not locally finite Steinitz number s there exist unital locally matrix algebras A, B such that dim_F A = dim_F B = α , $\mathbf{st}(A) = \mathbf{st}(B) = s$, however, the algebras A, B are not Morita equivalent.

Introduction

Let F be a ground field. Throughout the paper we consider unital associative F-algebras. An algebra A with a unit 1_A is called a *unital locally matrix algebra* if an arbitrary finite collection of elements $a_1, \ldots, a_s \in A$ lies in a subalgebra $B, 1_A \in B \subset A$, that is isomorphic to a matrix algebra $M_n(F), n \ge 1$.

The idea of parametrization of unital locally matrix algebras with Steinitz numbers was introduced by J. G. Glimm [1]. Diagonal locally simple Lie algebras of countable dimension were parametrized with Steinitz numbers by A. A. Baranov and A. G. Zhilinskii in [2,3]. The extension of these results to regular relation structures was done in [4].

In this paper we apply Steinitz parametrisation to Morita equivalence classes of unital locally matrix algebras. We show that two countabledimensional unital locally matrix algebras are Morita equivalent if and

^{*}The second author was partially supported by the grant for scientific researchers of the "Povir u sebe" Ukranian Foundation.

²⁰¹⁰ MSC: 03C05, 03C60.

Key words and phrases: locally matrix algebra, Steinitz number, Morita equivalence.

only if their Steinitz numbers are rationally connected. This result does not extend to the uncountable case. Moreover, for an arbitrary uncountable dimension α and an arbitrary not locally finite Steinitz number s there exist unital locally matrix algebras A, B such that $\dim_F A = \dim_F B = \alpha$, $\mathbf{st}(A) = \mathbf{st}(B) = s$, however, the algebras A, B are not Morita equivalent.

1. Preliminaries

Let \mathbb{P} be the set of all primes and \mathbb{N} be the set of all positive integers. A *Steinitz* number (see [5]) is an infinite formal product of the form

$$\prod_{p \in \mathbb{P}} p^{r_p},\tag{1}$$

where $r_p \in \mathbb{N} \cup \{0, \infty\}$ for all $p \in \mathbb{P}$. The product of two Steinitz numbers

$$\prod_{p \in \mathbb{P}} p^{r_p} \quad \text{and} \quad \prod_{p \in \mathbb{P}} p^{k_p}$$

is a Steinitz number

$$\prod_{p\in\mathbb{P}}p^{r_p+k_p},$$

where we assume, that $t + \infty = \infty + t = \infty + \infty = \infty$ for all non-negative integers t.

Denote by \mathbb{SN} the set of all Steinitz numbers. Note, that the set \mathbb{N} is a subset of \mathbb{SN} .

A Steinitz number (1) is called *locally finite* if $r_p \neq \infty$ for any $p \in \mathbb{P}$. The numbers $\mathbb{SN} \setminus \mathbb{N}$ are called *infinite* Steinitz numbers.

J. G. Glimm [1] parametrised countable-dimensional locally matrix algebras with Steinitz numbers. In [6] we studied Steinitz numbers of unital locally matrix algebras of arbitrary dimensions.

Let A be an infinite-dimensional locally matrix algebra with a unit 1_A over a field F and let D(A) be the set of all positive integers n such that there is a subalgebra A', $1_A \in A' \subseteq A$, $A' \cong M_n(F)$.

Definition 1. The least common multiple of the set D(A) is called the Steinitz number $\mathbf{st}(A)$ of the algebra A.

Given two unital locally matrix algebras A and B their tensor product $A \otimes_F B$ is a unital locally matrix algebra and $\mathbf{st}(A \otimes_F B) = \mathbf{st}(A) \cdot \mathbf{st}(B)$ (see [7]). In particular, a matrix algebra $M_k(A)$ is a unital locally matrix algebra and $\mathbf{st}(M_k(A)) = k \cdot \mathbf{st}(A)$.

Theorem 1 ([1], see also [4]). If A and B are unital locally matrix algebras of countable dimension then A and B are isomorphic if and only if $\mathbf{st}(A) = \mathbf{st}(B)$.

Let A be an algebraic system. The universal elementary theory UTh(A) consists of universal closed formulas (see [8]) that are valid on A. The systems A and B of the same signature are universally equivalent if UTh(A) = UTh(B).

In [6] we showed that for unital locally matrix algebras A, B of dimension $> \aleph_0$ the equality $\mathbf{st}(A) = \mathbf{st}(B)$ does not necessarily imply that A and B are isomorphic. However, $\mathbf{st}(A) = \mathbf{st}(B)$ is equivalent to A, B being universally equivalent.

2. Morita equivalence

Definition 2. Two unital algebras A, B are called Morita equivalent if categories of their left modules are equivalent.

Let $e \in A$ be an idempotent. We refer to the subalgebra eAe as a *corner* of the algebra A. An idempotent $e \in A$ is said to be *full* if AeA = A. K.Morita [9] (see also [10,11]) proved that the algebras A, B are Morita equivalent if and only if there exists $n \ge 1$ and a full idempotent e in the matrix algebra $M_n(A)$ such that $B \cong eM_n(A)e$. Thus B is isomorphic to a corner of the algebra $M_n(A)$.

We say that a property P is *Morita invariant* if any two Morita equivalent algebras do satisfy or do not satisfy P simultaneously.

An F-algebra A is a tensor product of finite-dimensional matrix algebras if

$$A \cong \bigotimes_{i \in I} A_i, A_i \cong M_{n_i}(F), n_i \ge 1.$$

Every tensor product (see [11]) of finite-dimensional matrix algebras is a locally matrix algebra. G. Köthe [12] showed that the reverse is true for countable-dimensional algebras. A.G.Kurosh [13] (see also [7, 14]) constructed examples of locally matrix algebras that do not decompose into a tensor product of finite-dimensional matrix algebras.

Lemma 1. (1) Being a locally matrix algebra is a Morita invariant property.

(2) Being a tensor product of finite-dimensional matrix algebras is a Morita invariant property.

Proof. (1) Let algebras A, B be Morita equivalent. Then there exists $n \ge 1$ and a full idempotent $e \in M_n(A)$ such that $B \cong eM_n(A)e$. If the algebra A is locally matrix then so is the matrix algebra $M_n(A)$. J.Dixmier

[15] showed that a corner of a locally matrix algebra is a locally matrix algebra. Hence B is a locally matrix algebra.

(2) Now suppose that $A \cong \bigotimes_{i \in I} A_i, A_i \cong M_{n_i}(F), n_i \ge 1$. Then

$$M_n(A) \cong M_n(F) \otimes_F A \cong M_n(F) \otimes_F (\otimes_{i \in I} A_i).$$

There exists a finite subset $I_0 \subset I$, $|I_0| < \infty$, such that $e \in M_n(F) \otimes_F (\otimes_{i \in I_0} A_i)$. As above, the corner $e(M_n(F) \otimes_F (\otimes_{i \in I_0} A_i))e$ is a matrix algebra. Hence

$$B \cong eM_n(A)e \cong e(M_n(F) \otimes_F (\otimes_{i \in I_0} A_i))e \otimes_F (\otimes_{i \in I \setminus I_0} A_i),$$

which completes the proof of the lemma.

Definition 3. We say that nonzero Steinitz numbers s_1 , s_2 are rationally connected if there exists a rational number $q \in \mathbb{Q}$ such that $s_2 = q \cdot s_1$.

Theorem 2. 1) If unital locally matrix algebras A, B are Morita equivalent then their Steinitz numbers st(A), st(B) are rationally connected.

2) If unital locally matrix algebras A, B are countable-dimensional then they are Morita equivalent if and only if $\mathbf{st}(A)$, $\mathbf{st}(B)$ are rationally connected.

3) For an arbitrary not locally finite Steinitz number s there exist not Morita equivalent unital locally matrix algebras A, B of arbitrary uncountable dimensions such that $\mathbf{st}(A) = \mathbf{st}(B) = s$.

4) For a countable-dimensional unital locally matrix algebra A the Morita equivalence class of A is countable up to isomorphism. For a unital locally matrix algebra of an arbitrary dimension the Morita equivalence class is countable up to universal equivalence.

Remark 1. Countability of Morita equivalence classes of finitely presented algebras was discussed in [16–18].

Let A be a locally matrix algebra, let $a \in A$. There exists a subalgebra $1_A \in A_1 < A$, $a \in A_1$, such that $A_1 \cong M_n(F)$, $n \ge 1$. Let r be the range of the matrix a in A_1 . Let

$$r(a) = \frac{r}{n}, \quad 0 \leqslant r(a) \leqslant 1.$$

V.M.Kurochkin [14] noticed that the number r(a) does not depend on a choice of the subalgebra A_1 . We will call r(a) the *relative range* of the element a.

Lemma 2. Let e be an idempotent of a locally matrix algebra A. Then $\mathbf{st}(eAe) = r(e) \cdot \mathbf{st}(A)$.

Proof. Consider the family of all matrix subalgebras $1_A \in A_i < A$, $A_i \cong M_{n_i}(F)$, $i \in I$, such that $e \in A_i$. Then $\mathbf{st}(A) = \operatorname{lcm}(n_i, i \in I)$. The range of the matrix e in A_i is equal to $r(e) \cdot n_i$. Hence

$$eA_i e \cong M_{r(e) \cdot n_i}(F)$$
 and $\mathbf{st}(eAe) = \operatorname{lcm}(r(e) \cdot n_i, i \in I) = r(e) \cdot \mathbf{st}(A).$

Proof of Theorem 2. 1) Let A, B be locally matrix algebras that are Morita equivalent. Hence there exists $k \ge 1$ and an idempotent $e \in M_k(A)$ such that $B \cong eM_k(A)e$. Let r(e) be the relative range of the idempotent e in the locally matrix algebra $M_k(A)$. By Lemma 2

$$\mathbf{st}(B) = r(e) \cdot \mathbf{st}(M_k(A)) = r(e) \cdot k \cdot \mathbf{st}(A).$$

Since the number $r(e) \cdot k$ is rational it follows that the Steinitz numbers st(A), st(B) are rationally connected.

2) Let A, B be countable-dimensional locally matrix algebras. Suppose that their Steinitz numbers $\mathbf{st}(A)$, $\mathbf{st}(B)$ are rationally connected. Our aim is to prove that the algebras A, B are Morita equivalent. There exist integers $k, l \ge 1$ such that $k \cdot \mathbf{st}(A) = l \cdot \mathbf{st}(B)$. Consider the matrix algebras $M_k(A)$ and $M_l(B)$. We have

$$\mathbf{st}(M_k(A)) = k \cdot \mathbf{st}(A) = l \cdot \mathbf{st}(B) = \mathbf{st}(M_l(B)).$$

By Glimm's Theorem [1] the algebras $M_k(A)$ and $M_l(B)$ are isomorphic. Hence the algebras A, B are Morita equivalent.

3) Let S be a not locally finite Steinitz number. In [7] (see also [6] and [13]) we showed that there exists a locally matrix algebra A of an arbitrary uncountable dimension α such that $\mathbf{st}(A) = s$ and A is not isomorphic to a tensor product of finite dimensional matrix algebras. It is easy to see that there exists a locally matrix algebra B of dimension α such that $\mathbf{st}(B) = s$ and B is isomorphic to a tensor product of finite-dimensional matrix algebras. By Lemma 1 (2) the algebras A, B are not Morita equivalent.

4) For a countable-dimensional locally simple algebra A all algebras in its Morita equivalence class have Steinitz numbers $q \cdot \mathbf{st}(A)$, where q is a positive rational number, and are uniquely determined by their Steinitz numbers up to isomorphism. This implies that the Morita equivalence class of A is countable.

If the algebra A is not necessarily countable-dimensional then Steinitz numbers $q \cdot \mathbf{st}(A)$ determine universal elementary theories of algebras in this class (see [6]). Hence the Morita equivalence class of A is countable up to universal equivalence. This completes the proof of Theorem 2. \Box If nonzero Steinitz numbers s_1 , s_2 are rationally connected then it makes sense to talk about their ratio $q = \frac{s_2}{s_1}$ which is a rational number.

For a countable-dimensional locally matrix algebra A its Morita equivalence class *is ordered*: for algebras A_1 , A_2 in this class we say that $A_1 < A_2$ if

$$\frac{\operatorname{\mathbf{st}}(A_1)}{\operatorname{\mathbf{st}}(A_2)} < 1.$$

Proposition 1. Let A_1 , A_2 be countable-dimensional Morita equivalent locally matrix algebras. Then

 $\frac{\mathbf{st}(A_1)}{\mathbf{st}(A_2)} < 1 \text{ if and only if } A_1 \text{ is isomorphic to a proper corner of } A_2.$

Proof. If $A_1 \cong eA_2e$, where e is a proper idempotent of the algebra A_2 , then $\mathbf{st}(A_1) = r(e)\mathbf{st}(A_2)$ by Lemma 2. Hence

$$\frac{\operatorname{st}(A_1)}{\operatorname{st}(A_2)} = r(e) < 1.$$

Now let

$$\frac{\operatorname{st}(A_1)}{\operatorname{st}(A_2)} = \frac{m}{n} < 1,$$

where m, n are relatively prime integers. Then n is a divisor of $\mathbf{st}(A_2)$. Hence the algebra A_2 contains a subalgebra $1 \in A'_2 < A_2, A'_2 \cong M_n(F)$. Hence (see [13])

$$A_2 \cong A_2' \otimes_F C \cong M_n(C),$$

where C is the centralizer of the subalgebra A'_2 in A_2 . Consider the idempotent $e = \text{diag}(\underbrace{1, 1, \ldots, 1}_{m}, 0, \ldots, 0) \in M_n(C)$. By Lemma 2

$$\mathbf{st}(eM_n(C)e) = \frac{m}{n} \mathbf{st}(A_2) = \mathbf{st}(A_1).$$

By Glimm's Theorem A_1 is isomorphic to a corner of $M_n(C)$, hence to a corner of A_2 .

References

- J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc., 95, no. 2 (1960), 318–340.
- [2] A. A. Baranov, Classification of the direct limits of involution simple associative algebras and the corresponding dimension groups, J. Algebra, 381 (2013), 73–95.
- [3] A. A. Baranov, A. G. Zhilinskii, Diagonal direct limits of simple Lie algebras, Comm. Algebra, 27, no. 6 (1999), 2749–2766.

- [4] O. Bezushchak, B. Oliynyk, V. Sushchansky, Representation of Steinitz's lattice in lattices of substructures of relational structures, Algebra Discrete Math., 21, no. 2 (2016), 184–201.
- [5] E. Steinitz, Algebraische Theorie der Körper, J. Reine Angew. Math., 137 (1910), 167–309.
- [6] Oksana Bezushchak, Bogdana Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl., (2020), DOI: 10.1142/S0219498820501807.
- [7] Oksana Bezushchak, Bogdana Oliynyk, Primary decompositions of unital locally matrix algebras, Bull. Math. Sci., 10, no. 1 (2020), 2050006, (7 pages), DOI: 10.1142/S166436072050006X.
- [8] A.I. Mal'cev, Algebraic Systems. B.D. Seckler & A.P. Doohovskoy (trans.). Springer-Verlag, New York-Heidelberg, 1973.
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A. 6, no. 150, (1958), 83–142.
- [10] Yu. A. Drozd, V. V. Kirichenko, Finite Dimensional Algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1994.
- [11] T.Y. Lam, *Lectures on modules and rings*. Graduate Texts in Mathematics, 189, New York, NY: Springer-Verlag (1999).
- [12] G. Köthe, Schiefkörper unendlichen Ranges über dem Zentrum, Math. Ann., 105 (1931), 15–39.
- [13] A. Kurosh, Direct decompositions of simple rings, Rec. Math. [Mat. Sbornik] N.S., 11(53), no. 3 (1942), 245–264.
- [14] V. M. Kurochkin. On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser., 22(64) (1948), no. 3, 443–454.
- [15] J. Dixmier, On some C^{*}-algebras considered by Glimm, J. Funct. Anal. 1 (1967), 182–203.
- [16] Adel Alahmadi, Hamed Alsulamia, Efim Zelmanov, On the Morita equivalence class of a finitely presented algebra, arXiv:1806.00629.
- [17] Yuri Berest, George Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann., 318 (2000), no. 1, 127–147.
- [18] Xiaojun Chen, Alimjon Eshmatov, Farkhod Eshmatov, Vyacheslav Futorny, Automorphisms and Ideals of Noncommutative Deformations of C²/Z₂, arXiv:1606.05424.

CONTACT INFORMATION

Oksana Bezushchak	Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska, 60, Kyiv 01033, Ukraine E-Mail(s): bezusch@univ.kiev.ua
Bogdana Oliynyk	Department of Mathematics, National University of Kyiv-Mohyla Academy, Skovorody St. 2, Kyiv, 04070, Ukraine <i>E-Mail(s)</i> : oliynyk@ukma.edu.ua

Received by the editors: 09.02.2020.