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ABSTRACT. In the present paper, we study semigroups of
endomorphisms on Clifford semigroups with injective structure
homomorphisms, where the semilattice has a least element. We
describe such Clifford semigroups having a regular endomorphism
monoid. If the endomorphism monoid on the Clifford semigroup is
completely regular then the corresponding semilattice has at most
two elements. We characterize all Clifford semigroups G, U G
(o > B) with an injective structure homomorphism, where G,
has no proper subgroup, such that the endomorphism monoid is
completely regular. In particular, we consider the case that the
structure homomorphism is bijective.

1. Introduction

Inverse semigroups are a well studied class of semigroups. A completely
regular inverse semigroup is called Clifford semigroup or also strong semi-
lattice of groups. Let Y be a semilattice, i.e. an idempotent semigroup
with af = Ba, for all a, 8 € Y. The partial order relation > in Y is that
obtained from the semilattice operation. Let G¢ be a group for each £ € Y’
with G, N Gg = &, whenever o # 3. For £ € Y, we will mean by x¢ an
element in the group G¢ and e¢ denotes the identity element in the group
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G¢. For each pair a > 8 of elements in Y, let ¢, 3 : Go — G be a group
homomorphism such that ¢, « is the identity automorphism on Gy, for
alla €Y andif a > 8 > v then ¢, , = ¢, s, We will write mappings
on the right of the objects on which they act. In .S = U£€Y Ge¢, we take
the multiplication

To % 25 = (Ta)Pa,as(T5) 08,8

for a, 3 € Y. The semigroup S is a strong semilattice ¥ of groups G¢, i.e.
a Clifford semigroup and each Clifford semigroup is of this form [2|. Basic
facts about Clifford semigroups can be found in any introductory book on
semigroup theory, for example in [4,7]. For each pair a« > 5 € Y, we call
a3 ¢ Go — Gg the structure homomorphism or defining homomorphism.
Although monoids of endomorphisms on Clifford semigroups seem a natural
object of study, not so much has be done on this subject. Of course, each
group is a Clifford semigroup. Semigroups of endomorphisms on groups
are studied in [3,8,9]. Let S and T be semigroups and let f: S — T be a
mapping. Then f is called a semigroup homomorphismif (zy)f = (z)f(y)f
for all x,y € S. The homomorphism f is called endomorphism if S =T.
The set of all semigroup homomorphisms (of all endomorphisms) is denoted
by Hom(S,T') (by End(S) = Hom(S, S)). The image of a homomorphism
f € Hom(S,T) is denoted by Im(f) = {(z)f : x € S}. Endomorphisms
on Clifford semigroups were studied for examples in [10, 11].

An element x of a semigroup S is called regular if there exists an
element y € S such that zyxz = x. In this sense, y is called pseudoinverse
of x. An element a is called inverse of x if xar = x and axa = a. The
semigroup S is called regular if each element has at least one pseudoinverse
or equivalently, each element has at least one inverse element. In the present
paper, we use only the existence of a pseudoinverse for each element in
order to verify the regularity of a semigroup. An element x of a semigroup
S is called completely regular if there exists an element y € S such that
zyx = x and xy = yx. The semigroup S is called completely regular if all
its elements are completely regular. A semigroup S' is called idempotent
or band if zx = z for all x € S. See for examples in [4,7]

A semigroup S is called endo-regular if its monoid of endomorphisms
is regular. The regularity of the endomorphism monoid for groups were
studied by several authors (see for examples [1,5]). In particular, Theorem
1.2 in [6] gives a characterization of regular endomorphisms on groups. It
appears the question when each endomorphism has a pseudoinverse, i.e,
when the endomorphism monoid of a group is regular. In 6], John Meldrum
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gives a partial answer on this question. In the present paper, we want
to ask this question for Clifford semigroups. It seems almost impossible
to find an answer for the class of all Clifford semigroups. Therefore, we
restrict ourselves to a class of Clifford semigroups, for which we have
already some important information about their endomorphisms.

Let us consider a Clifford semigroup S = (Jgcy G¢ and let f € End(S).
In [10], the authors show that the restriction of an endomorphism f on S
to the set Eg = {e¢ : £ € Y} of the idempotent elements in S induces an
endomorphism on Y, which we denote by f. In fact, («)f = 3, whenever
(ea)f = eg. This homomorphism is called the induced index mapping. We
denote by fe¢ the restriction of f to the group G¢. Then the image of
fe is a subgroup of G5, i.e. fe € Hom(Ge, Gg)r), where (e¢) f = e(g)y-
We suppose that the structure homomorphisms are injective and the
semilattice Y has a least element v. Then an endomorphism f on S is
already determined by the endomorphism f,, € Hom(Gy, G,)) [10]. We
will study the endomorphism monoid of such a Clifford semigroup S. In
particular, we consider the case that End(S) is regular and completely
regular, respectively. Let note that the monoid End(S) is related to the
monoid End(Y") of all endomorphisms on the semilattice Y. In fact, if
End(S) is regular (idempotent and completely regular, respectively) then
End(Y) is also regular (idempotent and completely regular, respectively)
by Theorem 3.10 in [11]. We will use this fact subsequently without
referring it. In [11], the author studied the endomorphisms on a semilattice
Y. In particular, the author has characterized the semilattices Y with
idempotent and completely regular, respectively, endomorphism monoid
End(Y). If Y is a semilattice then End(Y) is completely regular if and
only if it is idempotent if and only if |Y] < 2.

2. Regular endomorphism monoid

In this section, we consider endo-regular Clifford semigroups S =
UgeY G¢ with injective structure homomorphisms ¢, g, for a > g € Y,
where Y is a semilattice with a least element v = A\Y. We start with
three propositions which include some already known results. In [10], it is
shown that any f € End(S) is determined by f,.

Proposition 1. [10] Let Y be a semilattice which has a least element
v =AY and let S = Ugey Ge be a Clifford semigroup with injective
structure homomorphisms pa g, for oo > B € Y. If f € End(S) then
fé— = (pgvaVgD(_é;i,(ll)i’ fOT‘ all g S Y.
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In particular, we have Im(p¢,)f, € Im(fe)f 7). We will use this
fact subsequently without mentioning it.

On the other hand, in [11], the author constructs an endomorphism on
S based on an endomorphism on G,,. This construction does not require
that the structure homomorphisms are injective.

Proposition 2. [11]| Let Y be a semilattice which has a least element
v=AY andlet S = UgeY G¢ be a Clifford semigroup. For g € End(G)),
we define f: S — S by (we) f = (we) fe, where

fe=wevg for&ey.
Then f € End(S).

In [10], Samman and Meldrum constructed an endomorphism on S
starting from a semilattice homomorphism and a family of group homo-
morphisms.

Proposition 3. [10] Let Y be a semilattice and let S = Jeey Ge be a
Clifford semigroup. Given an endomorphism s € End(Y) and a family
{fe € Hom(G¢, G ¢)s) : € € Y} satisfying

ba,8f8 = faP(a)s,(8)s>
for all pairs « > B €Y. Then f: S — S defined by (x¢) f = (x¢) fe, for

every £ €'Y, is an endomorphism on S.

As Propositions 1 and 2 show, the group G, plays an important part
for the description of the endomorphisms on S. Hence, we expect that
End(G)) is regular, i.e. G, is an endo-regular group, whenever S is endo-
regular (independently from the kind of the structure homomorphisms).
Therefore, let us consider the set End, (S) = {f € End(S) : (v)f =v}. It
is easy to verify that End, (S) is a submonoid of End(S). B

Lemma 4. LetY be a semilattice which has a least element v = \'Y and
let S = UgeY G¢ be a Clifford semigroup. If each f € End,(S) is regular
in End(S) then End(G,) is reqular.

Proof. Suppose that each f € End,(S) is regular. Let g € End(G,) and
let pop: Go = Gg, for @ > B € Y, be the structure homomorphisms.
Then, we define a mapping f : S = S by (z¢)f = (x¢)fe with fe = ve.g
for ¢ € Y. Note that f, = ¢g. By Proposition 2, we can conclude that
f € End(S) and, in particular, f € End,(S). Then there is h € End(S)
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with fhf = f. The restriction of f to the group G, provides g = f, =

f]/h(y)if(l/)ib = fyh,/f(,/)h = ghl,(p(u)ﬁﬂjg, i.e. hl/so(zz)ﬁ,u G, - Gy is a
pseudoinverse of g. O

As already mentioned, End, (5) is a submonoid of End(S). The fol-
lowing proposition characterizes Clifford semigroups S (of the type that
we consider) such that End,(S) is regular. We note that End,(Y) =
{f : f € End,(5)} is regular, whenever End, (5) is regular. In fact, if
f € End, (S) then there is h € End, (S) with fhf = f. Then it is easy to
verify thatfhf = f and h € End(Y).

Proposition 5. Let Y be a semilattice which has a least elementv = \'Y
and let S = UEGY G¢ be a Clifford semigroup with injective structure
homomorphisms. Then End,(S) is reqular if and only if both End,(Y)
and End(G,) are regular.

Proof. Suppose that End,(S) is regular. Then End(G,) is regular by
Lemma 4. Further, let f € End,(S). Then there is h € End,(S) with
fhf = f.If we restrict both mappings fhf and f to the set Eg, we obtain
fhf = f.Since h € End,(Y'), we have shown that End,(Y') is regular.

Suppose now that both End, (Y) and End(G,) are regular. Let f €
End, (S). Then t := f € End,(Y) and there is s € End, (Y) with tst = t.
Since (v)f = v, we have f, € End(G,). Since End(G,) is regular, there
is g € End(G,) with f,gf, = f,. We define a mapping h : S — S by
(xe)h = (x¢)he with he = QOg,ugSO(gS’V, for all £ € Y. Because of

RaP(@)s,(B)s = PawIPiays,Pa)s(B)s = Pawd(P(a)s,(8)sPB)sw) Pla)s(B)s
= 0,898,099 3)sy = Parih:

for all pairs o > 8 € Y, the mapping h is an endomorphism on S by

Proposition 3. Note that (v)h = (v)s = v. Hence, h € End,(S). It

remains to show that h is a pseudoinverse of f, i.e. we have to show

Jo = fal()if(a)s, for @ €Y. Let a € Y. By Proposition 1, we have f, =

900471/]01/%0(711)1571, and f(a)ts = <P(a)ts,1/fl/<p(7al)tstvl,- Moreover, (p(ial)tvl,cp(a)t,u and

90(_(11)258,1,@(04)1:5,1/ map identical on Im(¢q,, fy) and Im(p ()., 9), respectively.
So, we get

-1 —1 —1
fah(a)tf(a)ts = ‘Pa,ufl/So(a)tWSo(a)t,ugﬂo(a)tsyQp(a)ts,yfu‘ﬂ(a)tsty

= ‘Pa,ufugfu@(;)tst,y = @a,ufuﬁp(ial)tvl, = fa- O
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We turn back to the monoid End(S). We will now show that we only
need the information about f, for all f € End(S) and that End(G,) is a
regular group in order to verify that .S is endo-regular.

Lemma 6. Let Y be a semilattice which has a least element v = \Y
and let S = UgeY G¢ be a Clifford semigroup with injective structure
homomorphisms. Then End(S) is reqular if and only if for any f € End(S)
there are t € End(Y') and g € End(G,) with ftf = f and Im(pa,.9) C
Im(¢ayt,y), for any a €Y, such that

fVSO(V)Lung = fu.

Proof. Suppose that End(S) is regular and let f € End(S). Then there
is h € End(S) such that fhf = f. We put ¢* := h, and t := h €
End(Y). Then fhf = f implies sts = s, where s := f. By Proposition

%, —1 _ -1 _
1, we have h(u)s = P)s,vd So(y)st’(l,)t and f(l/)st - SO(V)St,VfVSO(V)stS’(V)S -
QD(V)st,VfVQD(_Vl)S,(,/)S = P()st,fv- Therestriction of fhf(= f) to G, provides

fv= fl/h(u)sf(z/)st = fV@(V)s,Vg*(pajl)st’(,/)tsp(y)st,yfu = fVSD(u)s,Vg*QO(V)t,VfV-

We have fuouys,9fy = fu and g = g* (), € End(Gy). Let a € Y.
From h, = @a,yg*go(_al)t )t (by Proposition 1), we obtain Im(pa,,g*) C
Im(p(q)z,(v)¢) and thus

Im(0a,09") Pty S (@), w)t) Py = M@y

Thus, Im(¢a,vg) = Im(@arg™) Pty € Im(@a))-

Suppose now that for all f € End(S), there are t € End(Y) and
g € End(G,) with ftf = f and Im(¢a,,9) € Im(p(q),), for all a € Y,
such that f,¢(,)r,9fs = fu. Let f € End(S). Then there exist ¢ € End(Y")
such that sts = s with s := f and g € End(G,,) such that Tm(p,,g) C
Im(p(q)e,), for all @ € Y with fvpw)swgfv = fu. Now we can define a
mapping h : S — S with

(za)h = (za)ha,
where h, = goa,,,ggo(_al)t ,» for all @ € Y. Because of
Im(@a,uQ) - Im(‘p(a)t,l/)a
for all @ € Y, the mapping h is well defined. We will show that

Qpa,ﬁhﬁ - ha@(a)s,(,@’)sv
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for all pairs & > 8 € Y. We have
~1 -1 1
Pa,php = La8P8v9P () = PavIP(B)y P ) (3) Pt (B)t

—1
= PapdP (@)t = haP @)

Thus, h € End(S) by Proposition 3.
Finally, we show that fhf = f. Let a € Y. Using the fact that f, =
-1 -1
SOa,VquD(a)s,(u)s_l and f(a)st = So(a)st,ufu@(a)st&(y)s = SD(a)st,uquO(a)s,(V)s
and since h(,), € Hom(G(q)s, G(ayst), We get

—1 —1 —1
fah(a)sf(a)st = (Pa,VfV@(a)&(l,)s‘10(04)s,l/ggp(a)st’y()o(a)st,ufl/()o(a)s?(l,)s

= (Pa,ufuSp(u)s,ugfv‘P(_al)s’(,,)s = (Pa,uquO(_al)&(,,)S = fa-
This shows that fhf = f and consequently, End(S) is regular. O

Lemma 4 states that G, is necessarily an endo-regular group in case
that End(S) is regular. If all the groups in the Clifford semigroup are
pairwise isomorphic, i.e. the structure homomorphisms are bijective, then
it is sufficient for S to be endo-regular that GG, is an endo-regular group.
This is an immediate consequence of Lemma 6.

Corollary 7. Let Y be a semilattice which has a unique least element
v=NAY and let S = Uer G¢ be a Clifford semigroup with bijective
structure homomorphisms. Then End(S) is reqular if and only if both
End(Y) and End(G,) are regular.

Proof. Suppose that End(S) is regular. Then End(G,) is regular by
Lemma 4. Note that End(Y") is regular, whenever End(S) is regular.
Conversely, suppose that both End(G,) and End(Y') are regular. Let
f € End(S). Then s := f € End(Y) and there is ¢t € End(Y) with
sts = s. Consider the endomorphism fv)s,y € End(G)). Since End(G)
is regular, there is g € End(G,) with (fu0)s,)9(fo0w)sw) = foPw)s-
Now, we multiply this equation with 4,0(_1/1)8’” from the right hand side. Since
@(V)s,u‘p(j,1)57y is the identity mapping on G,),, we obtain f,p,)s.,9fv = fu.
Moreover, for all a € Y, we have Im(pa,,9) € Gy = Im(p(ay,,) since

©(a)t,w 18 a bijection. Then by Lemma 6, we can conclude that End(S) is
regular. O

Note that any idempotent endomorphism on a semigroup is regular.
So, all Clifford semigroups with idempotent endomorphism monoid have a
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regular endomorphism monoid. In the last part of this section, we will char-
acterize all Clifford semigroups with injective structure homomorphisms
having an idempotent endomorphism monoid. We recall that [Y] < 2
in this case [11]. If Y| = 1 then S = G,. So, we have a group with
idempotent endomorphism monoid. We focus us to the case |Y| = 2.

Lemma 8. Let Y = {a > (} be a two-element chain and let S = G,UGg
be a Clifford semigroup with an injective structure homomorphism ¢, g.
If End(S) is a band then End(Gg) is a band.

Proof. Suppose that End(S) is a band and let g € End(Gg). We define a
mapping f : S — S by (z¢)f = (x¢) fe, for € € {a, B}, with fo = a9
and fg = g. Then f € End(S) by Proposition 2. Note that (3)f = 5. We
observe that the restriction of ff = f to Gg provides g = f3 = 75f5 =99,
i.e. g is idempotent. Consequently, End(Gp) is a band. O]

We can show that the idempotency of both monoids End(Y) and
End(Gpg) is sufficient for the idempotency of End(S).

Proposition 9. Let Y = {a > (} be a two-element chain and let S =
GoUGg be a Clifford semigroup with an injective structure homomorphism

©a,3- Then End(S) is a band if and only if End(Gpg) is a band.

Proof. 1f End(S) is a band then End(Gp) is a band by Lemma 8.
Suppose that End(Gp) is a band. Let f € End(S). Then s := f €
End(Y). We note that ss = s by Proposition 1, we have that f, =

apy,gfﬁgo(_vl)s’(ﬁ)s for v € {a, B}. Let v € {a, f}. Then

f’Yf(W)S = 90%5fBQO(_,Yl)&(,B)S@(7)5,5!}0/3(,0(_71)557(5)5

= wv»ﬁ(fﬁcp(ﬁ)&ﬂ) (fﬁso(ﬁ)svﬁ)90(7,81)5,5%0(7"}/1)8,(6)8
= %,ﬁ(f,B‘P(ﬁ)sﬂ)90631)8,590(71)8,(5)5 = ‘Pv,ﬁfﬁ‘PGl)s,(ﬁ)s = fy

since fgp(g)s,3 belongs to the idempotent monoid End(Gp), i.e.

(fggo(g)sﬁ)(fggo(ﬁ)sﬁ) = (fggo(/g)sﬁ). So, we have shown that ff = f and
consequently, End(S) is a band. O

3. Completely regular endomorphism monoid

In this section, we study Clifford semigroups with completely regular
endomorphism monoid. In fact, if § = UgeY G¢ is a Clifford semigroup
with a completely regular endomorphism monoid then the semilattice Y
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has at most two elements [11]. If Y is the trivial semilattice consisting of
a singleton element then S'is a group and we have only to consider groups
with completely regular endomorphism monoid. So, it remains the case
that Y consists of two elements, i.e. Y = {« > [} is a two-element chain. If
Y = {a > p} is a two element chain then End(Y") = {idy, sa, 53}, where
idy is the identity mapping on Y and s, (and sg) is the constant mapping
with the image a (and 3, respectively). So, each element in End(Y") is
idempotent. In particular, End(Y") is completely regular. In particular, we
will consider the case that the group G, does not have nontrivial normal
subgroups. The characterization of all Clifford semigroups with completely
regular endomorphism monoid is still an open problem.

Lemma 10. LetY = {a > B} be a two-element chain and let S = GoUGg
be a Clifford semigroup with an injective structure homomorphism o g.
If End(S) is completely reqular then End(Gg) is completely reqular.

Proof. Suppose that End(S) is completely regular and let f € End(Gp).
Then by Proposition 2, the following mapping A : S — S is an endomor-
phism on S. Let (z¢)h = (x¢)he, for & € {«, B} with

ha = @apf and hg=f.

Since End(.S) is completely regular, there is g € End(S) with hgh = h
and gh = hg. Assume that (8)g = «. Then from gh = hg, it follows
gsha = hsgp, where (25)ggha € Gg and (25)hsgs € Ga, a contradiction.
Therefore, we have only to consider the case that (8)g = f, i.e. gg €
End(Gg). Now, hgh = h and gh = hg implies fggf = f and gsf = fys.
Hence, f is a completely regular element in End(Gg). Therefore, End(Gp)
is completely regular. O

Proposition 11. Let Y = {a > [} be a two-element chain and let
S = G,UGR be a Clifford semigroup such that G, does not have nontrivial
normal subgroups and End(Gpg) is completely reqular. Then End(S) is
completely reqular.

Proof. Let f € End(S) and let ¢ := f.

Case 1: Suppose that (3)t = 3. Then fg € End(Gp3). Since End(Gpg) is
completely regular, there is ¢ € End(Gg) with fggfs = fs and gfs = fag.
Because G, does not have nontrivial normal subgroups, we can conclude
that f, is injective or f, is the constant mapping c?‘a) 0 Ga = {e@y)-

Case 1.1: Suppose that f, is injective with f, = goaﬂfﬂgp(fal)tﬁ. If
(@)t = B then Im(pqp9) € Gg = Im(pps) = Im(py,s). Suppose
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that (a)t = a and let € Im(py9). Then fz restricted to Im(pq. g)
is a bijection on Im(p, g) and ¢, g is injective. Since fg restricted to
Im(pqa,g) is a bijection on Im(pq 5), there is T € Im(p,,g) such that x =
ZTfsfsg =Tfsgfs = Tfs € Im(pq,p). This shows Im(pa,s9) C Im(pa ).
We define a mapping h : S — S by (z¢)h = (x¢)he for any £ € Y,
where he = gag’ggcp(_stﬁ, for any ¢ € Y. Since Im(pq,59) C Im(pq 5) and
Im(pp59) € Gg = Im(pg ) = Im(p(gy,p), the mapping h is well defined.
Note that g = hg. Moreover, ha@ ()5 = goa,ggg0(7l1)t76¢(a)t,5 = Y89 =
¢a,shg and h is an endomorphism by Proposition 3. Now we need to show
that h is a pseudoinverse of f. Note that fz = fggfs = fshsfs. Hence,
we have still to show that fo = fali(a)if(a)e- By Proposition 1, we have

fo = Pa sl a0d oy = P(ayp.f59 0y - SO5 We get

fahyefa) —wa,ﬂfﬁw tgsﬂ( 1,89 (o )tBSO t,BfﬁSD
= wa,ﬁfﬁgfﬁso s = Pabf8ays fa

Moreover, we have

hafa)t = Pa.p9P( )tgso thBSO
= va,89f8%, ltg wa,ﬁfﬁgw al)tg
= a,8189 (1.5 P ()19 g = Jali

Case 1.2: Suppose now that f, is a constant mapping cf‘a) ; We define
a mapping h : S — S by (x¢)h = (x¢)he for any £ € Y, where hy = C(()oz)t
and hg = fggg. First, we will verify that ¢, gfs is a constant mapping.
For this let 24,70 € Go and 23 := (Ta)Pa,8: 5 = (Ta)Pa,s- Then there
is a € G, such that Zg = (25)((a)@a,p) in the subgroup Im(p, g) of G.
We have

(@p)f = (z5((a)pa,p)) f = ((zp)eps(a)pas)f = (x5 *a)f
= (zg)f x (a)f = (x5) feps((a) f)P()s
= (zg) fle(a))Play,s = (xp)fes = (xp) f.

where * is the operation on S. This provides (ZTo)¢asfs = (Ta)@a,sfs.

Therefore, ¢o,5fs is a constant mapping c§ : Go — {eg} and we can

calculate that ¢o ghg = ha@(a),s = 5. Thus, h is an endomorphism by

Proposition 3. Further, we can show that fhf = f as well as fh = hf. In

fact, we have fghgfs = fsf399fs = f89fs9fs = fs and fghs = f3fpg9 =

f899fp = hpfp. Further, it is easy to verify that foh(a)ifa) = fal(a) =
af )= C ()t
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Case 2: Suppose now that (8)t = «. Then (o)t = «. Since G,
does not have nontrivial normal subgroups, we conclude that fz is onto
Go or fgz is the constant mapping A Gg — {ea}. If fg = 2 then
fo = CapfsPhu@y = PasCaban = Pasch = & @ Ga = {ea}
This shows that f is the constant mapping ¢ : S — {ey}. Thus, f
is idempotent, i.e. f is completely regular. Finally, suppose that fz is
onto Go. Note that fgp, s € End(Gg). Since End(Gg) is completely
regular, there is u € End(Gg) with (fgpa.p)u(fspas) = fspaps and
(f3¥a,8)u = u(fspa,p). This implies fgpq gufs = fg since g g is injec-
tive because GG, does not have nontrivial normal subgroups. First, we will
show that Im(p, gu) C Im(gpq g). For this let z € Im(pq gu). Since fg is
onto Gy, there is T € G such that = Tfzpa pu = Tufspa s € Im(pa.g).
Then, we define a mapping h : S — S by (x¢)h = (x¢)he for any

¢ €Y, where h,, = cpa,,gufggoa7,3u<p;7% and hg = uf/ggoa,gucp;’}g. Because
of Im(pqpu) € Im(p, ), the mapping h is well defined. Further, we

have ha@(ay @y = ha¥aa = ha = Pastfseasupy s = Pashs. Thus,
h € End(S) by Proposition 3. We show now that h is a pseudoinverse

of f. Note that fo = @a,sfsP ()81t = Pa.pfpPaa = Papfs We have

fohafa = [8Papuf3%asuP, 3Pasfs = f3PaulsPa8%0 s
= f8Pa,pPap = It;

fahafa = ¢a,8f6%a,8uf3¢a,8u¢, §Pa,sfs = Papfo0asufsva,seys
= Pa,6/6%0,690 5 = Pa,8f8 = fay

and
hgfa = Ufsa,gupy 5a s fs = Uf3PasulsP08%0 5
= foPapufspasupy s = foha

as well as foha = @apfaha = @aghsfa = hafa. Consequently, fis a
completely regular element of End(S5). O

So, we can state the main result of this section concerning Clifford
semigroups with completely regular endomorphism monoid.

Theorem 12. Let Y = {a > [} be a two-element chain and let S =
Gq UGpg such that G does not have nontrivial normal subgroups. Then
End(S) is completely regular if and only if End(Gpg) is completely reqular.
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Proof. Suppose that End(S) is completely regular. The fact that End(Gp)
is completely regular follows from Lemma 10. The converse direction is
given by Proposition 11. [

Now, we drop the condition that G, has no proper normal subgroups.
We consider Clifford semigroups S = G, U Gg (o > ) such that Gg is
the direct product of G, and a group. Note that such Clifford semigroups
can be constructed whenever Gz is an abelian group by the fundamental
theorem of abelian groups.

Proposition 13. Let Y = {a > 3} be a two-element chain and let S =
GoUGg be a Clifford semigroup with an injective structure homomorphism
©a,3, Where Gg is the direct product of the group G, and a group with the
identity element e such that (xo)9a s = (Za,€). If End(S) is completely
regqular then End(Gy) is completely reqular.

Proof. Suppose that End(S) is completely regular. Then End(Gpg) is
completely regular by Lemma 10. We put A := Im(pa3) = {(za,€) :
zq € Go}. Clearly, A is isomorphic to G. We will show that End(A)
is completely regular. For this let f € End(A). We define a mapping
h: G/j — Gﬁ by

(Za, x)h = (za,€)f - (ea,x) for all (zq,z) € Gg,

where - is the multiplication on Gg. We have to show that h is an endo-
morphism on Gg. It is easy to verify that

(Tase) - (eq, ) = (eq, ) - (Tas€).

Let (zq, ), (Ta,2) € Gg. Then we obtain

(Ta, ) - (Ta, T))h

(TaZa,2Z))h = (x4Za,€)f - (eq, TT)

= (
= (Ta,€)f * (Tase)f - (ea; (€a’ T)
= (
= (

N

e)
x) -
)f - (€a, @) - (Tar ) f - (€a; T)

To ) [+ (Ta, T) f.

8
2
®

This shows that h € End(Gg). Thus, there is g € End(Gg) with hgh = h
and hg = gh since End(Gp) is completely regular. We show now that
the image of g restricted to A belongs to A. For this, let (z4,e) € A.
Assume that (z4,e)g ¢ A. Then by hg = gh and by the definition of
h, we obtain that (z,e)hgh = (z4,e)ghh ¢ A. On the other hand, we
have (4, e)h = (zq,€)f € A. This contradicts to hgh = h. Consequently,
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the image of g restricted to A is a subset of A. Note that 90;159004”3 is
the identity mapping on A. Then 5(,0;%8@(}”3 = ¢ for any mapping ¢ with
Im(é) € A and (p;,lﬁ(pa”gh = f. Moreover, the mapping p : A — A defined
by
P = ¥, 5Pasg

is an endomorphism on A. Thus, we obtain fpf = f90;}8g0a7ggf = fgf =
P 3 Paphgy 5 sh = o 5Pashgh = ©, 500 sh = [ as well as fp =
fe, 150089 = 9 = @5 5%ashg = ¢, 5%apgh = Ph = po, 3Pash = pf-
This shows that f is a completely regular element in End(A). So, the
proof is done. O

We finish this section with the case that the structure homomorphism
©a,p is bijective. Such Clifford semigroups with completely regular en-
domorphism monoid can be characterized by the fact that End(Gp) is
completely regular (and thus, End(G,) is it also). Here, we can drop any
restriction to the groups G, and Gp.

Theorem 14. Let Y = {«a > S} be a two-element chain and let S = G, U
Gg be a Clifford semigroup with a bijective structure homomorphism g g.
Then End(S) is completely regular if and only if End(Gpg) is completely
reqular.

Proof. Suppose that End(S) is completely regular. Then Lemma 10 shows
that End(Gg) is completely regular.

Suppose now that End(Gpg) is completely regular. Then End(Gy) is
also completely regular since G, is isomorphic to Gg. Let f € End(S)
with ¢ := f. Then it is obvious that («)t = v or ()t = 3. We consider the
case that (o)t = a. If (8)t = 8 then the proof is similar. From (a)t = «,
it follows f, € End(G,). Since End(G,) is completely regular, there is
g € End(Gy) with fogfa = fo and fog = gfa. We define a mapping
h:S — S by (x¢)h = (x¢)he for £ € {«, B} with

ho =g and hg= 90;715gg0a”3.

Since ¢, g is bijective, h is well defined. In particular, we have ¢, ghg =
SOa,B@;l[agSDa,B = g%a,8 = hata,s. By Proposition 3, h is an endomorphism
on S. Note that fg = wglﬂ Jaa,(p) follows from Proposition 1, since ¢q g
is bijective. Moreover, it holds f, = go;}a faPa,a and hy = go;’laggoo[@.
Then, we obtain fohafa = fag9fa = fo and foha = fog = 9fa = hafa-
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On the other hand, we can calculate

1 1 1
fﬁh(ﬁ)tf(ﬁ)t = Qpa,ﬁfOé9004,(5)759004,(/B)tggpoc,(B)t%pa,(/g)tfa@a,(ﬁ)tt
= @;,%fagfa@a,(ﬁ)tt = Sp;lﬁfa@m(ﬁ)t = fﬁ.

To obtain (8)t = (f8)tt, we used that End(Y") is idempotent, whenever Y
is a two-element chain. Finally, we can compute that

-1 -1 -1
fehgyt = Pa g faa,8)1tPa (5)19%a,B)t = Pa,pfagPa, )

= 0o 59 aPaB)t = P 39Pa,pPnslaPasr = hafs:

Altogether, we have shown that fhf = f and fh = hf. Consequently, f
is a completely regular element of End(S). O

Open problem. The characterization of all Clifford semigroups with
completely regular endomorphism monoid is still an open problem if the
structure homomorphisms ¢, g are not surjective.
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