© Algebra and Discrete Mathematics Volume **29** (2020). Number 1, pp. 33–41 DOI:10.12958/adm1530

A new characterization of finite σ -soluble $P\sigma T$ -groups

N. M. Adarchenko

Communicated by L. A. Kurdachenko

ABSTRACT. Let $\sigma = \{\sigma_i \mid i \in I\}$ be a partition of the set of all primes \mathbb{P} and G a finite group. G is said to be σ -soluble if every chief factor H/K of G is a σ_i -group for some i = i(H/K). A set \mathcal{H} of subgroups of G is said to be a complete Hall σ -set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$. A subgroup A of G is said to be σ -quasinormal or σ -permutable in G if G has a complete Hall σ -set \mathcal{H} such that $AH^x = H^xA$ for all $x \in G$ and all $H \in \mathcal{H}$. We obtain a new characterization of finite σ -soluble groups G in which σ -permutability is a transitive relation in G.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. The group G is called π -supersoluble provided every chief factor of G is either cyclic or a π' -group. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

²⁰¹⁰ MSC: 20D10, 20D15, 20D30.

Key words and phrases: finite group, σ -permutable subgroup, $P\sigma T$ -group, σ -soluble group, σ -nilpotent group.

In what follows, σ is some partition of \mathbb{P} , that is, $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. The symbol $\sigma(n)$ denotes the set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$.

The group G is said to be: σ -primary (A.N. Skiba [1]) if G is a σ_i -group for some $i \in I$; σ -decomposable (L.A. Shemetkov [2]) or σ -nilpotent [3,4] if $G = G_1 \times \cdots \times G_n$ for some σ -primary groups G_1, \ldots, G_n ; σ -soluble [1] if every chief factor of G is σ -primary.

A set \mathcal{H} of subgroups of G is a *complete Hall* σ -set of G [3,5] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$.

Let $\tau_{\mathcal{H}}(A) = \{\sigma_i \in \sigma(G) \setminus \sigma(A) \mid \sigma(A) \cap \sigma(H^G) \neq \emptyset \text{ for a Hall } \sigma_i\text{-subgroup } H \in \mathcal{H}\}.$

Then we say, following Beidleman and Skiba [6], that a subgroup Aof G is: (i) τ_{σ} -permutable in G with respect to \mathcal{H} if $AH^x = H^x A$ for all $x \in G$ and all $H \in \mathcal{H}$ such that $\sigma(H) \subseteq \tau_{\mathcal{H}}(A)$; (ii) τ_{σ} -permutable in G if A is τ_{σ} -permutable in G with respect to some complete Hall σ -set \mathcal{H} of G.

Recall also that a subgroup A of G is said to be: σ -permutable in G [1] if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$; σ -semipermutable in G [7] if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^xA$ for all $x \in G$ and all $H \in \mathcal{H}$ with $\sigma(A) \cap \sigma(H) = \emptyset$; σ -subnormal in G [1] if there is a subgroup chain

$$A = A_0 \leqslant A_1 \leqslant \dots \leqslant A_t = G$$

such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, t$.

In the classical case when $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}$ (we use here the notations in [3]), σ -permutable, σ -semipermutable and τ_{σ} -quasinormal subgroups are also called respectively *S*-permutable [8], *S*-semipermutable [9] and τ -permutable [10,11], and in this case σ -subnormal subgroups are exactly subnormal subgroups of the group.

It is clear that every σ -permutable subgroup is also σ -semipermutable and every σ -semipermutable subgroup is τ_{σ} -permutable.

Recall also that G is said to be a $P\sigma T$ -group [1] if σ -permutability is a transitive relation in G, that is, if H is a σ -permutable subgroup of K and K is a σ -permutable subgroup of G, then H is σ -permutable in G. In the case when $\sigma = \sigma^1$, a $P\sigma T$ -group is called a PST-group [8].

In view of Theorem B in [1], $P\sigma T$ -groups can be characterized as the groups in which every σ -subnormal subgroup is σ -permutable. Another characterizations of $P\sigma T$ -groups are obtained in the papers [3,7,12–14].

Our main goal here is to give a characterization of $P\sigma T$ -groups in the terms of τ_{σ} -permutable subgroups.

Theorem 1.1. Let $D = G^{\mathfrak{N}_{\sigma}}$ and $\pi = \pi(D)$. Suppose that G possesses a complete σ -set \mathcal{H} all members of which are π -supersoluble. Then G is a σ soluble $P\sigma T$ -group if and only if every σ_i -subgroup of G is τ_{σ} -permutable in G for all $\sigma_i \in \sigma(D)$.

In this theorem the symbol $G^{\mathfrak{N}_{\sigma}}$ denotes the σ -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N; $G^{\mathfrak{N}}$ is the nilpotent residual of G.

Corollary 1.1 (see Theorem A in [7]). Let $D = G^{\mathfrak{N}_{\sigma}}$ and $\pi = \pi(D)$. Suppose G possesses a complete Hall σ -set \mathcal{H} all members of which are π -supersoluble. If every σ_i -subgroup of G is σ -semipermutable in G for all $\sigma_i \in \sigma(D)$, then G is a σ -soluble $P\sigma T$ -group.

As another application of Theorem 1.1, we give the following new characterization of soluble PST-groups.

Corollary 1.2. *G* is a soluble *PST*-group if and only if every subgroup of every Sylow p-subgroup of *G* is τ -semipermutable in *G* for all $p \in \pi(G^{\mathfrak{N}})$.

All unexplained notation and terminology are standard. The reader is referred to [8], [15] or [16] if necessary.

2. Preliminaries

We use \mathfrak{N}_{σ} to denote the class of all σ -nilpotent groups.

Lemma 2.1 (see Lemma 2.5 in [1]). The class \mathfrak{N}_{σ} is closed under taking direct products, homomorphic images and subgroups. Moreover, if E is a normal subgroup of G and $E/E \cap \Phi(G)$ is σ -nilpotent, then E is σ -nilpotent.

In view of Proposition 2.2.8 in [16], we get from Lemma 2.1 the following

Lemma 2.2. If N is a normal subgroup of G, then

$$(G/N)^{\mathfrak{N}_{\sigma}} = G^{\mathfrak{N}_{\sigma}} N/N.$$

Lemma 2.3 (V. N. Knyagina and V. S. Monakhov [17]). Let H, K and N be pairwise permutable subgroups of G and H a Hall subgroup of G. Then

$$N \cap HK = (N \cap H)(N \cap K).$$

Recall that G is said to be: a D_{π} -group if G possesses a Hall π -subgroup E and every π -subgroup of G is contained in some conjugate of E; a σ -full group of Sylow type [1] if every subgroup E of G is a D_{σ_i} -group for every $\sigma_i \in \sigma(E)$; σ -full [5] provided G possesses a complete Hall σ -set.

In view of Theorems A and B in [5], the following fact is true.

Lemma 2.4. If G is σ -soluble, then G is a σ -full group of Sylow type.

Lemma 2.5 (see Lemma 3.1 in [1]). Let H be a σ_i -subgroup of a σ -full group G. Then H is σ -permutable in G if and only if $O^{\sigma_i}(G) \leq N_G(H)$.

Lemma 2.6. Suppose that G is σ -full and $D := G^{\mathfrak{N}_{\sigma}}$ is a nilpotent Hall subgroup of G. If every σ_i -subgroup of G is τ_{σ} -permutable in G for all $\sigma_i \in \sigma(D)$, then every subgroup of D is normal in G.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. By hypothesis, G possesses a complete Hall σ -set $\{H_1, \ldots, H_t\}$. We can assume without loss of generality that H_i is a σ_i -group for all $i = 1, \ldots, t$.

First we show that the hypothesis holds on G/N for every minimal normal subgroup N of G. First note that

$$(G/N)^{\mathfrak{N}_{\sigma}} = DN/N \simeq D/(D \cap N)$$

is a nilpotent Hall subgroup of G/N by Lemma 2.2.

Now let V/N be a non-identity σ_i -subgroup of G/N for some

$$\sigma_i \in \sigma((G/N)^{\mathfrak{N}_{\sigma}}) = \sigma(DN/N) = \sigma(D/(D \cap N)) \subseteq \sigma(D)$$

And let U be a minimal supplement to N in V. Then $U \cap N \leq \Phi(U)$, so U is a σ_i -subgroup of G since $V/N = UN/N \simeq U/(U \cap N)$. Therefore U is τ_{σ} -permutable in G by hypothesis and $\sigma(U) = \sigma(UN/N) = \{\sigma_i\}$, which implies that V/N = UN/N is τ_{σ} -quasinormal in G/N by Lemma 2.6(1) in [6]. Hence the hypothesis holds on G/N.

Now let H be a subgroup of the Sylow p-subgroup P of D for some prime $p \in \pi$. We show that H is normal in G. For some i we have $P \leq O_{\sigma_i}(D) = H_i \cap D$. On the other hand, we have $D = O_{\sigma_i}(D) \times O^{\sigma_i}(D)$ since D is nilpotent. Assume that $O^{\sigma_i}(D) \neq 1$ and let N be a minimal normal subgroup of G contained in $O^{\sigma_i}(D)$. Then $HN/N \leq DN/N = (G/N)^{\mathfrak{N}_{\sigma}}$, so the choice of G implies that HN/N is normal in G/N. Hence $H = H(N \cap O_{\sigma_i}(D)) = HN \cap O_{\sigma_i}(D)$ is normal in G.

Now assume that $O^{\sigma_i}(D) = 1$, so D is a σ_i -group. Since G/D is σ -nilpotent by Lemma 2.1, H_i/D is normal in G/D and hence H_i is normal in G. Therefore all subgroups of H_i are σ -permutable in G by Lemma 2.6(3) in [6] and hypothesis. Since D is a normal Hall subgroup of H_i , it has a complement S in H_i by the Schur-Zassenhaus theorem. Lemma 2.5 implies that $D \leq O^{\sigma_i}(G) \leq N_G(S)$. Hence $H_i = D \times S$. Hence $S \leq N_G(H)$, so

$$G = H_i O^{\sigma_i}(G) = (SD) O^{\sigma_i}(G) = SO^{\sigma_i}(G) \leqslant N_G(H),$$

so H is normal in G. Therefore every subgroup of D is normal in G since D is nilpotent by hypothesis. The lemma is proved.

Lemma 2.7 (see Theorem A in [3]). Let $D = G^{\mathfrak{N}_{\sigma}}$. If G is a σ -soluble $P\sigma T$ -group, then the following conditions hold:

- (i) G = D ⋊ M, where D is an abelian Hall subgroup of G of odd order, M is σ-nilpotent and every element of G induces a power automorphism in D;
- (ii) O_{σi}(D) has a normal complement in a Hall σ_i-subgroup of G for all i.

Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of G, then G is a $P\sigma T$ -group.

Lemma 2.8 (see Theorem A in [3]). The following statements hold:

- G is a PσT-group if and only if every σ-subnormal subgroup of G is σ-permutable in G;
- (2) If G is a σ -soluble $P\sigma T$ -group, then every quotient G/N of G is also a σ -soluble $P\sigma T$ -group.

3. Proof of Theorem 1.1

Let $\mathcal{H} = \{H_1, \ldots, H_t\}$. We can assume without loss of generality that H_i is a σ_i -group for all $i = 1, \ldots, t$.

First show that if every σ_i -subgroup of G is τ_{σ} -permutable in G for all $\sigma_i \in \sigma(D)$, then G is a σ -soluble $P\sigma T$ -group. Assume that this is false and let G be a counterexample of minimal order.

(1) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order, M is σ -nilpotent and every element of G induces a power automorphism in D (this claim directly follows from Lemma 2.6 and Theorem 1.5 in [18]).

(2) If R is a non-identity normal subgroup of G, then the hypothesis holds for G/R, so G/R is a σ -soluble $P\sigma T$ -group.

First note that

$$\mathcal{H}_0 = \{H_1 N / N, \dots, H_t N / N\}$$

is a complete Hall σ -set of G/N. Moreover, every member $H_i N/N \simeq H_i/(H_i \cap N)$ of \mathcal{H}_0 is π -supersoluble since H_i is π -supersoluble by hypothesis. On the other hand, $(G/N)^{\mathfrak{N}_{\sigma}} = DN/N \simeq D/(D \cap N)$ by Lemma 2.2. Hence $\pi_0 \subseteq \pi$, where $\pi_0 = \pi((G/N)^{\mathfrak{N}_{\sigma}})$, so every member of \mathcal{H}_0 is π_0 -supersoluble.

Let V/N be a non-identity σ_i -subgroup of G/N for some

$$\sigma_i \in \sigma((G/N)^{\mathfrak{N}_{\sigma}}) = \sigma(DN/N) = \sigma(D/D \cap N) \subseteq \sigma(D).$$

And let U be a minimal supplement to N in V. Then $U \cap N \leq \Phi(U)$, so U is a σ_i -subgroup of G by the isomorphism $V/N = UN/N \simeq U/U \cap N$. Therefore U is τ_{σ} -permutable in G by hypothesis and $\sigma(U) = \sigma(UN/N) = \{\sigma_i\}$, which implies that V/N = UN/N is τ_{σ} -permutable in G/N by Lemma 2.6(1) in [6]. Hence the hypothesis holds on G/N, so the choice of G implies that G/N is a σ -soluble $P\sigma T$ -group.

(3) $H_i = O_{\sigma_i}(D) \times S$ for some subgroup S of H_i for each $\sigma_i \in \sigma(D)$.

Since D is a nilpotent Hall subgroup of G by Claim (1), $D = L \times N$, where $L = O_{\sigma_i}(D)$ and $N = O^{\sigma_i}(D)$ are Hall subgroups of G. First assume that $N \neq 1$. Then

$$O_{\sigma_i}((G/N)^{\mathfrak{N}_{\sigma}}) = O_{\sigma_i}(D/N) = LN/N$$

has a normal complement V/N in $H_iN/N \simeq H_i$ by Claim (2). On the other hand, N has a complement S in V by the Schur-Zassenhaus theorem. Hence $H_i = H_i \cap LSN = LS$ and $L \cap S = 1$ since

$$(L \cap S)N/N \leqslant (LN/N) \cap (V/N) = (LN/N) \cap (SN/N) = 1.$$

It is clear that V/N is a Hall subgroup of $H_i N/N$, so V/N is characteristic in $H_i N/N$. On the other hand, $H_i N/N$ is normal in G/N by Lemma 2.2 since $D/N \leq H_i N/N$. Hence V/N is normal in G/N. Thus $H_i \cap V = H_i \cap NS = S(H_i \cap N) = S$ is normal in H_i , so $H_i = O_{\sigma_i}(D) \times S$.

Now assume that $D = O_{\sigma_i}(D)$. Then H_i is normal in G, so all subgroups of H_i are σ -permutable in G by Lemma 2.6(3) in [6]. Since D is a normal Hall subgroup of H_i , it has a complement S in H_i . Lemma 2.5 implies that $D \leq O^{\sigma_i}(G) \leq N_G(S)$. Hence $H_i = D \times S = O_{\sigma_i}(D) \times S$.

Now, from Lemma 2.7 and Claims (2) and (3) it follows that G is a σ -soluble $P\sigma T$ -group, contrary our assumption on the G. This completes the proof of the sufficiency of the condition of the theorem.

Now we show that if G is a σ -soluble $P\sigma T$ -group, then every σ_i subgroup of G is τ_{σ} -permutable in G for each $\sigma_i \in \sigma(D)$. It is enough to show that H is a σ_i -subgroup of G, then H permutes with every Hall σ_j -subgroups of G for all $j \neq i$.

Assume that this is false and let G be a counterexample of minimal order. Then $D \neq 1$ and there are σ_i and σ_j $(i \neq j)$ such that $\sigma_i \in \sigma(D)$ and $HE \neq EH$ for some σ_i -subgroup H and some Hall σ_j -subgroup Eof G. Then H is not σ -subnormal in G by Lemma 2.8. Hence a Hall σ_i -subgroup H_i of G is not normal in G since otherwise we have $H \leq H_i$ and so H is σ -subnormal in G by Lemma 2.6(6) in [1]. Now note that $|\sigma(D)| > 1$, Indeed, if $|\sigma(D)| = 1$, then $\sigma(D) = \{\sigma_i\}$ and so $D \leq H_i$, which implies that H_i/D is normal in G/D since G/D is σ -nilpotent by Lemma 2.1. But then H_i is normal in G, a contradiction.

Now we show that EHN is a subgroup of G for every minimal normal subgroup N of G. First note that the hypothesis holds for G/N by Lemma 2.8. Moreover, $HN/N \simeq H/H \cap N$ is a σ_i -subgroup of G/N. Therefore, if $\sigma_i \in \sigma(DN/N) = \sigma((G/N)^{\mathfrak{N}_{\sigma}})$, then the choice of G implies that

$$(HN/N)(EN/N) = (EN/N)(HN/N) = EHN/N$$

is a subgroup of G/N. Hence EHN is a subgroup of G. Now assume that $\sigma_i \notin \sigma(DN/N)$. Then a Hall σ_i -subgroup H_i of G is contained in N, so $H_i = N$ since N is σ -primary. But then $H \leq N$ and so H is σ -subnormal in G, a contradiction. Hence EHN is a subgroup of G.

Since $|\sigma(D)| > 1$ and D is abelian by Lemma 2.7, G has at least two σ -primary minimal normal subgroups R and N such that $R, N \leq D$ and $\sigma(R) \neq \sigma(N)$. Then at least one of the subgroups R or N, R say, is a σ_k -group for some $k \neq j$. Moreover,

$$R \cap E(HN) = (R \cap E)(R \cap HN) = R \cap HN$$

by Lemma 2.3 and $R \cap HN \leq O_{\sigma_k}(HN) \leq V$, where V is a Hall σ_k -subgroup of H, since N is a σ'_k -group and G is a σ -full group of Sylow type by Lemma 2.1. Hence

$$EHR \cap EHN = E(HR \cap EHN) = EH(R \cap E(HN))$$
$$= EH(R \cap HN) = EH(R \cap H) = EH$$

is a subgroup of G. Hence HE = EH. This contradicts the fact that $HE \neq EH$. The necessity of the condition of the theorem is proved. The theorem is proved.

References

- A.N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra, 436 (2015), 1–16.
- [2] L.A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978.
- [3] A.N. Skiba, Some characterizations of finite σ-soluble PσT-groups, J. Algebra, 495(1) (2018), 114–129.
- [4] W. Guo, A.N. Skiba, On σ-supersoluble groups and one generalization of CLTgroups, J. Algebra, 512 (2018), 92–108.
- [5] A.N. Skiba, A generalization of a Hall theorem, J. Algebra and its Application, 15(4) (2015), 21–36.
- [6] J.C. Beidleman, A.N. Skiba, On τ_{σ} -quasinormal subgroups of finite groups, J. Group Theory, **20**(5) (2017), 955–964.
- B. Hu, J. Huang, A.N. Skiba, Finite groups with given systems of σ-semipermutable subgroups, J. Algebra and its Application, 17(2) (2018), 1850031 (13 pages), DOI:10.1142/S0219498818500317.
- [8] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin-New York, 2010.
- [9] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg-New York-Dordrecht-London, 2015.
- [10] V.O. Lukyanenko, A.N. Skiba, On weakly τ -quasinormal subgroups of finite groups, Acta Math. Hungar., **125**(3) (2009), 237–248.
- [11] V.O. Lukyanenko, A.N. Skiba, Finite groups in which τ-quasinormality is a transitive relation, *Rend. Sem. Mat. Univ. Padova*, **124** (2010), 1–15.
- [12] A.N. Skiba, On some classes of sublattices of the subgroup lattice, J. Belarusian State Univ. Math. Informatics, 3 (2019), 35–47.
- [13] Z. Chi, A.N. Skiba, On a lattice characterization of finite soluble PST-groups, Bull. Austral. Math. Soc., (2019), DOI:10.1017/S0004972719000741.
- [14] A.N. Skiba, On sublattices of the subgroup lattice defined by formation Fitting sets J. Algebra, (in Press), doi.org/10.1016/j.jalgebra.2019.12.013.

- [15] K. Doerk, T. Hawkes, *Finite soluble groups*, Walter de Gruyter, Berlin–New York, 1992.
- [16] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite Groups*, Springer-Verlag, Dordrecht, 2006.
- [17] B.N. Knyagina, V.S. Monakhov, On π' -properties of finite groups having a Hall π -subgroup, Siberian Math. J., **522** (2011), 398–309.
- [18] N.M. Adarchenko, On τ_{σ} -permutable subgroups of finite groups, Preprint, 2019.

CONTACT INFORMATION

Nikita	Department of Mathematics and Technologies
M. Adarchenko	of Programming, Francisk Skorina Gomel State
	University, Gomel 246019, Belarus
	E-Mail(s): nik.adarchenko@gmail.com

Received by the editors: 20.01.2020.