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Norm of Gaussian integers in arithmetical
progressions and narrow sectors

S. Varbanets and Y. Vorobyov

Communicated by Yu. A. Drozd

ABsTRACT. We proved the equidistribution of the Gaussian
. . . . 1
integer numbers in narrow sectors of the circle of radius =2, z — oo,

with the norms belonging to arithmetic progression N(«a) = ¢
(mod ¢) with the common difference of an arithmetic progression ¢,
q< x5 e,

Introduction

For the classical arithmetic functions 7(n) (the number of divisors for
the positive integer n) and r(n) (the number of representations for the
positive integer n as sum of two squares of integers) there were obtained
the asymptotic formulas of the sums

Z 7(n) and Z r(n),

n={ (mod q) n=¢ (mod q)
n<T n<e

where ¢ grows together with x and they are nontrivial for ¢ < 23
For the function 7(n) K. Liu, I. Shparlinskii and T. Zhang (|2]) obtained
the extended region of non-triviality.
In the present paper we investigate the distribution of points from

complex plane C = {z —i—z‘y‘x,y € R}, g1 <arg(z +iy) < g2, p2—¢1 <
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T 2?2 +y? =/ (mod q), 2° + y* < N. Using the property of Hecke Z-
function of the quadratic field Q(7) and the estimates of special exponential
sums, we obtain a non-trivial asymptotic formula for the number of integer
points under the circle’s sectorial region in arithmetic progression with
the growing difference progression.

Throughout this paper we use the following notations.

e p denotes a prime number in Z;

e the Latin letters a, b, k, m, n, £ be the positive integers;

e Rz denotes the real part of z and Sz be the imaginary part of z;

e through Z we denote the ring of integers;

e G = ZJi] denotes the ring of Gaussian integers a + bi, a,b € Z,
i = —1;

G, (respectively, G%) be the ring of residue classes modulo 7 (re-
spectively, the multiplicative group of inversive element in G );
N(w) is the norm of w € G, N(w) = |w|?%;

Sp(w) is the trace of w from Q(7) to Q, Sp(w) = 2Rw;

symbols “<” and “O” are equivalent;

s=oc+iteC, Rs =0, Is=1t;

Xq denotes the Dirichlet character modulo ¢ over Z

(G’J Q) = ged (a7 Q) n Z;

(o,w) = ged (v, w) in Gj

1. Auxiliary results

Let 41,02 € Q(i) and s = o + it. For the rational integer number m let
us define the function sized by absolutely convergent series into semiplane
Rs > 1:
€4mi arg w—+91

eﬂiSp((;Qw)'
N(w+d1)*

Zm(sa ; 517 62) = Z
weG

It is obvious that with m = 0 we get the Epstein zeta-function. With
01,02 € Q; we get the Hecke Z-function over the imaginary quadratic field

Q(7)-

Let p > 2 be a prime rational number, n € IN. Denote
Epn :={a € Gp|N(a)=+1 (mod p")}. (1)

It is also obvious that E, is the subgroup of multiplicative group of
residue classes modulo p™ over the ring Gpn.
We call Eyn the norm group in Gpn.
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Lemma 1. Let p =3 (mod 4) and E,, be the norm group in Gyn. Then
E,, is the cyclic group, |E,| =2(p+ 1)p"~", and let u+iv be a generative
element of Ey. Then exist xo,yo € Zyn such that

(u+i0)*PH) = 1+ p*wo + ipyo,
2x0 + y2 = —2p°x3  (mod p?).
Moreover, we have modulo p™ for anyt =4,5,...,p" F —1,
§R((u + iv)z(p“)t) = Ag + Ayt + Agt® +
%((u v iv)Q(pH)t) = Bo+ Byt + Bot? 4 -,
where

Ag=1 (mod p*), By=0 (mod p*),

1 5
A= p2:c0 + §p2y(2) = —5:5(2)]94 (mod p5),
By =pyo(1 — p*xo)  (mod p?),
5 5
Ay = —Jagp” (modp?), By = §P3$0y0 (mod p*),

Ai=B;=0 (mod p®), j=3,4,...
(In greater details see [3])
Denote

(u+ )k = ()—i—w() 0<k<2p+1,

(u + iv)2PTDHE = Z ) +iB;(k))t* (mod p").

It is obvious that
Aj(k) = Aju(k) — Bju(k), Bj(k) = Aju(k) + Bju(k).
Thus from Lemma 1 we infer

Corollary. Fork=0,1,...,2p+ 1 we have
u(©0)=1, v(0)=0, (ulp+1),p)=1 pllo(p+1);
(u(k),p) = (v(k),p) =1 for k#0 (mod ——);
wk)=0 (modp), (v(k),p)=1 if k=
u(k) =u(—=k), v(k)=—-v(-k).
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Hence, for k £ 0 (mod %) we have

Ap(k) =u(k) (mod p), Bo(k)=wv(k) (mod p),
Ay (k) = —pyov(k), Bi(k) = pyou(k) (mod p) (2)

) )
Ay (k) = —59531?2“(]?), By (k) = —595(2)]92”(’?) (mod p*).

For k = 3%1 or ?’*”’Tﬂ we obtain
pllAL(k), p?||Bi(k), p*[|A2(k), Ba(k)=0 (modp’). (3)

Moreover,
5
A1(0) = —Jagp’  (mod p°), Bi(0)=0 (mod p*),

5
Ay(0) = —51‘3192 (mod p°), B2(0)=0 (mod p®), p*|[41(p+1),

pl[Bilp+1),  p|lA2(p+1), Ba(p+1)=0 (modp?).
(4)
At last for all k =0,1,...,2p+ 1

Aj(k)=Bj(k)=0 (modp?), j=3,4,....
Lemma 2. Let ¢ = p' with £ > 1, g(y) is the polynomial in form
9(y) = A1y +pAoy”® + p Ay’ + -+ P AS, k>3,

with Aj € Z, (Aj,p) =1, j=3,...,k, 2< A3 < Ay < -+ < A, Then we
have

q—1
2mi L) L
Sp=doe ™t =plil N By, ©)
y=1 YEZ /2]
g'(y)=0 (mod pl*/2)
where
lf (Alap) = ]‘7
1 if £=0 (mod 2),
B A1 =0 (mod p),
Bq(y) - '((%+2A2)z+2z2)
Zzza;(l) o2 p if £=1 (mod 2),
A1 =0 (mod p).

Proof. The proof of this assertion repeats the proofs of Lemmas 12.3 and
12.4 in [1]. O



S. VARBANETS, YA. VOROBYOV 263

For p=1 (mod 4) or p = 2 the norm groups are not the cyclic groups.
We shall use the description of the solutions z? + 32 = 1 (mod p") for
these cases.

Lemma 3. Let (x,y) is a solution of the congruence % +y? = 1 (mod p?),
p > 2 is a prime number. Then all solutions with (xo,p) = 1 are described
in the following manner

v =2(0)f(yo,t), y=wo+pt, t=0,1,....p7" =1, (6)
where x(0) runs all solutions of the congruence
2® =1—yj (modp"),
yo Tuns all solutions of the congruence
w2 +y2 =1 (mod p)
with xg 0 (mod p), and

Yo 1 —yo
— 1t +p2ﬁt2 + p/\3X3(y0)t3 + e +p)‘sXs(y0)tSa

2
0 0

f(yo,t) =1+p
Y

under conditions (X;(yo),p) =1, Aj =3, s < [fg%l]

For the solutions of the congruence 2 +y% =1 (mod p*) with zg =0
(mod p) we have

1
r=pt, y==£ (1 - 2p2t2> (mod p*). (7)

(Here, the multiplicative inverse for 2 and y3 — 1 is considered modulo p").

Lemma 3. Let s = [%] There exists the polynomaial
F)=14+2MA - 182 4 .- 4 22 A%

with Aj =1 (mod 2), \; >2j+1, j=1,...,s, such that all solutions of
the congruence x> +y?> =1 (mod p%) can be written as
x=4t, y==4f{t) or x=4t, y==+0271-1)f(),

8
t=0,1,...,272 1. ®)
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Lemma 4. Let us I(¢,q) be the number of solutions of the congruence

w+v P =a (modq), (a,q) Hpto

plg
Then we have
I(a,q)
t0+1 1 =1
c(a,q)q H < @) (1= xa(@")) + (1—7> Z X4(ptb)>7
P'lla b L

where
(1 if(q.2) =1,
1 if 2||q,

cla,q) =<1 ifq=0 (mod4), to>t—2,

2 ifg=0 (mod4), to<t—2and5; =1 (mod4),
0 ifg=0 (mod4), to<t—2and5; =3 (mod 4)

This lemma follows from the equation

-y 2

V€Lt ZEZ*

z(y +v z(y“ v —f)

and the values of the Gaussian sums ) ,cz , € 7" .
p
Similarly7 we obtain the description of the solutions of the congruence

22+ 4% = —1 (mod p’), p=1 (mod 4). Indeed, let ¢y be the solution of
the congruence 22> = —1 (mod p*). Then
fU:COCU(O)fl(Z/O,t)v Y =1 +pt) t:0717"')p€_1_]—a

where f1(yo, ) is as f(yo, ).

2. The main results
We consider the generalized Hecke Z-function of quadratic field Q(7)

p ( 5 5) Z e4miarg(w+51) Sp(wbs) (§R )
m(5:01,80) 1= Y o TIPR) (R > 1),
= N(w+61)

w#01
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where 41,02 € Q(i), m € Z. This function satisfies the functional equation

7T71F<2|m‘ + S)Zm(s; 01, 52)

. 9
=7 =ID©2m| + 1 = 8)Z_ (1 — 5; =69, 5y )e™P(0192), ©)

The function Z,,(s;d1,0d2) is an entire function except the case m =0
and the Gaussian integer d, when Z,,(s;01,d2) is holomorphic for all
complex s exclusive s = 1 where it has a simple pole with residue .

We define the multiplicative character modulo ¢ over G;e as

X(@) = xpt (N (w)),

where x,¢ is the character modulo p! in Z;[.
Let Sy (w) := e 89y (w) = etmiagwy (N (w)). Then from (9) we

have for Z(s;2,,) = > Zm(@) the following functional equation

w N(w)s
Z(8;2m) = k(Em)¥(5,Zm) Z(1 — 5,Z), (10)
where
K(Em) = (VD)7 Y x(N(m)e ™",
1 TEGpiizs F(2| ‘ . . ) (11)
V(s Em) = <7rN(p€)2> T2m|+s)
Denote

T (n) _ Z e4mi arg (u+iv) ]

u,VEZ
u?4v2=n

From this we have

Z o (n)pr (n) _ Z elmiarg (u-&—iv)Xpe (n) )

n<w u,0EZ
u2+02:n<x

Therefore,




266 NORM OF GAUSSIAN INTEGERS

We get by the Perron’s formula on an arithmetic progression with ¢ > 1,
T>1,(a,p)=1,0<e< % the following equality

Z [ () = 271Ti/c+iTFm(s)fds+O (ﬂo%fl)) + O (2°)

c—iT

n<x
s 1 —e+iT 75 1 .
= xos, (Fm(s)8> + o /_E_ZT Fm(s)?ds —1—752%?@ ;Fm(s)x
xc
O =—+7—— O (zf
+0 () + O,
(12)

where ¢ is a positive arbitrary small number.
From the functional equation for Z(s, =), summing all over character
Xpt, we have for s < 0

10 L(2Im| +1—35) g~ dmiargw Sp(r)
—_ 1+2s § : E : 7
Fnls) = L'(2lm| + s) N(w)l— = <
( 7p€) 1 — pz V4
N(7)=aN(w) (mod p*)

Consider the sum

For p =3 (mod 4), we apply the representation of elements from the
norm group E,,. Lemma 1 and its Corollary give

-1
2p+1 Al P AL ()t Al (R)E2 4o

DD S D
0

—1
i@ P Z_l AL+ Ay O
= e P e Pe
t=0

14
o A0+ P g AL@HDEH AL (p+1)E2 4
T 7 7

+ e P e P ,

t=0

where A%(0) and A’ (p + 1) differ from A;(j) and A —j(p+ 1) only by the
multiplier N(w)a.
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Now Lemma 3 gives

! /
o om0 o Aolpil)
EO =p2|e " +e P

{1 if =0 (mod 2),
X

(13)
2riAf (244)1
e P if =1 (mod 2).
If p=1 (mod4) or p =2 we use Lemma 1 and then obtain Fy =
1

@) <p£ 5) with an absolute constant in the symbol "O".

Now we able to prove the main theorems.
Let us denote through A(z; 1, @9; a,p’) the number of points (u,v)
in the circle (u? 4+ v?) <  under conditions

u,v € Z, 1 <arg(u+iv) < pa,

14
w4+ v =a (modp’), (a,p) =1 (1)
Theorem 1. For x — oo the following estimate
Z rm(n) = 5%]{0 (1 — X4(p))
n=a (mod p?) b b
n<z (15)
1.
+0 (”“EMH&) 1o (péMHf) ,
p4

holds, where e, =0 if m #£0,e90 =1, kg=1ifp>2, ork=2ifp=2,
0>=3; M =|m|+3, >0 is an arbitrary small number; constants in the
symbols can depend only on €.

Proof. The function F,,(s) has a pole in s = 1 only if m = 0:

T X4(p)>
res Fo(s) = —ko |1 — .
g Fols) = o 0( p

The estimate for F,,(0) is easy proving by the Phragmen-Lindel6ff principle
and the estimates of Z,,(s) on the bounds of stripe —e < Rs < 1+ ¢&.
Therefore, we have

res Fin(s) < p3(jm| + 3) log (|m| + 3).
S=
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Hence,
mx ¢
> () =emsy > 140 (pE(Im]+3)log (jm| +3)) +
n=a (mod p’) u,vEZ 4
nsw u?+v2=a (mod p?)
1 —etil’ s ¢
— F —ds+ 0| =—+—— .
Tomi )y st (Tpf(c — >
(16)
Note that
T 3 Lee ™ (1 x4(p) ’
P P p
u,vGZpg
u?+v2=a (mod pt)
where
1495 0(2lm| +1— ) e~ dmiargw i SpCr)
F — 1+2s X 7
m(s) =m T(2lm| + s) MZ: N(w)l=s Z e’

7'EG’:,Z

eeG
(w,p")=1 N(r)=aN(w) (mod p’)

Thus, using the estimate of the sum ), and the Stirling formula for
the gamma-function I'(z), we at once obtain the estimate of the integral
in (16)
1 —e+iT 8 ‘ ’
— F(s)—ds < Tt ¥ patey=2 « T2 )2, (17)
2 ) . i 5

1
Choosing ¢ = 1 + (logz)™', T = %2, we get assertion of Theorem 1. [J
p4
The following theorems stem from this result and Vinogradov’s lemma
(see, [4], Lemma 12, pp. 261-262).

Theorem 2. In the sectorial region u? +v? < z, u> + v? = a (mod p*),
p1 < arg (u+1iv) < @2, w2 — p1 > x the following asymptotic formula
holds:

Al 1, p230,p") 1= > 1=
uv
u?+v2=a (mod p*)
p1<arg (u+iv)<p2
u2+v2§x

- 3te
_p2—n ‘koigb‘ (1 _ X4(p)> ) :m(
2 p p p1
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3¢
Theorem 3. Let p be a prime number, { > 3, and p=1% < z < p?

0</€<%—ﬁ, w2 — @1 > x~ . Then we have

_ T 'rlfr{
A(QJ";SDl,‘PQ;aape):M'Z(lX4(p)>+0< 7 logx“).
2 p p p

7

Actually, in Vinogradov’s lemma we take Q@ = 5,6 = 2", A = 27¢
and let A < 2 — 1 < § —2k. Then f(p1,p2) be the function from that
lemma.

Consider the function

1 .
Worp)=7 Y flarmutiv).
u2+v2<x
u?+v2=a (mod pé)

Then we have

L)
@(9017802) = Z Z ame4miarg (utiv) _

w? <z m=-—00
u?+v2=a (mod pt)

= Z Qm Z Tm(n),

m=—00 n=a (mod pe)
n<x

(here a,, are the coefficients from the Vinogradov’s lemma).

We take r = 3 (in the notation of the Vinogradov’s lemma) and take
into account that

1
ap = = (p2 — o1 +4)

Q
%2@2 — 1+ A)
|am| < ] if m#0,

2 rQ) "
wm| \ 7w|m|A

then after simple calculations we get Theorem 2 and Theorem 3.
Taking into account that Hecke characters and Gauss exponential

sums have the multiplicative properties modulo ¢, we have the following
assertion.



270 NORM OF GAUSSIAN INTEGERS

Theorem 4. In the sectorial region u? +v? < x, u? +v*> = a (mod q),
o1 < arg (u+1iv) < @2, w2 — @1 > x the following asymptotic formula
holds:

A(@‘Pla@%aaQ) = Z 1=

w,v
u?+v?=a (mod q)
p1<arg (u+iv)<p2

u2+v2<z

w2 — 1 kox x4(p) z7te
- —— 1 o — - .
2 q 11 ( p > v (

1
4
plg q

Remark. The result of Theorem 1 can be improved in case p = 3 (mod 4)
and ¢ > 3 in view of the fact that we have the precise meaning of the sum

Ey (see (13)).
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