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Abstract. Noncommutative cryptography is based on ap-
plications of algebraic structures like noncommutative groups, semi-
groups, and noncommutative rings. Its intersection with Multivariate
cryptography contains studies of cryptographic applications of sub-
semigroups and subgroups of affine Cremona semigroups deőned
over őnite commutative rings. Efficiently computed homomorphisms
between stable subsemigroups of affine Cremona semigroups can
be used in tame homomorphisms protocols schemes and their in-
verse versions. The implementation scheme with the sequence of
subgroups of affine Cremona group that deőnes the projective limit
was already suggested. We present the implementation of another
scheme that uses two projective limits which deőne two different
inőnite groups and the homomorphism between them. The security
of the corresponding algorithm is based on complexity of the de-
composition problem for an element of affine Cremona semigroup
into a product of given generators. These algorithms may be used
in postquantum technologies.
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1. On ideas of Noncommutative Cryptography with

platforms of transformations of Multivariate

Cryptography

Post Quantum Cryptography serves for the research of asymmetrical
cryptographic algorithms which can be potentially resistant against attacks
with the usage of a quantum computer. The security of currently popular
algorithms is based on the complexity of the following well known three
hard problems: integer factorization, discrete logarithm problem, discrete
logarithm for elliptic curves. Each of these problems can be solved in
polynomial time by Peter Shor’s algorithm for the theoretical quantum
computer. In fact, some rather old cryptosystems which were suggested
in the late ’70s of the 20 century potentially may have some resistance to
attacks on quantum computers (see for instance McEliece cryptosystem
[18]).

Modern PQC is divided into several directions such as Multivariate
Cryptography, Nonlinear Cryptography, Lattice-based Cryptography, Hash-
based Cryptography, Code-based Cryptography, studies of isogenies for
superelliptic curves, Noncommutative cryptography, and others.

The Multivariate Cryptography (see [4, 6, 12]) uses polynomial maps
of affine space Kn deőned over a őnite commutative ring into itself as
encryption tools. It exploits the complexity of őnding a solution of a system
of nonlinear equations from many variables. Multivariate cryptography
uses as encryption tools nonlinear polynomial transformations of kind x1 →
f1(x1, x2, . . . , xn), x2,→ f2(x1, x2, . . . , xn), . . . , xn → fn(x1, x2, . . . , xn)),
transforming affine space Kn, where fi : K[x1, x2, . . . , xn], i = 1, 2, . . . , n
are multivariate polynomials usually given in a standard form, i.e. via a
list of monomials in a chosen order.

Noncommutative cryptography appeared with attempts to apply the
Combinatorial group theory to Information Security. If G is a noncom-
mutative group then correspondents can use conjugations of elements
involved in the protocol, some algorithms of this kind were suggested
in [7, 19, 22, 23], where group G is given with the usage of generators
and relations. The security of such algorithms is connected to Conjugacy
Search Problem (CSP) and Power Conjugacy Search Problem (PCSP),
which combine CSP and Discrete Logarithm Problem and their generaliza-
tions. Currently, Noncommutative cryptography is essentially wider than
group-based cryptography. It is an active area of cryptology, where the
cryptographic primitives and systems are based on algebraic structures like
groups, semigroups, and noncommutative rings (see [1ś3,5,11,13,17,20,21]).
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This direction of security research has very rapid development (see [14,16]
and further references in these publications).

One of the earliest applications of noncommutative algebraic structures
for cryptographic purposes was the usage of braid groups to develop
cryptographic protocols. Later several other noncommutative structures
like Tompson groups and Grigorchuk groups have been identiőed as
potential candidates for cryptographic post-quantum applications. The
standard way of presentations of groups and semigroups is the usage of
generators and relations (Combinatorial Group Theory). Semigroup based
cryptography consists of general cryptographic schemes deőned in terms of
wide classes of semigroups and their implementations for chosen semigroup
families (so-called platform semigroups).

The paper is devoted to some research on the intersection of Noncom-
mutative and Multivariate Cryptographies. We try to use some abstract
schemes in terms of Combinatorial Semigroup Theory for the implemen-
tation with platforms which are semigroups and groups of polynomial
transformations of free modules Kn where K is a commutative ring.

The most popular form of Multivariate cryptosystem is the usage of a
single very special map f in a public key mode. The őrst examples were
based on families of quadratic bijective transformation fn(see [4, 6, 12]),
such choice implies a rather fast encryption process. The paper is devoted
to other aspects of Multivariate cryptography when some subsemigroup of
affine Cremona semigroup of all polynomial transformations is used instead
of a single transformation. Let us discuss a case of subsemigroup with
a single generator. Everybody knows that Diffie-Hellman key exchange
protocol can be formally considered in general case of any őnite group
or semigroup G. In the case of group G, the corresponding ElGamal
cryptosystem can be introduced. Notice that the security of this algorithm
depends not only on abstract group G but on the way of its generation in
computer memory. For instance, if G = Z∗

p is a multiplicative group of a
large prime őeld then the discrete logarithm problem (DLP) is a difficult
one and guarantees the security of the protocol. If the same abstract group
is given as an additive group of Zp−1 protocol is insecure because DLP
will be given by linear equation.

Notice that the implementation of the idea to use a multivariate
generator in its standard form has to overcome essential difficulties. At
őrst glance, the Diffie-Hellman protocol in affine Cremona semigroup looks
like an unrealistic one because the composition of two maps of degree r
and s taken in “general positionž will be a transformation of degree rs.
So in majority of cases deg(F ) = d, d > 1 implies very fast growth of
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function d(r) = deg(F r). Of course in the case of the generator in common
position, not only a degree but also a density (total number of monomial
terms of the map in its standard forms) grows exponentially.

So we have to őnd special conditions on a subsemigroup of affine
Cremona group which guarantees the polynomial complexity of procedure
to compute the composition of several elements from subsemigroup. Such
conditions can deőne a basis of Noncommutative Multivariate Cryptog-
raphy. Hopefully, at least two conditions of this kind are already known
[26] (see further references) and [28]. We consider them in the following
section.

2. On stable subsemigroups of Affine Cremona

Semigroup, Eulerian transformations and

corresponding cryptographic scheme

Stability condition demands that the degree of each transformation
of the subsemigroup of affine Cremona semigroup has to be bounded
by independent constant d. We refer to such subsemigroup as a stable
subsemigroup of degree d. Examples of known families of stable subgroups
of degree d = 3 reader can őnd in [26] (see further references) or [30].
Applications of such families to Symmetric Cryptography could be found
in [32]. Some examples of stable families of subgroups of degree 2 are
given in [25].

The eulerian condition demands that all transformations of subsemi-
group of affine Cremona subgroup are given in a standard form

(x1, x2, . . . , xn)

→ (f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))

where each fi has density 1. All transformations of this kind form General
Eulerian Semigroup nGES(K) of transformations of kind

x1 → µ1x
a(1,1)
1 x

a(1,2)
2 . . . xa(1,n)n , x2 → µ2x

a(2,1)
1 x

a(2,2)
2 . . . xa(2,n)n ,

. . . , xn → µnx
a(n,1)
1 x

a(n,2)
2 . . . xa(n,n)n

where a(i, j) are positive integers and µi ∈ K.
First cryptosystems of Nonlinear Multivariate Cryptography in terms

of nGES(K) are suggested in [28].
The discrete logarithm problem is the special simplest case of the

word decomposition problem for semigroups. Let S′ be a subsemigroup
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of S generated by elements g1, g2, . . . , gt. The word problem (WP) of
őnding the decomposition of g ∈ S into a product of generators gi is
difficult, i.e. polynomial algorithms to solve it with Turing machine or
Quantum Computer are unknown. The idea to apply this problem in
Cryptography was considered in [37] where some general schemes to use
WP for constructions of algorithms of Noncommutative Cryptography
were suggested. Of course, the complexity of the problem depends heavily
on the choice of S and the way of a presentation of the semigroup. In
the cases of families of affine Cremona semigroups or S =n GES(K), the
problem WP is computationally infeasible with a Turing machine and
with Quantum Computer.

We are working on implementations of the following formal schemes
of usage of the complexity of WP. Tame map means computable in
polynomial time from parameter m.

Toric Tahoma cryptosystem

Let K be a commutative ring, subgroups nG of nGES(K) act naturally
on (K∗)n, mS(n,K) is a subsemigroup of mGES(K) such that there is
a tame homomorphisn ∆ = ∆(m,n) of mS(n,K) onto nG. We assume
that m = m(n) where m > n and consider the following toric tahoma

cryptosystem:

Alice takes b1, b2, . . . , bs, s > 1 from mS(n,K) and a1, a2, . . ., as where
ai = ∆(bi)

−1. She takes g ∈m EG(K) and h ∈n EG(K) and forms pairs
(gi, hi) = (g−1big, h

−1aih), i = 1, 2, . . . , s and sends them to Bob.

He writes the word w(z1, z2, . . . , zs) in the alphabet z1, z2, . . . , zs to-
gether with the reverse word w′(z1, z2, . . . , zs) formed by characters of w
written in the reverse order. He computes element b = w(g1, g2, . . . , gs)
via specialization zi = gi and a = w′(h1, h2, . . . , hs) via specialization
zi = hi. Bob keeps a for himself and sends b to Alice. She computes a−1

as h−1∆(gbg−1)h.

Alice writes her message (p1, p2, . . . , pn) and sends ciphertext a−1(p1,
p2, . . . , pn) to Bob. He decrypts with his function a. Symmetrically Bob
sends his ciphertext a(p1, p2, . . . , pn) to Alice and she decrypts with a−1.

The problems of constructions of large subgroups G of nGES(K),
pairs (g, g−1), g ∈ G, and tame Eulerian homomorphisms µ : G → H,
i.e. computable in polynomial time t(n) homomorphisms of subgroup G
of nGES(K) onto H <m GES(K) are motivated by tasks of Nonlinear
Cryptography.
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The őrst platforms for this scheme and some other abstract schemes
are suggested in [28].

Affine Tahoma cryptosystem

If we change semigroup mGES(K) for affine Cremona semigroup
S(Km) we obtain the following Affine Tahoma Cryptosystem on stable
transformations.

Let K be a commutative ring, stable subgroups nG of S(Kn) act
naturally on Kn and mS(n,K) be a subgroup of S(Km) such that there
is a tame homomorphisn ∆ = ∆(m,n) of mS(n,K) onto nG. We assume
that m = m(n) where m > n.

Alice takes b1, b2, . . . , bs, s > 1 from mS(n,K) and a1, a2, . . . , as where
ai = ∆(bi)

−1. She takes g ∈ C(Qm) and h ∈ C(Rn) where R and Q
are extensions of the commutative ring K and forms pairs (gi, hi) =
(g−1big, h

−1aih), i = 1, 2, . . . , s and sends them to Bob. We assume that
g = g′T , h = h′T ′ where semigroup ⟨g′,m S(n,K)⟩ generated by g′ and
elements of mS(n,K) and group ⟨h′, G⟩ are stable semigroups of degree d
and T ∈ AGLn(R), T ′ ∈ AGLm(Q).

As in the previous algorithm Bob writes the word w(z1, z2, . . . , zs) in
the alphabet z1, z2, . . . , zs together with the reverse word w′(z1, z2, . . . , zs)
formed by characters of w written in the reverse order. He computes
element b = w(g1, g2, . . . , gs) via specialization zi = gi and a = w′(h1, h2,
. . . , hs) via specialization zi = hi. Bob keeps a for himself and sends b to
Alice. She computes a−1 as h−1∆(gbg−1)h.

Alice writes her message (p1, p2, . . . , pn) from Rn and sends ciphertext
a−1(p1, p2, . . . , pn) to Bob. He decrypts with his function a. Symmetrically
Bob sends his ciphertext a(p1, p2, . . . , pn) to Alice and she decrypts with
a−1 (see [27]). Let nTC(K,R,Q) stand for affine Tahoma cryptosystem
as above.

In [25] quadratic stable subsemigroups with corresponding homomor-
phisms are suggested as platforms of this scheme. Some other schemes
are also implemented there with these platforms. Some cubical platforms
were suggested in [27].

Only one family of platforms was investigated via computer implemen-
tation. Paper [31] is devoted to implementations of Affine Tahoma scheme
with platforms of cubical stable groups. They were deőned via families
of linguistic graphs that form projective limits and the standard homo-
morphisms between two members of these sequences. So we have pairs
(Gn,∆n) where Gn < S(Kn), ∆n is a homomorphism of Gn onto Gm,
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m = m(n) such that projective limits lim(Gn), n→∞ and lim(∆(Gn)),
n→∞ coincide with the same inőnite transformation group G.

This article is devoted to another computer experiment with the
new platform which uses the same groups Gn but different tame homo-
morphisms ηn . In the new scheme lim(Gn), n → ∞ equals to G, but
lim(ηn(Gn)), n → ∞ coincides with the image of homomorphism of G
with an inőnite kernel.

We believe that the option to vary tame homomorphisms in the chosen
sequence of semigroup makes the task of cryptanalytic much more difficult.

We use projective limits D(K) and A(K) of the well known graphs
D(n,K) (see [15,33]) and A(n,K) (see [31] and further references) deőned
over arbitrary őnite commutative rings. Walks on the graphs D(K) and
A(K) allow to deőne groups GD(K) and GA(K) of cubic transformations
of inőnite dimensional affine space over K. Group GA(K) is a homomor-
phic image of GD(K), both groups can be obtained as projective limits
of sequences GAn(K) and GDn(K),n = 1, 2, . . . of őnite cubical stable
groups. We suggest key exchange protocols based on homomorphisms of
GDj(K) onto GAi(K) for some i and j.

Computer simulations demonstrate an interesting effect of density
stabilization of generated cubical maps. The time execution tables for
algorithms of generation of maps and numbers of monomial terms are given.
They demonstrate the feasibility of algorithms. The method of generation
allows constructing for each bijective transformation of the free module
over K its inverse map. Multivariate nature of collision maps allows using
these algorithms for the safe exchange of multivariate transformations.
Various deformation rules can be used for this purpose (see formal schemes
of [25ś27]).

3. Some basic deőnitions

Let us consider basic algebraic objects of multivariate cryptography,
which are important for the choice of appropriate pairs of maps f , f−1

in both cases of public key approach or idea of asymmetric algorithms
with protected encryption rules. Let us consider the totality SFn(K)
of all rules of kind: x1 → f1(x1, x2, . . . , xn), x2 → f2(x1, x2, . . . , xn),
. . . , xn → fn(x1, x2, . . . , xn) acting on the affine space Kn, where fi,
i = 1, 2, . . . , n are elements of K[x1, x2, . . . , xn] with natural operation
of composition. We refer to this semigroup as semigroup of formal trans-
formation SFn(K) of free module Kn. In fact it is a totality of all en-
domorphisms of ring K[x1, x2, . . . , xk] with the operation of their super-
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position. Each rule f from SFn(K) induces transformation t(f) which
sends tuple (p1, p2, . . . , pn) into (f1(p1, p2, . . . , pn), f2(p1, p2, . . . , pn), . . . ,
fn(p1, p2, . . . , pn)). Affine Cremona semigroup S(Kn) is a totality of all
transformations of kind t(f). The canonical homomorphism t→ t(f) maps
inőnite semigroup SFn(K) onto őnite semigroup S(Kn) in the case of
őnite commutative ring K.

We refer to pair (f, f ′) of elements SFn(K) such that ff ′ and f ′f are
two copies of identical rule xi → xi, i = 1, 2, . . . , n as pair of invertible
elements. If (f, f ′) is such a pair, then product t(f)t(f ′) is an identity
map. Let us consider the subgroup CFn(K) of all invertible elements of
SFn(K) (group of formal maps). It means f is an element of CFn(K)
if and only if there is f ′ such that ff ′ and f ′f are identity maps. It is
clear that the image of a restriction of t on CFn(K) is affine Cremona
group Cn(K) of all transformations of Kn onto Kn for which there exists
a polynomial inverse.

We say that a family of subsemigroups Sn of SFn(K) (or S(Kn)) is
stable of degree d if maximal degree of elements from Sn is an independent
constant d, d > 1. If K is a őnite commutative ring then stable semigroup
has to be a őnite set.

Condition d > 1 is natural because of elements from the group
AGLn(K) of all affine bijective transformations, i.e. elements of affine
Cremona group of degree 1.

4. On linguistic graphs and related semigroups of affine

transformations

The missing deőnitions of graph-theoretical concepts that appear in
this paper can be found in [27]. All graphs we consider are s imple graphs,
i.e. undirected without loops and multiple edges. Let V (G) and E(G)
denote the set of vertices and the set of edges of G respectively.

When it is convenient we shall identify G with the corresponding anti-
reŕexive binary relation on V (G), i.e. E(G) is a subset of V (G) ◦ V (G)
and write vGu for the adjacent vertices u and v (or neighbours). We refer
to |{x ∈ V (G)|xGv}| as degree of the vertex v.

The incidence structure is the set V with partition sets P (points)
and L (lines) and symmetric binary relation I such that the incidence
of two elements implies that one of them is a point and another one is a
line. We shall identify I with the simple graph of this incidence relation
or bipartite graph. The pair x, y, x ∈ P , y ∈ L such that xIy is called a
ŕag of incidence structure I.
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Let K be a őnite commutative ring. We refer to an incidence structure
with a point set P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as
linguistic incidence structure Im if point x = (x1, x2, . . . , xs, xs+1, xs+2,
. . . , xs+m) is incident to line y = [y1, y2, . . . , yr, yr+1, yr+2, . . . , yr+m] if
and only if the following relations hold

a1xs+1 + b1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr)

a2xs+2 + b2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1)

amxs+m + bmyr+m = fm(x1, x2, . . . , xs, xs+1, . . . , xs+m, y1, y2, . . . , yr,

yr+1, . . . , yr+m)

where aj , and bj , j = 1, 2, . . . ,m are not zero divisors, and fj are multivari-
ate polynomials with coefficients from K [15]. Brackets and parenthesis
allow us to distinguish points from lines.

The colour ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point x (line [y]) is
deőned as projection of an element (x) (respectively [y]) from a free
module on its initial s (relatively r) coordinates. As it follows from the
deőnition of linguistic incidence structure for each vertex of incidence graph
there exists unique neighbour of a chosen colour. We refer to ρ((x)) =
(x1, x2, . . . , xs) for (x) = (x1, x2, . . . , xs+m) and ρ([y]) = (y1, y2, . . . , yr)
for [y] = [y1, y2, . . . , yr+m] as the colour of the point and the colour of the
line respectively. For each b ∈ Kr and p = (p1, p2, . . . , ps+m) there is a
unique neighbour of the point [l] = Nb(p) with the colour b. Similarly for
each c ∈ Ks and line l = [l1, l2, . . . , lr+m] there is a unique neighbour of
the line (p) = Nc([l]) with the colour c. The triples of parameters s, r, m
deőnes type of linguistic graph. Examples of families of linguistic graphs
of type 1, 1,m and their cryptographic applications can be found in [24],
[34] and [36].

We consider also linguistic incidence structures deőned by inőnite
number of equations. Let M = {m1,m2, . . . ,md} be a subset of {1, 2, . . . ,
m} (set of indexes for equations). Assume that equations indexed by
elements from M of following kind

am1
xm1

+ bm1
ym1

= fm1
(x1, x2, . . . , xs, y1, y2, . . . , yr)

am2
xm2

+ bm2
ym2

= fm2
(x1, x2, . . . , xs, xm1

, y1, y2, . . . , yr, ym1
)

. . .

amd
xmd

+ bmd
ymd

= fmd
(x1, x2, . . . , xs, xm1

, xm2
, . . . , xmd−1

,

y1, y2, . . . , yr, ym1
, ym2

, . . . , ymd−1)
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are deőned other linguistic incidence structure IM . Then the natural
projections δ1 : (x) → (x1, x2, . . . , xs, xm1

, xm2
, . . . , xmd

) and δ2 : [y] →
[y1, y2, . . . , yr, ym1

, ym2
, . . . , ymd

] of free modules deőne the natural homo-
morphism δ of incidence structure I onto IM . We will use same symbol ρ
for the colouring of linguistic graph IM .

It is clear, that δ is a colour-preserving homomorphism of incidence
structures (bipartite graphs). We refer to δ as symplectic homomorphism
and graph IM as symplectic quotient of linguistic graph I. In the case
of linguistic graphs deőned by an inőnite number of equations, we may
consider symplectic quotients deőned by inőnite subset M (see [33], where
symplectic homomorphism was used for the cryptosystem construction).

We consider the more general concept of linguistic homomorphism ξ of
linguistic incidence systems P,L, I(K) and induced by linear projections δ
of P and δ′ of L deőned via deleting of some coordinates of colour tuples.

(x1, x1, . . . , xs) and [y1, y2, . . . , yr] together with simultaneous deleting
of xi+r and yi+s for i from some subset of {1, 2, . . . ,m}. The image of ξ
is a linguistic graph of type s1, r1, m1 where s1 ⩽ s, r1 ⩽ r, m1 ⩽ m.

In the case of linguistic graph Γ the path consisting of its vertices v0,
v1, v2, . . . , vk is uniquely deőned by initial vertex v0, and colours ρ(vi, ),
i = 1, 2, . . . , k.

Let us concentrate on linguistic graphs of type 1, 1,m. Let N(a, v) be
the operator of taking neighbour of the vertex v with colour a ∈ K. We refer
to sequences (f1, f2, . . . , fs) with f1 ∈ K[x1] of even length s as symbolic
strings. On the totality S1,1 (K) of such sequences we consider the product
(f1, f2, . . . , fs)(g1, g2, . . . , gr) = (f1, f2, . . . , fs, g1(fs(x1)), g2(fs(x1)), . . . ,
gr(fs(x1))).

Proposition 1. Elements of S1,1(K) with deőned product form a semi-

group.

If Q is an extension of the ground commutative ring K then linguistic
graph I(Q) and can be deőned via the same set of equations. Let us
take Q = K[x1, x2, . . . , xn] and consider inőnite linguistic graph I ′ =
I(K[x1, x2, . . . , xn]) with partition sets P ′ and L′ isomorphic to variety
K[x1, x2, . . . , xn]

n. For each symbolic string (f1, f2, . . . , fs) from S1,1(K)
and consider the symbolic computation C(f1, f2, . . . , fs) which is a walk
in I ′ with starting point X = (x1, x2, . . . , xn) are generic elements of
the commutative ring K[x1, x2, . . . , xn], other elements of the walk are
X1 = N(f1, X), X2 = N(f2, X1), . . . , Xs = N(fs, Xs−1). Notice that
operators N(fi, Xi−1) are computed in the graph I ′.
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It is easy to see that Xs = (fs(x1), g2(x1, x2), . . . , gn(x1, x2, . . . , xn)),
where gi ∈ K[x1, x2, . . . , xi]. The rule (x1 → fs(x1), x2 → g2(x1, x2),
. . . , xn → gn(x1, x2, . . . , xn)) deőnes the map from S(Kn) into itself. We
denote this map as ∆I(K)(f1, f2, . . . , fs) and refer to it as a map of
symbolic computation.

Proposition 2. A map ∆I(K) from S1,1(K) into s(Kn) sending sym-

bolic string (f1, f2, . . . , fs) to ∆I(K)(f1, f2, . . . , fs) is a homomorphism

of S1,1(K) into s(Kn).

We refer to the image PS(I(K)) of homomorphism of proposition 2
as semigroup of symbolic point to point computations and refer to ∆I(K)
as linguistic compression (lc) homomorphism. We deőne a semigroup
LS(I(K)) of line-to-line computations via simple change of points for
lines in I and I ′.

Proposition 3. A symplectic homomorphism δ of linguistic graphs 1I(K)
and 2I(K) of type (1, 1, n) induces canonical homomorphism of PS(1I(K))
onto PS(2I(K)).

Let us consider subsemigroup Σ(K) of S1,1(K) generated by symbolic
shifting strings of kind (x1+a1, x1+a2, . . . , x1+as), where ai, i = 1, 2, . . . , s
are elements of K. We identify tuple C = (x1 + a1, x1 + a2, . . . , x1 + as)
with its code ⟨a1, a2, . . . , as⟩.

Proposition 4. For each linguistic graph I(K) of type (1, 1, n− 1) the

image Σ(I(K)) of Σ(K) under the linguistic compression homomorphism

onto PS(I(K)) is a subgroup of affine Cremona group.

In fact for invertibility of δ(f1, f2, . . . , fs) ∈ PS(I(K)) the bijectivity
of fs is a sufficient and necessary condition. We refer to Σ(I(K)) as group
of walks on points of linguistic graph I(K).

Let C = (x1 + a1, x1 + a2, . . . , x1 + as) be a shifting symbolic string
from the semigroup Σ(K). We refer to Rev(C) = (x1 − as + as−1, x1 −
as + as−2, . . . , x1 − as + a1, x1 − as) as revering string for x.

Lemma. Let ∆ = ∆I(K) be linguistic compression map from S1,1(K)
onto PS(I(K)) and x ∈ Σ(K). Then inverse map for ∆(x) coincides with

∆(Rev(x)).
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5. Stable groups of cubical maps deőned in terms of

linguistic graphs and their homomorphisms

Let K be a commutative ring. We deőne A(n,K) as bipartite graph
with the point set P = Kn and line set L = Kn (two copies of a Carte-
sian power of K are used). We will use brackets and parenthesis to
distinguish tuples from P and L. So (p) = (p1, p2, . . . , pn) ∈ Pn and
[l] = [l1, l2, . . . , ln] ∈ Ln. The incidence relation I = A(n,K) (or corre-
sponding bipartite graph I) is given by condition pIl if and only if the
equations of the following kind hold

p2 − l2 = l1p1, p3 − l3 = p1l2, p4 − l4 = l1p3, p5 − l3 = p1l4,

. . . , pn − ln = p1ln−1 for odd n and pn − ln = l1pn−1 for even n.

Let us consider the case of őnite commutative ring K, |K| = m. As
it instantly follows from the deőnition the order of our bipartite graph
A(n,K) is 2mn. The graph is m-regular. In fact the neighbour of given
point p is given by above equations, where parameters p1, p2, . . . , pn are
őxed elements of the ring and symbols l1, l2, . . . , ln are variables. It is
easy to see that the value for l1 could be freely chosen. This choice
uniformly establishes values for l2, l3, . . . , ln . So each point has precisely
m neighbours. In a similar way, we observe the neighbourhood of the line,
which also contains m neighbours. We introduce the colour ρ(p) of the
point p and the colour ρ(l) of line l as parameter p1 and l1 respectively.

It means that graphs A(n,K) with colouring ρ belong to the class of
Γ linguistic graphs of type (1, 1, n− 1).

Let GA(n,K) = Σ(A(n,K)) stands for the group of walks on points of
A(n,K). We have a natural homomorphism GA(n+1,K) onto GA(n,K)
induced by symplectic homomorphism ∆ from A(n+ 1,K) onto A(n,K)
sending point (x1, x2, . . . , xn, xn+1) to (x1, x2, . . . , xn) and line [x1, x2, . . . ,
xn, xn+1] to [x1, x2, . . . , xn]. It means that there is well deőned projective
limit A(K) of graphs A(n,K) and groups GA(K) of groups G(n,K)
when n is growing to inőnity. As it stated in [35] case of K = Fq, q > 2
inőnite graph A(Fq) is a tree. Some properties of inőnite groups GA(K)
of transformation of inőnite dimensional affine space over commutative
ring K the reader can őnd in [31].

Other family D(n,K) of linguistic graphs of type (1, 1, n− 1) deőned
over the commutative ring K were deőned in [33] but its deőnition in
the case of K = Fq was known earlier. In fact graphs D(n, q) = D(n, Fq)
are widely known due to their applications in Extremal Graph Theory, in
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Theory of LDPC codes and Cryptography. Graphs D(n,K) are bipartite
with set of vertices V = P ∪ L, |P ∩ L| = 0. A subset of the vertices P is
called the set of points and another subset L is called the set of lines. Let P
and L be two copies of Cartesian power Kn, where n ⩾ 2 is an integer. Two
types of brackets are used in order to distinguish points from lines. It has
a set of vertices (collection of points and lines), which are n-dimensional
vectors over K : (p) = (p1, p2, p3, p4, . . . , pi, pi+1, pi+2, pi+3, . . . , pn), [l] =
[l1, l2, l3, l4, . . . , li, li+1, li+2, li+3, . . . , ln]. The point (p) is incident with the
line [l], if the following relations between their coordinates hold: l2 − p2 =
l1p1, l3 − p3 = l2p1, l4 − p4 = l1p2, li − pi = l1pi−2, li+1 − pi+1 = li−1p1,
li+2−pi+2 = lip1, li+3−pi+3 = l1pi+1 where i ⩾ 5. Connected component
of edge-transitive graph D(n, q) is denoted by CD(n, q) [15]. Notice that
all connected components of the natural projective limit D(q) of graphs
D(n, q), n→∞ are q-regular trees. Let D(K) stands for the projective
limit of graphs D(n,K).

Let us denote as GD(n,K) and GD(K) the groups Σ(D(n,K)) and
Σ(D(K)) of walks on points of graphs D(n,K) and D(K) respectively.
For the description of certain symplectic quotients we will use the al-
ternative description of graphs D(K). It is based on the connections
of these graphs with Kac-Moody Lie algebra with extended diagram
A1.The vertices of D(K) are inőnite dimensional tuples over K. We
write them in the following way (p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p

′

2,2, p2,3,
. . . , pi,i, p

′

i,i, pi,i+1, pi+1,i, . . .), [l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′

2,2, l2,3, . . . , li,i,
l′i,i, li,i+1, li+1,i, . . .]. We assume that almost all components of points and
lines are zeros. The condition of incidence of point (p) and line [l] ((p)I[l])
can be written via the list of equations below.

li,i − pi,i = l1,0pi−1,i, l′i,i − p′i,i = li,i−1p0,1,

li,i+1 − pi,i+1 = li,ip0,1, li+1,i − pi+1,i = l1,0p
′

i,i.

This four relations are deőned for i ⩾ 1, (p′1,1 = p1,1, l
′

1,1 = l1,1).

Similarly, we can deőne the projective limit A(K) of graphs A(n,K),
n > 1.

We can describe the bipartite inőnite graph A(K) on the vertex
set consisting on points and lines (p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p2,3, . . . ,
pi,i, pi,i+1, . . .). [l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l2,3, . . . , li,i, li,i+1, . . .] such that
point (p) is incident with the line [l] ((p)I[l], if the following relations
between their coordinates hold: li,i−pi,i = l1,0pi−1,i, li,i+1−pi,i+1 = li,ip0,1.

It is clear that the set of indices A = {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2),
(2, 3), . . . , (i − 1, i), (i, i)} is a subset in D = {(1, 0), (0, 1), (1, 1), (1, 2),
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(2, 2), (2, 2)′, . . . , (i − 1, i), (i, i − 1), (i, i), (i, i)′, . . .). So graph A(K) is a
symplectic quotient of linguistic incidence structure D(K). Let us use sym-
bol Ψ for the corresponding symplectic homomorphism. For each positive
integer m ⩾ 2 we consider subsets M = Am and M = Dm containing of
őrst m−2 elements of A′ = A−{(1, 0), (0, 1)} and D′ = D−{(1, 0), (0, 1)}
with respect to the above orders and obtain symplectic quotients IM of
D(K) and A(K). One can check that corresponding quotients are isomor-
phic to graphs D(m,K) and A(m,K). The investigation of pair Am, Dm

leads to following statement [33].

Proposition 5. For each n ⩾ 4 there are a symplectic homomorphisms of

D(2n,K) onto A(m, k), 2 ⩾ m ⩾ n+ 1 and D(2n+ 1,K) onto A(m,K),
2 ⩾ m ⩾ n+ 2. Notice that D(n,K) = A(n,K) for n = 2, 3.

Proposition 6. Groups GD(K) and GA(K) are stable cubical trans-

formations of inőnite-dimensional affine space over a commutative ring

K.

Corollary. GD(n,K) and GA(n,K) are stable cubical subgroups of Cre-

mona group C(Kn).

6. On Three Gates Bridge diagram and algorithms of

Noncommutative cryptography for stable

transformation groups

Let us consider the following Three Gates Bridge diagram

Σ(R)← Σ(Q)← Σ(Q)→ Σ(K)

↓ ↓ ↓ ↓

GA(m,R)← GA(m,Q)← GD(n,Q)→ GD(n,K)

Commutative rings K and R are őnite extensions of the basic com-
mutative ring Q. Left and rights arrows of the őrst row of the diagram
correspond to the natural embedding of Σ(Q) into Σ(R) and Σ(K). The
middle row between two copies of Σ(Q) corresponds to identity isomor-
phism.

Left and rights arrows of the second row of the diagram corresponds
to natural embeddings of GA(m,Q) into GA(m,R) and GD(n,Q) into
CD(n,K). The middle row between GD(m,Q) and GA(m,Q) corre-
sponds to the homomorphism of these groups induced by symplectic
homomorphism of linguistic graphs D(n,Q) and A(m,Q) described in
Proposition 5.
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Vertical arrows of the diagram correspond to linguistic compression
homomorphisms of S1,1(R) onto PS(I(R)), I(R) = A(m,R) restricted
onto Σ(R), S1,1(Q) onto PS(I(Q)), I(Q) = A(m,Q) restricted onto
Σ(Q), S1,1(Q) onto PS(D(n,Q)) restricted onto Σ(Q), S1,1(K) onto
PS(D(n,K)) restricted onto Σ(K). As it follows from the deőnitions
Three Gates Bridge diagram is commutative diagram.

6.1. Tahoma word protocol

Alice sets pairs of graphs D(n,Q) and its symplectic image A(m,Q).
She chooses ring extensions R and K. This information deőnes Three
Bridge Diagram. She selects strings Ci=⟨

iα1,
iα2, . . . ,

iαt(1)⟩, i=1, 2, . . . , r
from Σ(Q) and elements B = ⟨β1, β2, . . . , βs⟩ from Σ(K) and D =
⟨γ1, γ2, . . . , γk⟩ from Σ(K). Alice computes Rev(B) and Rev(D). She
takes affine transformations T1 ∈ AGLn(K) and T2 from AGLm(K).

Alice forms strings Bi = Rev(B)CiB and Di = Rev(D)CiD, i =
1, 2, . . . , r in Σ(K) and Σ(R). She computes images CBi and CDi of
linguistic compression homomorphism ∆D(n,K) and ∆A(m,K) on elements
Bi and Di. Finally Alice computes elements T−1

1 CBiT1 = Gi and Fi =
T−1
2 CDiT2 which are elements of affine Cremona groups C(Kn) and

C(Rm).

Alice keeps the pairs (Gi, Fi) and computes additionally for herself
H = T−1

1 ∆D(n,K)(Rev(B)), H−1 = ∆D(n,K)(B)T1 and
Z = T−1

2 ∆DA(m,K)(Rev(D)), Z−1 = ∆A(m,K)(D)T2.

The homomorphism δ : GD(n,Q)→ GA(m,Q) of the diagram is tame,
i.e. its image can be computed in polynomial time in variable n. The
triple (GD(n,Q), A(m,Q), δ) can be considered as a platform of Tahoma
protocol introduced in [27], word tahoma stands for an abbreviation of
tame homomorphism.

Tahoma word protocol exchange scheme: Alice uses (Gi, Fi) and pairs
(H,H−1) and (Z,Z−1) from affine Cremona groups C(Kn) and C(Rm)
as starting data of the following protocol (steps S1śS4)

S1. Alice sends pairs (Gi, Fi), i = 1, 2, . . . , r to Bob.

S2. Bob takes formal alphabet A = {z1, z2, . . . , zr} and writes a word
w = u1, u2, . . . , uk where ui ∈ A. He computes the specializations g and
f for w of kind uj = Gi and uj = Fi if uj coincides with zi, i = 1, 2, . . . , r
in groups ⟨G1, G2, . . . , Gr⟩ < GD(n,K)and⟨F1, F2, . . . , Fr⟩ < GA(m,R)
respectively.

S3. Bob sends g to Alice and keeps f for himself.
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S4. Alice computes f1 = HgH−1, f2 = δ(f1) and gets collision map f
as Zf2Z

−1.

Final remarks Adversary has to őnd the decomposition of f into genera-
tors G1, G2,. . . , Gr. The polynomial algorithms to solve this problem in
ordinary Turing machine or Quantum computer are unknown.

Description of the implementation of other protocols of [27] and all
complexity estimates are presented in the sections 7 and 8 (see also preprint
[29]) together with parameters of computer simulation.

7. Other protocols

7.1. Inverse Tahoma word protocol

Alice changes Fi onto their inverses computed via elements
∗Di = Rev(D)(Rev(Ci))D, ∗CDi = ∆A(m,K)(∗D) and
∗Fi = T−1

2
∗CDiT2.

Alice sends pairs (Gi,
∗ Fi) to Bob.

As in previous algorithm he takes formal alphabet A = {z1, z2, . . . , zr}
and writes a word w = u1, u2, . . . , uk where ui ∈ A. He computes the
specializations g or w of kind uj = Gi and if uj coincides with zi, i =
1, 2, . . . , r in groups ⟨G1, G2, . . . , Gr⟩ < GD(n,K). Bob forms the reverse
word ∗w = uk, uk−1, . . . , u1. After that he substitutes ∗Fi and computes
corresponding word f in group ⟨F1, F2, . . . , Fr⟩ < GA(m,R).

Bob send g to Alice. She computes f1 = HgH−1, f2 = δ(f1) and gets
map f−1 as Zf2Z

−1.
Correspondents can exchange information in secure way. Alice writes

message (p) = (p1, p2, . . . , pm), pu ∈ R computes cipherext f−1(p) = (c)
and sends it to Bob. He decrypts with his map f . In his turn Bob uses f
as encryption map and Alice decrypts with her f−1.

7.2. Group enveloped Diffie-Hellman protocol based on homo-

morphism of GD(K) onto GA(K)

Alice uses (Gi, Fi), i = 1, . . . , r and pairs (H,H−1) and (Z,Z−1)
from affine Cremona groups C(Kn) and C(Rm) together with ∗Fi.
She takes also ∗Gi computed via elements ∗Bi = Rev(B)(Rev(Ci))B,
∗CBi = ∆D(m,K)(∗B) and ∗Gi = T−1

1
∗CBiT1. Alice takes string C

from Σ(Q) and positive integer kA. She computes symbolic string Cd,
d = kA in Σ(Q) and ΣD(m,K)(Rev(B)CB) and ∆A(m,K)(Rev(D)CdD).
Finally Alice constructs G = T−1

1 ∆D(m,K)(Rev(B)CB)T1 and GA =
T−1
2 ∆A(m,K)(Rev(D)CdD)T2.
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She sends (Gi, Fi), (
∗Gi,

∗ Fi), i = 1, . . . , r to Bob together with G
and GA.

Bob selects positive integer l = kB and word w = u1, u2, . . . , uk. He
forms ∗w = uk, uk−1, . . . , u1.

Bob computes the specializations g or w of kind uj = Gi and if uj
coincides with zi, i = 1, 2, . . . , r in the sub group ⟨G1, G2, . . . , Gr⟩ of
GD(n,K). He computes g−1 as specialization of ∗w such that uj =∗

Gi if uj coincides with zi, i = 1, 2, . . . , r. Similarly Bob computes the
specialization h of w of kind u = uj = Fi if uj coincides with zi and h−1

with appropriate specialization of ∗w.

He computes element U = g−1Glg and sends it to Alice but keeps for
himself h−1Gl

Ah = W .

Alice can recover the collision map W via computations of W1 =
HUH−1, δ(W1) = W2, W3 = W d

2 and W = ZW3Z
−1.

Remark 1. Adversary has to őnd the decomposition of U into generators
G, G1, G2,. . . , Gr in the affine Cremona group.

7.3. Inverse group enveloped Diffie-Hellman protocol

This algorithm uses same data.

Alice computes GA = T−1
2 ∆A(m,K)(Rev(D)CdD)T2. but instead of

computation of G as T−1
1 ∆D(m,K)(Rev(B)CB)T1 she computes G as

T−1
1 ∆D(m,K)(Rev(B)(Rev(C)B)T1, i.e., changes G for its inverse. So

Bob gets pair (GA, G) and complete the same steps as in the case of
previous algorithm. In this new version he gets the same W but the new
element U is an inverse of the map from the previous version.

Alice computes W1 = HUH−1, δ(W1) = W2, W3 = W d
2 and W4 =

ZW3Z
−1, but obtained W4 is the inverse of W .

So in algorithm 7.3 correspondents elaborate mutually inverse maps
W (Bob) and W − 1 (Alice). Alice writes message (p) = (p1, p2, . . . , pm),
pu ∈ R computes cipherext W−1(p) = (c) and sends it to Bob. He decrypts
with his map W . In his turn Bob uses W as encryption map and Alice
decrypts with her W−1.

So like in the case of 7.1 Alice and Bob can exchange messages in a
secure way.

7.4. General complexity estimates for the protocols

Let us assume that Alice is going to use the homomorphism between
D(n,Q) and A(m,Q) for m < n and m = O(n). Rings K and R are őnite
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extensions of Q. So we can assume that the cost of arithmetic operation
in these commutative rings is O(1). We will count number of arithmetical
operations of a commutative ring K which she needs to generate an
element of g = G(n,K) which corresponds to symbolic computation with
the key of length O(1).

Without loss of generality we may assume that correpondents are
involved with Inverse Tahoma Protocol. Counting steps of recurrent process
of maps generation via the semigroup compression homomorphisms gives
us O(n) operations. Alice chooses already computed affine transformations
T and T−1. Alice forms elements b1, b2, . . . ,br from G(n,K) together with
their inverses and homomorphic images µ′(bi), i = 1, 2, . . . , r from G(m,K)
in time O(n). She takes T and T−1 from AGLn(K) and forms ai = TbiT−1

and a′i = T (bi−1)T−1 in time O(n7).
Bob receives the list of pairs ai, a

′

i, i = 1, 2, . . . , r. He computes chosen
word of kind a = ak1i1 a

k2
i2
. . . , ait

kt for chosen őnite parameter t and integers
ki, i = 1, 2, . . . , t in time O(n13) operations and sends it to Alice. Bob
writes his message p = (p1, p2, . . . , pm). To form ciphertext he applies to p
transformation a′it with multiplicity kt, a

′

it−1 with multiplicity kt−1, . . . , a
′

i1

with multiplicity k1 and forms ciphertext c. It takes him O(n3) elementary
operations. Alice computes cubical b = aT with O(n5) operations. After
she gets d = T−1b in time O(n7). Alice easily gets µ(d) and computes
e = T1d and f = eT−1

1 . She computes p as f(c). The last step cost her
O(n3) elementary ring operations.

Remark 2. The complexity of algorithm execution is O(n13). More
accurate evaluation in terms of number d of monomial terms in the
standard form of cubical maps gives us complexity Cd4n−3, where C is
independent constant.

Studies of parameter d are presented in the next section. Computer
simulations demonstrate that in the case of őnite őelds of characteristic 2
parameter d = O(n3) and algorithm can be executed in time O(n9).

Simulations allow us to get similar bound in the cases of arithmetical
and Boolean rings.

7.5. On safe exchange of symbolic transformations

The symbolic nature of a collision map can be used for a task that
differs from the exchange of keys. We refer to it as the usage of DH
deformation symbolic rules.

Let Alice have a free module Kn over a commutative ring K. She has
a subset Ω of Kn and polynomial map f : Kn → Kn such the restriction
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of f |Ω is an injective map from Ω onto f(Ω) = Γ. Additionally, Alice has
an algorithm to solve in polynomial time equation x = b with respect to
unknown x from Ω and b from Ω.

Alice and Bob use tahoma word protocol or symbolic Diffie-Hellman
protocol to elaborate the collision map g acting on Kn. After this step
Alice sends Ω and transformation h = f + g to Bob. Now Bob can get
f as h− g. He writes plaintext p from Ω and sends ciphertext c = f(x).
Alice uses her data for the decryption.

Remark 3. Notice that the new algorithm is still asymmetrical because
Bob can encrypt but not decrypt. The encryption rule is known to the
trusted customer (Bob) but an adversary has no access to it. In fact,
such access is protected by word problem in semigroup of transformations
of Kn or discrete logarithm problem in corresponding affine Cremona
semigroup.

Other deformations Alice and Bob agree (via open channel) on a de-
formation rule D(f) for multivatiate rule f from affine Cremona semi-
group. For example, it can be multiplication, i.e. f is the rule xi →
fi(x1, x2, . . . , xn),i = 1, 2, . . . , n and g is the rule xi → gi(x1, x2, . . . , xn),
i = 1, 2, . . . , n and Alice sends tuple of polynomials figi, i = 1, 2, . . . , n.
Bob uses division to restore f . Instead of addition deformation rule (send-
ing of xi → fi(x1, x2, . . . , xn) + gi(x1, x2, . . . , xn),i = 1, 2, . . . , n) Alice
can use deformation with adding an element K[x1, x2, . . . , xn]

n obtained
from g via the usage of s-time conducted derivation δs, where δ = d/x1 +
d/dx2+ . . .+d/dxn (rule xi → fi(x1, x2, . . . , xn)+δsgi(x1, x2, . . . , xn),i =
1, 2, . . . , n). The last deformation is interesting because in many cases we
can achieve the equality of degrees for f and D(f). It is easy to continue
this list of possible deformation rules.

Remark 4. Let us assume that Ω = Kn. So f = f(n) is a bijection.
Assume that degrees of nonlinear maps f(n) are bounded by constant d.
Let us assume that the adversary has an option to intercept some plaintext-
ciphertext pairs (leakage from Bob’s data). In case of interception of O(nd)
adversary has a chance for a successful linearisation attack and get the
map f . For example if d = 3 then linearisation attack cost is O(n10). After
that adversary has to őnd the inverse function for f like in the case of
multivariate public key.

To prevent “transition to knowledgež of an encryption multivariate map
Alice (or Bob) can arrange a new session with protocol and a transmission
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of new deformed encryption rule for which secret data for decryption is
known.

Remark 5. The technique of linearization attacks on nonbijective maps
or maps fn of unbounded degree and low density is not well developed
yet.

8. Graphs A(n, q) and D(n, q), digital condenced matters

physics effect

We can substitute graph A(n,K) for other linguistic graph L of
type (1, 1, n − 1) deőned over the commutative ring K and rewrite the
content of section 5. We use graphs A(n,K) and well known linguis-
tic graph D(n,K) of this type to implement all algorithm of previous
section. Graphs D(n,K) are bipartite with set of vertices V = P ∪ L,
|P ∩ L = 0|. A subset of the vertices P is called the set of points and
another subset L is called the set of lines. Let P and L be two copies
of Cartesian power Kn, where n ⩾ 2 is an integer. Two types of brack-
ets are used in order to distinguish points from lines. It has a set of
vertices (collection of points and lines), which are n-dimensional vec-
tors over K : (p) = (p1, p2, p3, p4, . . . , pi, pi+1, pi+2, pi+3, . . . , pn), [l] =
[l1, l2, l3, l4, . . . , li, li+1, li+2, li+3, . . . , ln]. The point (p) is incident with the
line [l], if the following relations between their coordinates hold: l2 − p2 =
l1p1, l3 − p3 = l2p1, l4 − p4 = l1p2, li − pi = l1pi−2, li+1 − pi+1 = li−1p1,
li+2−pi+2 = lip1, li+3−pi+3 = l1pi+1 where i ⩾ 5. Connected component
of edge-transitive graph D(n, q) is denoted by CD(n, q) [15]. Notice that
all connected components of the natural projective limit D(q) of graphs
D(n, q), n→∞ inőnite graph D(q) are q-regular trees.

Let us denote as G′(n,K) the group of elements of kind g = η(C) of
irreducible computation computation C = (a1, a2, . . . , at) in the case of
graphs D(n,K).

We present time of generation (in ms) of element g from G(n,K) and
G′(n,K) in the cases of graphs A(n,K) and D(n,K) and number M(g)
of monomial terms for g.

We refer to parameter t as length of word. We can see the “condensed
matters physicsž digital effect. If t is “sufficiently largež, then M(g) is
independent from t constant c. It means that the density of cubical collision
map in all algorithm is simply c.

We have written a program for generating of elements and for en-
crypting text using the generated public key. The program is written in
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C++ and compiled with the gcc compiler. We used an average PC with
processor Pentium 3.00 GHz, 2GB memory RAM and system Windows 7.
We have implemented three cases:

1) T and T1 are identities,

2) T and T1 are maps of kind x1 → x1+a2x2+a3x3+ . . .+atxt, x2 →
x2, x3 → x3, . . . , xt → xt, ai ̸= 0, i = 1, 2, . . . , t (linear time of
computing for T and T1), where t = n and t = m, respectively,

3) T = Ax+ b, T1 = A1x+ b1; matrices A, A1 and vectors b, b1 have
mostly nonzero elements.

The tables 8.1ś8.6 present the number of monomials depending on the
number of variables (n) and the password length in all three cases and
both families of graphs D(n,K) and A(n,K), where K is a őnite őeld
of characteristic 2. The tables 8.7ś8.12 present the time (in milliseconds)
of the generation of public key monomials depending on the number
of variables n and the length of the word in all three cases and both
families of graphs D(n,K) and A(n,K). In [8ś10] the similar program for
the case when K is Boolean ring was used for investigation of classical
Diffie-Hellman protocol for cyclic group ⟨g⟩ and corresponding ElGamal
cryptosystem. Currently, we expand this computer package on the case of
commutative rings Zm, where m is the power of 2.

Illustrative example Let Alice selects the graph A(n,K) K = F232 ,
n = 64 and its canonical homomorphism onto graph A(32,K), which
induces canonical homomorphism ∆ of G(64,K) onto G(32,K). She
takes two irreducible elements of Σ = Σ(K), α = (a1, a2, . . . , a16) and
β = (b1, b2, . . . , b16) of pseudorandom kind, use homomorhism η′ = η′64ofΣ
into G(64,K) and gets elements a = η′(α) and b = η′(β).

Alice forms string h = (h1, h2, . . . , ht), t = 16 and the reverse string
rev(h) = (−ht+ht−1,−ht+ht−2, . . . ,−ht+h1,−ht) for which n = η′(h) =
n and n′ = η′(rev(h)).

She takes affine transformation T of the vector space F 64
q , q = 232 and

its inverse T−1 and forms elements a1 = Tnan′T−1 and b1 = Tnbn′T−1.

Alice takes d = (d1, d2, . . . , dt) and the pair m = η′32(d), m′ =
η′32(rev(d)). She forms a2 = Smη′32(α)m

′S−1 = Smη′32(α)m
′S−1 and

b2 = Smη′32(β)m
′S−1 where S is the bijective affine transformation of 32

dimensional vector space. She sends pairs (a1, a2), (b1, b2), to Bob. Let us
assume that Alice uses transformation T and S of kind 3. It means that
cubical transformations a1 and b1 are given by lists with 399424 monomial
terms and transformations a2, b2 are given by their 50720 monomial terms
(see table 6).
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Bob takes word w = xs1yr1xs2yr2 . . . of some lengths k, k ⩾ 3 (even
or odd), where s1, s2, . . . and r1, r2, . . . are positive integers.

He substitutes a1 and b1 instead of x and y (or y and x) and compute
corresponding transformation c from affine Cremona semigroup of 64
dimensional vector space over őnite őeld Fq. The cubical transformations
c is presented by its 388424 monomial terms. Bob substitutes the collision
map c′ via substitution of a2 and b2 in word w instead of x and y. Collision
element c′ is given by the list of its 50720 monomials.

Bob sends the transformation c to Alice. She computes c1 = T−1n′cnT
which contains 1810 (monomial terms) (see table 4). Alice computes
c2 = ∆(c1) given by 770 terms. She reconstructs the collision map as
Smc2m′S−1.
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Figure 8.1. Number of monomials in public map (n = 128) (graph D(n,K),
K = B(32),Z232 ,F232), case I

Table 8.1. Number of monomial terms of the cubic map induced by the
graph D(n,F232), case I

length of the word

n 16 32 64 128 256

16 145 145 145 145 145
32 544 545 545 545 545
64 1584 2112 2113 2113 2113
128 3664 6240 8320 8321 8321
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Figure 8.2. Number of monomials in public map (n = 128) (graph D(n,K),
K = B(32),Z232 ,F232), case II
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Figure 8.3. Number of monomials in public map (n = 128) (graph D(n,K),
K = B(32),Z232 ,F232), case III
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Figure 8.4. Number of monomials in public map (n = 128) (graph A(n,K),
K = B(32),Z232 ,F232), case I
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Figure 8.5. Number of monomials in public map (n = 128) (graph A(n,K),
K = B(32),Z232 ,F232), case II
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Figure 8.6. Number of monomials in public map (n = 128) (graph A(n,K),
K = B(32),Z232 ,F232), case III

Table 8.2. Number of monomial terms of the cubic map induced by the
graph D(n,F232), case II

length of the word

n 16 32 64 128 256

16 3649 3649 3649 3649 3649
32 41355 41356 41356 41356 41356
64 440147 529052 529053 529053 529053
128 3823600 6149213 7405944 7405945 7405945

Table 8.3. Number of monomial terms of the cubic map induced by the
graph D(n,F232), case III

length of the word

n 16 32 64 128 256

16 6544 6544 6544 6544 6544
32 50720 50720 50720 50720 50720
64 399424 399424 399424 399424 399424
128 3170432 3170432 3170432 3170432 3170432
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Table 8.4. Number of monomial terms of the cubic map induced by the
graph A(n,F232), case I

length of the word

n 16 32 64 128 256

16 250 250 250 250 250
32 770 1010 1010 1010 1010
64 1810 3074 4066 4066 4066
128 3890 7202 12290 16322 16322

Table 8.5. Number of monomial terms of the cubic map induced by the
graph A(n,F232), case II

length of the word

n 16 32 64 128 256

16 5623 5623 5623 5623 5623
32 53581 62252 62252 62252 62252
64 454375 680750 781087 781087 781087
128 3607741 6237144 9519921 10826616 10826616

Table 8.6. Number of monomial terms of the cubic map induced by the
graph A(n,F232), case III

length of the word

n 16 32 64 128 256

16 6544 6544 6544 6544 6544
32 50720 50720 50720 50720 50720
64 399424 399424 399424 399424 399424
128 3170432 3170432 3170432 3170432 3170432

Table 8.7. Public map generation time (ms), D(n,F232), case I

length of the word

n 16 32 64 128 256

16 12 24 32 52 100
32 64 140 292 592 1192
64 1044 2261 4833 9985 20270
128 15821 33846 74340 160213 331895
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Table 8.8. Public map generation time (ms), D(n,F232), case II

length of the word

n 16 32 64 128 256

16 28 48 100 212 420
32 284 648 1372 2816 5712
64 3229 8397 19454 41568 85783
128 55075 139366 357361 824166 1758059

Table 8.9. Public map generation time (ms), D(n,F232), case III

length of the word

n 16 32 64 128 256

16 76 140 268 524 1036
32 1224 2328 4541 8968 17828
64 21889 40417 77480 151592 299844
128 453798 812140 1526713 2946022 5792889

Table 8.10. Public map generation time (ms), A(n,F232), case I

length of the word

n 16 32 64 128 256

16 4 12 24 48 96
32 56 132 288 600 1232
64 996 2100 4644 10068 20933
128 15645 33489 74244 167454 364707

Table 8.11. Public map generation time (ms), A(n,F232), case II

length of the word

n 16 32 64 128 256

16 20 60 128 260 540
32 308 788 1776 3760 7716
64 3193 8858 23231 53196 113148
128 54031 137201 368460 950849 2164037
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Table 8.12. Public map generation time (ms), A(n,F232), case III

length of the word

n 16 32 64 128 256

16 76 148 288 576 1148
32 1268 2420 4700 9268 18405
64 22144 40948 78551 153784 304240
128 460200 819498 1532277 2970743 5836938

Conclusion

We propose Post Quantum Cryptography information security solu-
tions based on the complexity of the following problem Cremona Semigroup
Word Decomposition (CSWD).

Thus we hope that introduced algorithms can be considered as serious
candidates to be postquantum cryptographical tools. We believe that
future studies of cryptanalytics conőrm that CSWD problem remains
unsolvable on ordinary Turing Machine and Quantum Computer under
the condition of stability of platform S. Hope that the idea of an alter-
native disclosure of hidden homomorphism will attract the attention of
cryptanalytics.

Complexity estimates for both correspondents demonstrate the possibil-
ity of the current usage of algorithms. Computer simulations demonstrate
an interesting phase-transition effect that allows predicting the density
of the collision maps of key exchange protocols and their inverse forms.
This effect also demonstrates the feasibility of proposed cryptographic
schemes. Direct and inverse protocols to elaborate collision multivariate
transformation of free module Kn of predictable density can be used
together with stream cipher working with data written in alphabet K or
passwords written in this alphabet.

Correspondents can use collision maps to add them to part of a
password or part of a plaintext or part of a ciphertext. There is an option
to deform part of passwords, plaintext and ciphertext by outcomes of
inverse protocols.
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