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On some topics in the theory of infinite
dimensional linear groups

M. R. Dixon, L. A. Kurdachenko, N. N. Semko,
and I. Ya. Subbotin

ABSTRACT. In this paper we present a synopsis of some recent
results concerned with infinite dimensional liner groups, including
generalizations of irreducibility, the central dimension of a linear
group, groups with finite dimensional orbits and the maximal and
minimal conditions on subgroups of infinite central dimension.

1. Introduction

Linear groups are groups of invertibile linear transformations of vector
spaces and are among the most important mathematical objects. Due
to their versatility and penetration into areas quite different from each
other, their imprint can be found in almost all mathematical (and not
only mathematical) disciplines. Their connections with other disciplines,
including natural sciences, are very diverse and nontrivial. At present, it
is quite difficult to imagine areas of natural science where vector spaces
along with their transformations do not appear. Linear groups appeared
in the form of geometric transformations in F. Klein’s Erlangen Program
and were also one of the sources for the emergence of the general theory of
groups. The theory of linear groups is one of the oldest and most developed
theories of modern mathematics. The utility of the matrix apparatus made
it possible for a very deep development of the theory of finite dimensional
linear groups. In essence the theory of finite dimensional linear groups is
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the theory of matrix groups. There is a vast array of articles and books
devoted to the study of finite dimensional linear groups, far too numerous
to mention. Many interesting results were obtained, which contributed to
progress both in the general theory of groups and in many other fields.

The theory of infinite dimensional linear groups is fundamentally dif-
ferent from the theory of finite dimensional linear groups. As for finite
dimensional linear groups, one can consider matrices of linear transforma-
tions with respect to various bases. These matrices will be infinite, but
have a finiteness property, since only a finite number of basis elements
are involved in the decomposition of each vector space element; then each
column of such an infinite matrix has only a finite set of nonzero coeffi-
cients. However, the theory of infinite matrices is far from being as well
established as the theory of matrices of finite size, although the beginnings
of this theory can be traced back to the 19th century. Infinite matrices
and determinants were introduced into analysis by Poincaré in 1884 in
the discussion of the well-known Hill’s equation. The rapid development
of the theory of linear spaces of infinite dimension began at the beginning
of the 20th century. The foundations were laid mainly by the studies of
Ivar Fredholm and Vito Volterra. They considered the theory of linear
equations with an infinite number of equations and unknowns using the
limit representation of linear equations with a finite number of equations
and unknowns when the number of equations and unknowns becomes
infinite. This led to the development of the theory of integral equations. On
the other hand, the works of David Hilbert, John von Neumann, Erhard
Schmidt and Friges Riesz on the theory of integral equations gave impetus
to the development of the theory of linear spaces of infinite dimension.
This led to the creation of the theory of Banach and Hilbert spaces. Some
overview of this topic can be found in the book of R. G. Cooke [3] and
the article of M. Bernkopf [2|. However, an exhaustive search of all these
areas shows that the main object of study was infinite matrices over the
fields of real and complex numbers, and this study was carried out using
the very well established apparatus of mathematical analysis. A study of
the algebraic properties of groups of infinite matrices over arbitrary fields
began relatively recently (see the book of W. Holubowski [21]). In the
bibliography we give some works related to this topic. We have a similar
situation with infinite dimensional linear groups.

In this paper we give some of the recent activity concerned with the
algebraic aspects of infinite dimensional linear groups. In Section 2 we
show some of the main differences between finite dimensional and infinite
dimensional linear groups. We define Kurosh-Chernikov systems and show
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how these can impact the structure of our group, giving the main types
of system that can occur. In Section 3 we discuss quasi-irreducible and
related groups. These are generalizations of irreducible groups. We also
discuss almost irreducible groups which in some sense are dual to the quasi-
irreducible groups. In Section 4 we introduce the central dimension and
augmentation dimension of a linear group. These dimensions are intimately
connected in a manner that is analogous to way the central quotient group
and derived subgroup of a group are connected. In Section 5 we look at
groups with various finiteness conditions on the size of the orbits of an
element of the vector space A. Finally in Section 6 we consider infinite
dimensional linear groups with the maximal (or minimal) conditions on
subgroups of infinite central dimension.
Our notation where not explained is generally standard.

2. Kurosh-Chernikov systems

There has been significant progress in the theory of linear groups, not
for groups of arbitrary linear transformations, but for those that have some
additional properties that make it possible to use the tools from analysis.
For fields that are not endowed with topological structures the situation is
different and the difference from finite dimensional linear groups is evident
from the beginning. If A is a vector space over a field F' on which a group
G of linear transformations acts and if A has finite dimension, then A has
a finite series of G-invariant subspaces

0=Ap<A < <4, =4

whose factors are G-chief. The factors G/Cg(A;/Aj—1) are irreducible
linear groups when 1 < j < n and the stabilizer (), ;<,, Ca(A;j/Aj-1) of
this series is a nilpotent subgroup. When the vector space A has infinite
dimension, then A is not guaranteed to have a finite G-chief series. However,
certain natural families of G-invariant subspaces can be studied.

Let F be a field and let A be a vector space over F. The set End(F, A)
of all linear transformations of A is an associative F-algebra with identity
in which the operations are addition, composition of linear transformations
and scalar multiplication by elements of the field F'. The group GL(F, A)
of all invertible linear transformations (non-singular transformations or
F-automorphisms) of A is called the General Linear Group of A. The
subgroups of GL(F, A) are called linear groups.

Let G < GL(F, A) and let C, D be G-invariant subspaces of A such
that D < C. Then C/D is called a G-chief factor if, whenever B is a G-
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invariant subspace such that D < B < C, it follows that either B = D or
B = C. When we think of A as an F'G-module, this means that a G-chief
factor C/D is a simple F'G-module.
A subgroup G of GL(F, A) is called irreducible if A contains no proper
non-zero G-invariant subspaces. In this case A is G-chief.
Let S be a family of G-invariant subspaces of A, linearly ordered by
inclusion. Then § is called a complete system if it satisfies the condition:
e For every subfamily £ of § the intersection and union of all members
of L belong to S.
It is possible to prove that every family of G-invariant subspaces of A,
linearly ordered by inclusion, can be extended to a complete system.
Let S be a family of G invariant subspaces of A. Then a pair (B,C) € S,
where B < C, is a jump of § if it satisfies the condition:
e For every element D € S such that B < D < C, either B =D or
D=C.
If the pair (B,C) is a jump of S, then C/B is called a factor of the
system S.
Suppose now that S is a complete system of G-invariant subspaces of
A. For each 0 # a € A let

Vo= J{veSla¢V} and A, =(){VeESlacV}

Since S is a complete system it follows that V,, A, € S and since S is
a linearly ordered system, we must have V,, < A, and it is then easy to
see that the pair (V,, A,) is a jump of the system S. Conversely, let (B, C')
be a jump of the system S. Choose y € C'\ B. From the definitions of
Vy and A, we see that B <V, and A, < C. Since y € C it follows that
Vy # C and since (B, () is a jump, we deduce that B = V,,. Also, since
Ay # B and (B, C) is a jump, we deduce that A, = C.

When A is a vector space over the field F' and G is a subgroup of
GL(F,A), a family S of G-invariant subspaces of A is called a Kurosh-
Chernikov system, if it satisfies the conditions

(KC1) 0,4 € S;

(KC2) S is linearly ordered and complete.

Families of this kind were originally introduced in the classical article of
A. G. Kurosh and S. N. Chernikov [40] concerning groups with operators.
We observe that vector spaces are examples of groups with operators.

If §, R are families of G-invariant subgroups, linearly ordered by in-
clusion, then we say that R is a refinement of S if every term of S is also
a term of R (thus, S C R). If S is a proper subset of R, then R is called
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a proper refinement of S. If S is a Kurosh-Chernikov system, then S is
G-chief if it has no proper refinement and it is possible to prove that
a Kurosh-Chernikov system is G-chief if and only if every one of its factors
is G-chief.

Furthermore, it is also possible to prove that every family of G-invariant
subspaces of A, linearly ordered by inclusion, can be extended to a G-chief
Kurosh-Chernikov system.

There are many important types of Kurosh-Chernikov systems S. For
example, suppose first that S is a totally ordered ascending family of
subspaces.

We can construct an ascending series

0:A0<A1<<An<An+1<Aw<Aw+1<
gAagAa-i—lg---A’y:Aa

where for limit ordinals v we have Jz_, Ag = A,.

On the other hand, if a Kurosh-Chernikov system S is a descending
totally ordered system, then we obtain in similar fashion a descending
series

A=A >2A1 2 2A, 24,01 >... AL, > Aunt
> Aa Aasr > A =0

where for limit ordinals v we now have 4, = (5., As.

A Kurosh-Chernikov system S is called G-central, if every factor is
G-central in the usual way.

A vector space A is called G-hypercentral if it has an ascending G-
central series of G-invariant subspaces terminating in A and A is called
G-nilpotent if this ascending series has finite length. In the latter case
it is possible to prove that the group G is nilpotent. However, if A has
infinite dimension and is G-hypercentral, then G may contain free groups
or certain types of exotic groups, so that in this case G may be very far
from being nilpotent.

Now let S be a Kurosh-Chernikov system and let 7 be the set of
all jumps of S. For each jump (B, C) of S and each g € G, let [¢,C] =
(9(c) —clc € O), let Cq(C/B) ={g € G|[g,C] < B} and define

Sta(S) = (] Ca(C/B).
(B,C)eT

This subgroup Stg(S) is called the stability group of the system S or the
stabilizer of S. With this definition, S is a Stg(S)-central system and
conversely, if a Kurosh-Chernikov system is G-central, then G = St(S).
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As in the finite dimensional case, Remak’s theorem implies the em-
bedding of G/St(S) into the Cartesian product " %r 7_G/C’G(C/B). In
,0)€

particular, if S is G-chief, then each of the factor groups G/Cq(C/B) is
irreducible. However there are many differences with the finite dimensional
case here.

The most obvious difference is that in general the set of components
in the Cartesian product will be infinite.

In this case, we are no longer dealing with subgroups of a direct product,
but with subgroups of a Cartesian product. This alone makes the task of
studying such groups much more complicated.

The situation with the subgroup St(S) is also much more complicated
here. In the case when A has infinite dimension, St (S) may be very far
from being nilpotent.

3. Quasi-irreducible and almost irreducible groups

As we noted above every factor V/U of the G-chief Kurosh-Chernikov
system S is G-chief. Then G/Cq(V/U) is an irreducible linear subgroup
of GL(F,V/U). In this way we obtain one of the important types of
linear groups namely irreducible linear groups. For infinite dimensional
irreducible linear groups the situation is also significantly different from
the finite dimensional case where the use of powerful techniques from
matrix theory is not always possible. Consequently the description of
infinite dimensional irreducible linear groups must be obtained under
stronger restrictions than in the finite dimensional case.

Chapters 2, 3 of the book [32] contain fairly detailed information about
these groups, so we shall not dwell on them, but consider in more detail
some linear groups that are close to irreducible in one way or another.

Let A be a vector space over the field F' and let G be a subgroup of
GL(F,A). If the group G is irreducible, then every proper G-invariant
subspace of A is trivial and, in particular, has finite dimension. Thus
a linear group G whose action on the (infinite dimensional) vector space
A has the property

e every proper G-invariant subspace of A has finite dimension
can be considered as a generalization of an irreducible linear group. There
are two situations that arise here for an infinite dimensional linear group G:

(i) Every proper G-invariant subspace of A has finite dimension and A
is the ascending union of certain proper G-invariant subspaces, or
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(ii) A contains a proper G-invariant finite dimensional subspace B such
that the factor A/B is G-chief.

A linear group G that satisfies condition (i) is said to be quasi-
1rreducible.

The study of quasi-irreducible linear groups was begun by D. I. Zaitsev
in the paper [53] for the case when F'is a finite field. The case when F is
an arbitrary field was considered in the papers of L. A. Kurdachenko and
I. Ya. Subbotin [35,36]. In turn these results were generalized by L. A.
Kurdachenko [24] to the case of modules over group rings RG when R is
a Dedekind domain. We shall now discuss the structure of quasi-irreducible
linear groups as determined in the articles [24,35,36|. We also mention
here the papers [23,34].

When F is a field, A is a vector space over F' and G is a subgroup of
GL(F,A), then let 9 be the family of all minimal G-invariant subspaces
of A. We let Socg(A) denote the subspace generated by all subspaces
in the family 9. One can prove that Socg(A) = @, A where A, is
a minimal G-invariant subspace for each A € A. The subspace Socg(A)
is called the G-socle of the space A.

Let R be an integral domain and let A be an R-module. Let

Torpr(A) = {a € A|Anng(a) # 0}.
Then Torg(A) is an R-submodule of A called the R-periodic part of A.
We say that A is periodic as an R-module or, simply, that A is R-periodic,
if Torg(A) = A. We say that A is R-torsion-free if Torg(A) = 0.
We define the R-assassinator of A to be the set
Assp(A) = {P|P is a prime ideal of R such that Anna(P) # 0}.
If U is an ideal of R, then we set

Ay ={a € A|U"a = 0 for some natural number n}.

It is easy to see that Ay is an R-submodule of A called the U-component
of A. If A= Ay, then A is called a U-module. Furthermore, let

Qui(A) = {a € A|U*a = 0 for this fixed k}.
ThenQy 1 (A) is an R-submodule of A. Also

Qui(4) < Qup(A) < <Qup(4) < <Ay
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and
Ay = | Qur(4).
keN

Let D be a Dedekind domain and let A be a simple D-module. Then
A= D/P for some maximal ideal P. We note that D/P* and P/Pk+!
are isomorphic as D-modules, for all k& € N (see |33, Corollary 1.28],
for example). In particular, D/P* is embedded in D/P**! for each k €
N. Hence we may form the injective limit of the family of D-modules
{D/P*|k € N} which we denote by Cpe.

The D-module Cpe is called a Priifer P-module.

It follows from its construction that C'pe is a P-module and moreover
Qpy(Cpx) =p D/P* for all k € N.
Furthermore,
Qp 1 (Cp) /Qpp(Cp) = (D/PHHY) /(P[P = D/P.

Also, if C is a proper D-submodule of C'ps, then there exists a natural
number & such that C' = Qp,(Cpeo). Similarly, if b ¢ Qpj_1(Cpe), then
C =0bD.

We also observe that a Priifer P-module is monolithic and its monolith
coincides with Qp;(Cpe).

Let G be a group and 7 be some set of primes. If S is a family of
periodic normal w-subgroups of GG, then clearly the subgroup generated
by all subgroups in the family § is also a w-group. It follows that every
group G has a greatest normal 7-subgroup which we denote by O, (G).

The following results hold for quasi-irreducible modules.

Theorem 1. Let A be a vector space over the field F' and let G be a locally
radical quasi-irreducible subgroup of GL(F, A). If Ca(Soca(A)) = 1, then
the following assertions hold:
(i) G contains a normal abelian subgroup U of finite index;
(ii) the torsion subgroup Tor(U) of the subgroup U has finite special
rank;
(iii) if char(F)=p >0, then O,(G) =1;
(iv) there is a U-invariant subspace B of A such that U is a quasi-
irreducible subgroup of GL(F, B);
(v) U contains an element x of infinite order such that B is P-periodic
for some mazimal ideal P of the ring F(z). Moreover,

B=C®---®C,

where Cj is a Priifer P-module, for 1 < j < n;
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(vif A=Bo@B® - ® @B, where {1,g1,...,9:} is a transversal to
U mnG.

When Cg(Socg(A)) # 1 we have:

Theorem 2. Let A be a vector space over the field F' and let G be a hy-
percentral quasi-irreducible subgroup of GL(F,A). If Cq(Socg(A)) # 1
then:
(i) G is abelian-by-finite;
(i) the torsion subgroup Tor(G) has finite special rank;
(iii) if char(F) =p is a prime, then Tor(G) is a p'-group;
(iv) Tor(G) N {(Q) is locally cyclic;
(v) Cq(Soca(A)) NC(G) contains an element x of infinite order such
that A is F'(x)-periodic and Asspy(A) = {P} where P is the ideal
of F(x) generated by x — 1;
(vi) A=C1 Q- P C,, where C; is a Priifer P-module for 1 < j < n.

We now consider the second of the situations that arose earlier and
suppose that A contains a proper finite dimensional G-invariant subspace
B such that the factor A/B is G-chief. This situation was considered in
the paper [16] and we now give a description of the following main result
of this work.

For the group G if x € G, then let

9 = {29 =g laglg e G} and FC(G) = {z € G|z7 is finite},

this latter characteristic subgroup of GG being the FC-center of G.
Beginning with the FC-center we may construct the upper FC-central
series of the group G, the series of characteristic subgroups of G,

1=Co<C1<...0,<Cqy1 <...C,,
defined by

C, =FC(G),
Cat+1/Cq = FC(G/C,,) for ordinals «,
Cy = U Cpg for limit ordinals A.
B<A

The last term C, of this series is called the upper FC-hypercenter of
the group G and if G = C,, then G is called FC-hypercentral.
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We note that if 2 € FC(G) has finite order, then the normal closure
(z)¢ is finite (see [17, Proposition 1.5.2] for example). Thus if H is a G-
invariant periodic subgroup of FC(G), then H has an ascending series of
G-invariant subgroups whose factors are finite. This implies that if H is
a G-invariant periodic subgroup of the upper FC-hypercenter of G, then
H has an ascending series of G-invariant subgroups whose factors are
finite.

The main result of [16] is

Theorem 3. Let A be a wvector space over F and let G be an FC-
hypercentral subgroup of GL(F, A). Let A have a finite F'G-composition
series. Then A contains two FG-submodules B, C satisfying the following
conditions:
(i) each G-chief factor of B has finite F-dimension;
(ii) each G-chief factor of C' has infinite F'-dimension;
(ii) A=BaC.

Corollary 1. Let A be a wvector space over F and let G be an FC-
hypercentral subgroup of GL(F, A). Suppose that A contains a finite dimen-
sional G-invariant subspace B such that A/B is infinite dimensional and
G-chief. Then A contains a G-invariant subspace C such that A= B ® C.

Corollary 2. Let A be a vector space of infinite dimension over F' and let
G be an FC-hypercentral group of GL(F, A). If every proper G-invariant
subspace of A has finite F-dimension, then either G is irreducible or .G
18 quasi-irreducible.

In this regard we note that Corollary 2 is no longer true even for the
case when G is soluble. A corresponding counterexample was constructed
in the paper [52] of D. I. Zaitsev.

Let F be a field, A a vector space over F' and let G be a subgroup of
GL(F,A). If the group G is irreducible, then every non-zero G-invariant
subspace of A coincides with A. In particular every non-zero G-invariant
subspace has finite codimension. So the linear groups whose action on the
vector space is determined by the following property

every non-zero G-invariant subspace of A has finite codimension.

can be considered as a generalization of irreducible linear groups. The
following two situations can arise here:

(i) every non-zero G-invariant subspace of A has finite codimension and
the intersection of all the non-zero G-invariant subspaces is zero;

(ii) A contains a minimal non-zero G-invariant subspace B of finite
codimension.
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If a linear group G satisfies condition (i) above then the linear group
G will be called almost irreducible.
From Theorem 3 we obtain

Corollary 3. Let A be a vector space of infinite dimension over F and
let G be an FC-hypercentral subgroup of GL(F, A). If every non-zero G-
mwvariant subspace of A has finite codimension over F, then either G is
irreducible or an almost irreducible subgroup of GL(F, A).

Almost irreducible infinite dimensional linear groups were studied in
the paper [37] of L. A. Kurdachenko and I. Ya. Subbotin (see also the
survey paper [23]). In the paper [34] of L. A. Kurdachenko and I. Ya.
Subbotin these results were generalized to the case of modules over a group
ring RG where R is a Dedekind domain. Here we give a description of the
structure of almost irreducible linear groups found in [37].

We recall that a group G has finite special rank r(G) = r if every
finitely generated subgroup of G can be generated by r elements and r
is the least positive integer with this property. If there is no such integer
r then G is said to be of infinite special rank. The general concept of
special rank (and also the term “special rank”) was introduced by A. I.
Maltsev [41]. There is an extensive literature concerned with groups of
special rank and essential information associated with groups of finite
special rank can be found in [17].

Theorem 4. Let A be a vector space over the field F' and let G be an
almost irreducible hypercentral subgroup of GL(F, A). Then G satisfies the
following conditions:

(i) G is abelian-by-finite;

(ii) the torsion subgroup T of G has finite special rank;
(i) T NC(Q) is a locally cyclic group;
(iv) if the field F has prime characteristic p, then T is a p'-subgroup.

This theorem allows the following generalization.

Theorem 5. Let A be a vector space over the field F' and let G be an
almost irreducible locally soluble FC-hypercentral subgroup of GL(F, A).
Then G satisfies the following conditions:

(i) G is abelian-by-finite;
(ii) the torsion subgroup T of the group G has finite special rank;
(i) T NC(Q) is a locally cyclic group;
(iv) if the field F has prime characteristic p, then T is a p'-subgroup.
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4. Finite central dimension

We now consider linear groups that are, in some sense, close to finite
dimensional.

If G is a subgroup of GL(F, A) then let Z = (¢(A) = C4(G). Then as
we have seen above (¢ (A) is a G-invariant subspace called the G-center
of A and G acts trivially on Z. Thus we see that actually G acts on the
quotient space A/Z.

We say that the central dimension of G is the dimension of the quotient
space A/(z(A). We denote the central dimension of the linear group G
by centdimg(G).

In particular, if centdimp(G) = dimp(A/(z(A)) is finite, then we
shall say that G has finite central dimension.

We immediately note the following properties of groups having finite
central dimension.

1) If G has finite central dimension and char(F) is the prime p,
then G contains an elementary abelian normal p-subgroup L such
that G/L is isomorphic to some subgroup of GL,(F), where n =
centdimp(G).

2) If G has finite central dimension and char(F') = 0, then G contains
a torsion-free abelian normal subgroup L such that G/ L is isomorphic
to some subgroup of GL,(F'), where n = centdimp(G).

An element g € GL(F,A) is called finitary if dimp(A/C4(g)) is
finite. In particular, this means that the cyclic group (g) has finite central
dimension in this case. A subgroup G of GL(F, A) is called finitary if each
element of G is finitary. It is easy to see that a group G is finitary if and
only if every finitely generated subgroup of GG has finite central dimension.

The isomorphism [g, A] = A/C4(g) implies that dimp(A/Ca(g)) =
dimp([g, A]). Thus the element g is finitary if and only if dimpg([g, A])
is finite. In general, if G is an arbitrary subgroup of GL(F, A), then G
acts trivially on A/[G, A] so that G really acts on [G, A]. We recall that
[G, A] is the subspace generated by all elements of the form (g — 1)a, for
all a € A and g € G. Considering A as a module for the group ring F'G,
then the subring w(FG) generated by all elements of the form g — 1, for
g € G is a two sided ideal of F'G called the augmentation ideal of FG.
Using this approach [G, A] is then the F'G-submodule w(FG)A.

We define the augmentation dimension of a group G to be the dimen-
sion of the subspace [G, A] and we denote this by augdim(G).

In particular, if augdimy(G) = dimp([G, A4)]) is finite, then we shall
say that the group G has finite augmentation dimension.
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The properties of the augmentation dimension are similar to those of
the central dimension. In particular:

1) If G has finite augmentation dimension and char(F') = p is prime,
then G contains an elementary abelian normal p-subgroup L such
that G/L is isomorphic to some subgroup of GL,(F), where n =
augdimy(G).

2) If G has finite augmentation dimension and char(F) = 0, then G
contains a torsion-free abelian normal subgroup L such that G/L is
isomorphic to some subgroup of GL,(F'), where n = augdimy(G).

We note that if G is a finitely generated subgroup of GL(F, A), then
centdimp(G) is finite if and only if augdimy(G) is finite. However, for
arbitrary subgroups of GL(F, A) this is no longer the case. The correspond-
ing counterexamples were constructed in [13|. Therefore the following
questions arise naturally.

e Let G be a subgroup of GL(F, A). Suppose that centdimp(G) is
finite. For which groups G does it follow that augdimy(G) is finite?

e Let G be a subgroup of GL(F, A). Suppose that augdimy(G) is
finite. For which groups G does it follow that centdimg(G) is finite?

The answers to these questions have been obtained in the paper [13].

In the examples constructed in [13], the group G was either an infinite
elementary abelian p-group or a free abelian group with infinite Z-rank.
In the latter case the factor group G/GP is an infinite elementary abelian
p-group for each prime p. One might hope that in the absence of such
infinite sections positive answers to the two questions might then be
obtained and this is indeed the case.

Let p be a prime. We say that a group G has finite section p-rank
sr,(G) = r if every elementary abelian p-section of G is finite of order at
most p" and there is an elementary abelian p-section A/B of G such that
|A/B| =p".

Groups of finite section p-rank have been extensively studied and
detailed information concerning such groups can be found in the book [17].
The section p-rank is closely linked to the special rank mentioned earlier.

The main results of [13] are as follows.

Theorem 6. Let A be a vector space over the field F, of character-
istic the prime p, and let G be a subgroup of GL(F,A). Suppose that
centdimp(G) = codimp((g(A)) = c is finite. If G has finite section
p-rank r, then augdimp(G) = dimp([G, A)) is finite. Furthermore, there
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exists a function k1 such that
augdimp(G) = dimp([G, A]) < ki1(e, 7).

Theorem 7. Let A be a vector space over a field F of characteristic
0 and let G be a subgroup of GL(F,A). Suppose that centdimp(G) =
codimp((a(A)) = d is finite. If G has finite section p-rank r for some
prime p, then augdimp(G) = dimp(|G, A)) is finite. Furthermore, there
exists a function ko such that

dimp([G, A]) < ka(d,r).

These theorems can be regarded as analogues for linear groups of
the well-known group theoretical theorem known as Schur’s Theorem
(although Schur did not prove this result—see the paper [39]). This theorem
first appeared in the work of B. H. Neumann [44] and can be stated as
follows.

e [f the center of a group G has finite index, then the derived subgroup

of G is finite.

The converse of this result is false since there are infinite groups with
finite center and finite derived subgroup. However P. Hall [19] proved

e If the derived subgroup of a group G is finite, then the second center
of GG has finite index.

In connection with this result and the above results, the following
question arises naturally:

e Let G be a subgroup of GL(F, A). Suppose that dimp([G, A]) = ¢
is finite. For which groups G does it follow that dimg(A/{c(A)) is
finite?

The finiteness condition of section p-rank is quite strong. In the
presence of this finiteness condition it is possible to obtain a stronger
result for linear groups than just an analogue of Hall’s theorem quoted
above. This result was obtained in [15] and is as follows.

Theorem 8. Let A be a vector space over a field F' of prime characteristic
p and let G be a subgroup of GL(F,A). Suppose that augdimp(G) = c
is finite. If G has finite section p-rank r, then centdimp(G) is finite.
Furthermore,

centdimp(G) < ki(c, ).

Theorem 9. Let A be a vector space over a field F' of characteristic 0 and
let G be a subgroup of GL(F, A). Suppose that augdimp(G) = c is finite.
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If G has finite section p-rank r for some prime p, then centdimp(G) is
finite . Furthermore,

centdimp(G) < ka(c,r).

The theorem concerning groups whose centers have finite index, men-
tioned above, has significant generalizations. The first of these generaliza-
tions was obtained in the work of R. Baer [1]. A natural next step in the
context of linear groups is to obtain an analogue of this result of Baer’s,
using the same restrictions that were used to prove the analogue of the
theorem of B. H. Neumann. First it is appropriate to recall the following
concepts.

Starting from the G-center we can construct the upper G-central series

0="{(q0(4) <¢1(A4) <...¢gal(4) <(gat1(A) < ...CaH(A)

of A, where (¢,1(A4) = (c(A), (Ga+1(A)/¢ca(A) = (c(A/Cca(A)), for
all ordinals @, (ga(4) = UgcyCe,s(A), for all limit ordinals A and
(c(A/CcH(A)) = 0.

From this definition we see that [G, (g a+1(A)] < (g,a(A) for each
ordinal o < 7.

The last term (g (A) of the series is called the upper G-hypercenter
of A and is denoted by (g 0(A).

The ordinal v is called the G-central length of A and is denoted by
zlg(A).

An ascending series of G-invariant subspaces

0=Ag <A <... Ay < Api1 < ... Ay

is said to be G-central if |G, Aq+1] < Aq for each ordinal o < 7. It is easy
to see that if A has a G-central series of length ~, then zlg(A) < .

We say that a vector space A is G-hypercentral if A = (G o(A) and
we then say that G acts hypercentrally on A.

We note that A is G-hypercentral if and only if A has an ascending
series of G-invariant subspaces, the last term of which is A, and for which
G acts trivially on each of the factors.

When A is a vector space over a field F' and G is a subgroup of
GL(F, A) we define the lower G-central series of A,

A=7¢1(A) > vc2(A4) > .. .v¢.a(4) 2 v5,041(A) > .. .va.x(A),
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by
162(4) =[G, A] =[G,y (A)];
YG,a+1(A) = [G,7G.o(A4)], for all ordinals «
Yaa(A) = [ 1¢,s(A) for all limit ordinals A
B<A
and

’YG,R(A) = [G7 ’}/G,R(A)} .

It clearly follows from the definition that

v6,0(A)/7vG,0+1(A) < (a(A/7G,a+1(A)) for each ordinal o < k.

The last term 7 . (A) of this series is called the lower G-hypocenter
of A and is denoted by Vg 0 (A).
We say that the A is G-hypocentral if yg 0 (A) = 0.

Theorem 10. Let A be a vector space over a field F' of prime characteristic
p and let G be a subgroup of GL(F, A). Suppose that there is a natural
number n such that codimp((q n(A)) = ¢ is finite. If G has finite section
p-rank r, then dimp(yg n+1(A)) is finite and there is a function k3 such
that dimp (v n+1(A)) < k3(c,r,n).

Theorem 11. Let A be a vector space over a field F' of characteristic
0 and let G be a subgroup of GL(F,A). Suppose that there is a natural
number n such that codimp(Can(A)) = d is finite. If G has finite section
p-rank r for some prime p, then dimp(ygn+1(A)) is finite and there is
a function kg such that dimp(vgn+1(A)) < ka(d,r,n)

These results appeared in the paper [13]. We immediately note the
dual results which have been obtained in [15].

Theorem 12. Let A be a vector space over a field F' of prime characteristic
p and let G be a subgroup of GL(F, A). Suppose that there is a natural
number n such that dimp(va n+1(A)) = c is finite. If G has finite section p-
rank r, then codimp((grn(A)) is finite and codimp((cn(A)) < k3(c,r,n).

Theorem 13. Let A be a vector space over a field F of characteristic
0 and let G be a subgroup of GL(F,A). Suppose that there is a natural
number n such that dimp(ygnt+1(A)) = d is finite. If G has finite section
p-rank r, then codimp((cn(A)) is finite. Furthermore,

codimp ((an(A)) < ka(d,7,n).
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A generalization of the result of P. Hall was obtained in [18] where
it was proved that a group G has a finite normal subgroup K such that
G/K is hypercentral if and only if the upper hypercenter of G has finite
index. Linear analogues of this result also hold and we now give these
results which were obtained in [14].

We first need some terminology: When A is a vector space over a field
F and G is a subgroup of GL(F, A), we say that A is G-locally nilpotent
if for every finitely generated subgroup H of G and every finite subset M
of A the F'H-submodule generated by M, (FH)M, is H-nilpotent. Let
L denote the family of G-invariant subspaces X of A such that A/X is
G-locally nilpotent. The intersection of all members of the family L is
called the G-locally nilpotent residual of A.

Theorem 14. Let A be a vector space over a field F' of prime characteristic
p. Let G be a subgroup of GL(F,A). If codimp((c,oc(A)) = d is finite
and if G has finite section p-rank r, then the G-locally nilpotent residual
L of A has finite dimension at most

1
§(5d3 + d? + 6d + 6rd).

Furthermore, A/L is G-hypercentral.

Theorem 15. Let A be a vector space over a field F' of characteristic 0
and let G be a subgroup of GL(F, A). Suppose that

codimp ((coo(A)) =d

is finite. If G has finite section p-rank r, for some prime p, then the
G-locally nilpotent residual L of A has finite dimension at most 3d + 3rd.
Furthermore, A/L is G-hypercentral.

We also have the following dual theorems which appeared in [15]:

Theorem 16. Let A be a vector space over a field F' of prime characteristic
p and let G be a subgroup of GL(F, A). Suppose that A contains a G-
invariant subspace B such that dimp(B) = d is finite and that A/B is G-
hypercentral. If G has finite section p-rank r, then the upper G-hypercenter
Z of A has finite codimension at most

1
5(5d3 + d? + 6d + 6rd).
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Theorem 17. Let A be a vector space over a field F' of characteristic O and
let G be a subgroup of GL(F, A). Suppose that A contains a G-invariant
subspace B such that dimp(B) = d is finite and A/ B is G-hypercentral.
If G has finite section p-rank r, for some prime p, then the upper G-
hypercenter Z of A has finite codimension at most 3d + 3rd.

5. Groups with finite orbits

The structure of a linear group G is significantly affected by its family
of G-invariant subspaces, the properties of its elements, the sizes, location
and saturation of the family of all subspaces, G-invariant subspaces and
so on. For example, consider the following extreme situation.

Let F' be a field, A a vector space over F and let G be a subgroup of
GL(F,A). Suppose that every subspace of A is G-invariant. In particular,
for each element a of A the subspace Fa is G-invariant. If f, g are arbitrary
elements of G, then f(a) = aa, g(a) = Ba, for some o, f € F. Then

(f9)(a) = f(9(a)) = f(Ba) = Bf(a) = Baa; likewise (¢f)(a) = afa.

Since the multiplicative group of U(F') of F' is abelian it follows that
fg = gf so that in this case G must be abelian.

This simple example nevertheless gives a good illustration of the
influence of a family of G-invariant subspaces on the structure of a linear
group G. Figuratively speaking, if the family of G-invariant subspaces
is quite large, then the group G is to a greater or lesser degree close to
abelian. For a linear group G we define the following G-invariant subspace.

FOG(A) = {a € Ala“ is finite} = {a € A||G : Cg(a)| is finite}.

Next we consider the situation when A = FOg(A).

We shall say that the linear group G has finite orbits on A if the orbits
a% are finite for every element a € A. If the G-orbit of a is finite, then
0% = |G+ Ca(a).

For the group G, one of the natural actions of G on itself is the action
of conjugation by a given element. Furthermore, the orbit of g € G is the
conjugacy class {7 lgz = ¢%|x € G}. Hence we may consider the class
of linear groups having finite orbits on A as an analogue of the class of
FC-groups, which has been studied extensively. We note that

1) If G is a subgroup of GL(F, A) having finite orbits on A, then G is

residually finite. Conversely, if G is a residually finite group, then
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for each field F' there exists a vector space V over F such that G
has finite orbits on V.

Thus the fact that the orbits of all elements are finite is equivalent to
the finite approximability (residual finiteness) of the group. The theory of
residually finite groups is quite well established and has many interesting
results, but this theory is not really near completion. Returning to our
analogy between linear groups having finite orbits and FC-groups, the
same can also be said concerning the theory of FC-groups. In the theory
of FC-groups some subclasses of groups emerged naturally and occupied
a special place in this theory. One such subclass appeared in the paper [45],
for example. In this paper B. H. Neumann discussed the class of groups in
which the conjugacy classes are finite but of bounded size. Neumann called
such groups BFC-groups and proved that such groups are finite-by-abelian.
Thus in this case the derived subgroup G’ of the BFC-group G is finite.
There is a natural analogue of such groups when we discuss linear groups.

Let A be a vector space over the field F' and let G denote a subgroup
of GL(F, A). We say that G has boundedly finite orbits on A if there is
a natural number b such that [a“| < b, for each element a of A.

We let I04(G) = max{|a®||la € A} and first discuss some simple
situations when the values of IO 4(G) are small.

If I04(G) = 1, then a® = {a} for each element a € A. It follows that
ga = a for all g € G.. Thus in this case G is the trivial group.

Suppose that I04(G) = 2 and let a be an element of A such that
aC # {a}. In this case the group G contains an element g such that ga # a.
For the element g%a = g(g(a)) we have two choices, namely g?a = a or
g%a = ga. However, in the latter case we immediately deduce that ga = a,
contradicting the choice of g. Thus g?a = a. If d is a further element of
A such that gd # d, then the above argument can be repeated to deduce
that g?d = d. Consequently, for each arbitrary element c of the space A
we have gc = ¢ or g°c = c. It follows that ¢ has order 2, so that in this
case the group G is an elementary abelian 2-group.

Taking into account the result of B. H. Neumann, mentioned above,
concerning the structure of BFC-groups and the natural similarity between
the derived subgroup and the G-commutator subspace of a vector space
we pose the following very natural question.

e Let F' be a field, let A be a vector space over F' and let G be
a subgroup of GL(F, A). Suppose that G has boundedly finite orbits
on A. Is it then the case that the G-commutator subspace [G, A]
has finite dimension over F'?
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We note at once however that the answer to this question is negative.
The corresponding counterexamples were obtained in [11]. This appears
to show that the situation of linear groups having boundedly finite orbits
looks more complicated than the situation for BFC-groups.

We now give the results that were obtained in [11]|. In that paper we
considered the more general situation of modules over group rings, but
here we restrict ourselves to considering only the case of linear groups.

The main structural details of linear groups having boundedly finite
orbits are exhibited in the following result.

Theorem 18. Let A be a vector space over a field F and let G be a sub-
group of GL(F,A) having boundedly finite orbits on A. Suppose that
IOA(G) = b. Then G contains a normal subgroup L and A contains
a G-invariant subspace C' satisfying the following conditions:

(i) L has finite index in G;

(ii) C has finite dimension;

(iii) [L,A] < C and [L,C] =0;

(iv) if char(F) = p, a prime, then L is an elementary abelian p-group;

if char(F) =0, then L =1 and G is finite.

Moreover, there are functions B3 and B4 such that |G : L| < p3(b) and
dimp(C) < Ba(b).

Here are some further details concerning the structure.

Theorem 19. Let A be a vector space over a field F' and let G be a sub-
group of GL(F,A) having boundedly finite orbits on A. Suppose that
I04(G) = b. Suppose also that G is a periodic p'-subgroup whenever F
has prime characteristic p. Then G is finite of order at most (b!)°.

Corollary 4. Let A be a vector space over a field F' of characteristic 0
and let G be a subgroup of GL(F, A) having boundedly finite orbits on A.
Suppose that I04(G) =b. Then G is finite and |G| < (b)°.

Corollary 5. Let A be a vector space over a field F' of prime characteristic
p and let G be a subgroup of GL(F, A) having boundedly finite orbits on
A. Suppose that I04(G) = b. Then every p'-subgroup of G is finite of
order at most (b!)°.

As we saw above, the condition that the G-orbits of the linear group
G are finite is a rather strong one. If the orbit a® of an element a € A is
finite, then the dimension of the subspace of A generated by a® is also
finite. However it is clear that the converse of this is not true, because
there are finite dimensional vector spaces having infinite G-orbits.
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For the linear group GG we define a G-invariant subspace
FDOg(A) = {a € A|Fa® is finite dimensional}.

We now consider the situation in which A = FDOg(A), that is the case
in which all subspaces Fa® are finite dimensional for all a € A.

We say that a linear group has finite dimensional orbits (on A) if the
G-orbit a® of every element a € A generates a finite dimensional subspace.

Here we also have an analogy with the class of FC-groups, although
now the analogy is much weaker.

As before, the fact that the orbits of all the elements of a vector space
are finite dimensional is equivalent to saying that a linear group acting
in this way is residually (finite dimensional). The class of such groups is
very much broader than the class of residually finite groups.

If we turn again to the analogy with FC-groups, we can see that
another natural analogue of BFC-groups will be that of linear groups G
acting on the vector space A in such a way that each G-orbit generates
a finite dimensional subspace having dimension bounded by some natural
number b. Such linear groups were discussed in the paper [12]. We shall
present the main results of this paper here. Naturally the situation here
is more complicated and, unlike with boundedly finite orbits, the case of
fields of characteristic 0 plays a more interesting role.

As usual, let F' be a field, let A be a vector space over the field F'
and let G be a subgroup of GL(F, A). We shall say that G has boundedly
finite dimensional orbits on A if there is a natural number b such that
dimp(Fa®) < b for each element a of the vector space A.

In this case we let do4(G) = max{dimpg(Fa%)|a € A}.

We first consider the case when do4(G) = 1, so that in this case each
of the subspaces Fa® is one dimensional. Naturally, in this case, Fa is
a subspace of Fa® and it follows that Fa® = Fa. Thus in this case every
subspace Fa is G-invariant.

Theorem 20. Let A be a vector space over a field F' and let G be a sub-
group of GL(F, A) having boundedly finite dimensional orbits on A. Sup-
pose also that doa(G) =b > 1. Then
(i) A contains a G-invariant subspace D of finite dimension such that
every subspace of A/ D is K -invariant, where K = Cq(D). Moreover,
there is a function Bs such that dimp(D) < B5(b);
(ii) K contains a G-invariant subgroup L such that [L, A] < D and K/L
is isomorphic to a subgroup of U(F');
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(iii) if char(F) = p, a prime, then L is an elementary abelian p-group
and if char(F) = 0, then L is an abelian torsion-free subgroup.

Corollary 6. Let A be a vector space over a field F' and let G be a periodic
subgroup of GL(F, A) having boundedly finite dimensional orbits on A.
Then G is locally finite.

Corollary 7. Let A be a vector space over a field F' and let G be a subgroup
of GL(F, A) having boundedly finite dimensional orbits on A. If G contains
no non-cyclic free subgroups then G is soluble-by-locally finite. Furthermore,
if char(F) =0, then G is soluble-by-finite.

Corollary 8. Let A be a vector space over a field F' and let G be a periodic
subgroup of GL(F, A) having boundedly finite dimensional orbits on A.
Suppose that if char(F) = p, a prime, then G is a p'-group. Then the
center of G contains a locally cyclic subgroup K such that G/K is abelian-
by-finite.

Let A be a vector space over a field F', let B be a subspace of A and
let G be a subgroup GL(F, A). For every element g € G, we let

9B = g(B) = {gblb € B}.

Clearly gB is a subspace of A. Just as we defined the G-orbits for the
elements of A we can do the same for subspaces.

Indeed, we define the G-orbits of a subspace B of A to be the family
BY = {g¢Blg € G}.

If V is a subspace of A, then we define the invariator of V in G by

Invg(V) = {g € G|g(v) € V for every element v € V'}.

It is easy to see that Inv(V) is a subgroup of G and that V' is G-invariant
if and only if Invg (V') = G. Clearly also the intersection of an arbitrary
family of G-invariant subspaces is a G-invariant subspace.

If the G-orbit of a subspace B is finite, then we can show that |BY| =
|G : Invg(B)].

Returning again to the analogy with FC-groups, another classic result
of B. H. Neumann immediately comes to mind. In the paper [46] Neumann
proved that if the subgroups of an abstract group G have a finite number
of conjugates (so have finite G-orbits under conjugation) then the group is
central-by-finite. Thus we arrive at the problem of describing the structure
of linear groups having finite G-orbits of subspaces.
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Suppose that the G-orbit of every subspace B of a vector space A is
finite. Then the G-orbit of every one dimensional subspace Fla is finite
for each a € A. From what we noted above it then follows that |G :
Invg(Fa)| is finite. Let T be a transversal to Invg(Fa) in the group G.
Then G(Fa) = Fa® = > ger 9(Fa) and the finiteness of T implies
that the G-invariant subspace G(Fa) has finite dimension. Furthermore
dimp(G(Fa)) < |T|. If we now suppose that there is a natural number b
such that ]BG] < b for each subspace B, then we deduce that the group G
has boundedly finite dimensional orbits of elements and we arrive at the
situation that has already been discussed previously. Consequently, we
shall consider the situation when the orbits of subspaces are finite without
assuming, however, that the sizes of these orbits are bounded. On the
other hand, the theorem of B. H. Neumann mentioned above implies that
if the sizes of the conjugacy classes of subgroups of a group are finite, then
their sizes are bounded. This prompts the following very natural question:

e Let A be a vector space over a field F' and let G be a subgroup of
GL(F,A). Suppose that the G-orbit of every subspace B of A is
finite. In this case, will the sizes of these orbits be bounded?

The structure of linear groups having finite orbits of subspaces was
obtained in [12] as follows:

Theorem 21. Let A be a vector space over a field F' and let G be a sub-
group of GL(F,A). Suppose that the G-orbit of every subspace of A is
finite. Then the following conditions hold:
(i) G contains a normal subgroup K of finite index such that every
subspace of A is K-invariant;
(ii) G is center-by-finite;
(iii) there is a natural number k such that the G-orbit of every subspace
of A contains at most k subspaces.
In particular G has boundedly finite orbits of subspaces.

6. Maximal and minimal conditions on subgroups of
infinite central dimension

As we saw earlier a definitive study of infinite dimensional linear groups
is really presently only possible in the presence of certain restrictions. The
question arises as to what type of restrictions will be useful here. This
situation is similar to the one that occurred during the time when the
theory of infinite groups was in its infancy. At that time the theory of finite
groups was already quite well established and many of its fundamental
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results had been obtained. It was therefore natural to use the experience
already accumulated in the theory of finite groups when trying to study
infinite groups. Thus, for example, in the theory of infinite groups a large
amount of work has been done concerning groups with finiteness conditions
where many of the results of finite group theory have been used to generalize
that theory. In this way group theory has been enriched with many new
fundamental results and techniques.

The theory of finite dimensional linear groups is one of the most
developed algebraic theories, so it is natural to rely on this theory when
building the theory of infinite dimensional linear groups and in this way
we come to an approach based on finite dimensional conditions. The
effectiveness of this approach has already been demonstrated in the theory
of finitary linear groups (see the survey paper of R. E. Phillips [50],
for example). We now demonstrate the effectiveness of this approach as
applied to other types of infnite dimensonal linear groups.

One of the “largest” families of a group G is the family of all proper
subgroups of GG. The study of groups whose proper subgroups have some
fixed property P began with the classical work of R. Dedekind [6]. In
this work he considered those finite groups whose proper subgroups are
normal. Shortly afterwards, in their famous paper [42], G. Miller and H.
Moreno described those finite groups all of whose proper subgroups are
abelian. In this setting, we need to mention the remarkable article [51]
of O. Yu. Schmidt, which completely describes those finite groups all of
whose proper subgroups are nilpotent. In order to develop the theory of
infinite groups further, the following problem of O. Yu. Schmidt was very
significant:

e Describe those infinite groups whose proper subgroups are finite.

This problem was formulated during the 1930’s. This was the time
when the theory of infinite groups began to develop intensively at Moscow
University. Schmidt ’s problem turned out to be the starting point of
a whole new branch of the theory of infinite groups, the essence of which
was the study of groups with different minimal conditions.

A whole series of articles was devoted to solving the Schmidt problem.
Early “positive” results were obtained by M. I. Kargapolov [22| and P.
Hall and C. R. Kulatilaka [20]. They showed that an infinite locally finite
group whose proper subgroups are finite is a Priifer p-group for some
prime p. In general the situation was rather complicated In the article [4§],
A. Yu. Olshanskii constructed an infinite periodic group whose proper
subgroups all have prime order and in [49], A. Yu. Olshanskii constructed
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07, all of whose

an infinite p-group, where p is a prime greater than 1
proper subgroups have order p.
Based on such considerations the following natural problem can there-

fore be posed for infinite dimensional linear groups:

e Describe the infinite dimensional linear groups whose proper sub-
groups have finite central dimension.

This problem was considered in the paper [7| where a somewhat more
general situation was considered.

Let G be a subgroup of GL(F, A) of infinite central dimension and
let L;q(G) denote the family of subgroups of G having infinite central
dimension. We say that G satisfies the minimal condition on subgroups
of infinite central dimension, which we shorten to min-icd, if the family
Licq(G), ordered by inclusion, satisfies the minimal condition.

In particular, if every proper subgroup of G has finite central dimension,
then Ezcd(G) = {G}

The paper [7] was devoted to the study of infinite dimensional linear
groups satisfying the condition min-icd and here we present the results of
this work.

Theorem 22. Let A be a vector space over the field F' and let G be
a subgroup of GL(F, A) which has infinite central dimension. If G satisfies
the condition min-icd, then either G has the minimal condition on all
subgroups or G is a finitary linear group.

Theorem 23. Let A be a vector space over the field F' of prime charac-
teristic p and let G be a (locally soluble)-by-finite subgroup of GL(F, A)
having infinite central dimension. Suppose that G satisfies the condition
min-icd and that G is not Chernikov. Then G contains normal subgroups
P < D < G satisfying the following conditions:

(i) P is a bounded nilpotent p-group of finite central dimension;

(ii) D =P x Q for some non-trivial divisible Chernikov p'-subgroup Q;

(iii) @ has infinite central dimension;

(iv) P satisfies the minimal condition on Q-invariant subgroups;

(v) G/D is finite.
In particular G is a nilpotent-by-abelian-by-finite group and satisfies the
minimal condition on normal subgroups.

Corollary 9. Let A be a vector space over the field F' of prime charac-
teristic p and let G be a (locally soluble)-by-finite subgroup of GL(F, A)
having infinite central dimension. Suppose that every proper subgroup of G
has finite central dimension. Then G is a Priifer q-group for some prime q.



26 INFINITE DIMENSIONAL LINEAR GROUPS

Theorem 24. Let A be a vector space over the field F' of characteristic 0
and let G be a (locally soluble)-by-finite subgroup of GL(F,A) having
infinite central dimension. Suppose that G satisfies the condition min-icd.
Then G is a Chernikov group.

Theorem 25. Let A be a wvector space over the field F' and let G be
a locally finite subgroup of GL(F, A) having infinite central dimension. If
G satisfies the condition min-icd, then G is a soluble-by-finite group.

Theorem 26. Let A be a vector space over the field F' and let G be
a locally generalized radical subgroup of GL(F, A) having infinite central
dimension. If G satisfies the condition min-icd, then G is a soluble-by-finite

group.

The maximal condition on ordered sets is dual to the minimal condition.
Above we saw how to handle the condition min-icd using the analogy
with the problem of S. N. Chernikov concerning groups with the minimal
condition for all subgroups. As we saw a significant portion of the groups
in the class of linear groups satisfying min-icd also satisfy the minimal
condition for all subgroups. For groups satisfying the maximal condition
on all subgroups R. Baer also formulated the problem of whether such
groups would be polycyclic-by-finite. The maximal condition is somewhat
more intractible than the minimal condition. Thus it is fair to say that the
problem of S. N. Chernikov received more attention. A negative solution
to the Baer problem was also obtained in the work of A. Yu. Olshanskii
in [47]. Nevertheless, the maximal condition has played a very important
role in the development of the theory of infinite groups. The study of
groups with the maximal condition on various types of subgroup enriched
the theory of infinite groups with ideas, techniques, constructions and
various interesting and deep results.

Let G be a subgroup of GL(F, A). We say that G satisfies the mazimal
condition on subgroups of infinite central dimension, which we shorten to
maz-icd, if the family £;.4(G), ordered by inclusion, satisfies the maximal
condition.

Linear groups satisfying the condition max-icd were studied in the
paper [38] and it is to this that we now turn attention. As we shall see,
the situation here is much more diverse (as is often typically the case for
the maximal conditions).

When studying linear groups satisfying the maximal condition on
subgroups of infinite central dimension, two cases naturally arise, namely
when the corresponding group has no finite generating set and when it is
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finitely generated. The consideration of the first situation consists of two
stages.

Theorem 27. Let A be a vector space over the field F and let G be
a soluble subgroup of GL(F,A) satisfying max-icd. Suppose that G has
infinite central dimension and that the factor group G/G' is not finitely
generated. Then G contains normal subgroups K,V such that K <V
satisfying the following conditions:

(i) G/V is a Prifer q-group for some prime q, the factor group G/K
is abelian-by-finite and V/K 1is finitely generated. Furthermore K is
nilpotent and the vector space A is K -nilpotent;

(ii) if char(F) = p a prime, then q # p and K is a bounded p-subgroup;

(iii) if char(F) =0, then K is torsion-free;

(iv) there exists a field extension E of the field F' such that the multi-
plicative group of the field EE contains a Priifer q-subgroup;

(v) the subspace C = Cx(V') has finite codimension in A;

(vi) C contains a G-invariant subspace B having a direct decomposition
B = @,,cy Bn, where By, is a G-invariant subspace of A having
finite dimension for each natural number n. Furthermore, [G,C| < B
and dimg(B,) =1 for each n € N.

Theorem 28. Let A be a vector space over the field F' and let G be
a soluble subgroup of GL(F,A) satisfying maz-icd. Suppose that G has
infinite central dimension and that G is not finitely generated. Then G
contains normal subgroups K < W < G satisfying the following conditions:

(i) G/W s finitely generated and abelian-by-finite;

(ii) W/K is abelian;

(iii) W contains a subgroup L such that L/K is finitely generated and

W/L is a Priifer q-group for some prime q;
(iv) K is nilpotent and the vector space A is K -nilpotent.

The next natural problem to study is that of finitely generated groups
satisfying the maximal condition on subgroups having infinite central
dimension. Let G be a subgroup of GL(F, A) and let Fin(G) denote the
subset of G consisting of all elements g of the group G for which the cyclic
subgroup (g) has finite central dimension. The normal subgroup Fin(G)
is called the finitary radical of the linear group G. Here we also have two
cases.

Theorem 29. Let A be a vector space over the field F' and let G be
a finitely generated soluble subgroup of GL(F, A) satisfying maz-icd. Sup-
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pose that G has infinite central dimension but that its finitary radical has
finite central dimension. Then the following conditions hold:
(i) G contains a normal subgroup U such that G /U is polycyclic;
(ii) there is a natural number m such that (x —1)"™ = 0 for each element
x € U, so that every element of U is unipotent and the subgroup U
s nilpotent;
(iii) if char(F) = 0, then U is torsion-free; if char(F) = p, a prime,
then U is bounded;
(iv) U satisfies the maximal condition for (g)-invariant subgroups for
each element g ¢ Fin(G).

Theorem 30. Let A be a wvector space over the field F' and let G be
a finitely generated soluble subgroup of GL(F, A) satisfying maz-icd. Sup-
pose that G and its finitary radical both have infinite central dimension.
Then G contains a normal subgroup L salisfying the following conditions:

(i) G/L is abelian-by-finite;

(ii) L has infinite central dimension and L/L" is not finitely generated;

(ili) L < Fin(G);

(iv) the subgroup L satisfies the mazximal condition for (g)-invariant

subgroups for each element g ¢ Fin(G).

As a consequence we obtain a description of the periodic soluble
groups satisfying the maximal condition on subgroups of infinite central
dimension.

Theorem 31. Let A be a vector space over the field F of prime charac-
teristic p and let G be an infinite periodic soluble subgroup of GL(F, A)
satisfying the condition maz-icd. Suppose that G has infinite central di-
mension. Then G contains a normal subgroup L satisfying the following
conditions:

(i) L has finite index in G;

(i) L = KQ, where K is a normal bounded nilpotent p-subgroup and Q

1s a Priifer q-group for some prime q # p;

(iii) K has finite central dimension;

(iv) A is K-nilpotent;

(v) K has a finite G-composition series;

(vi) @ has infinite central dimension.

In conclusion we observe that the study of infinite dimensional linear
groups in which the family of subgroups having infinite central dimension
and satisfying some classical finiteness condition has been carried out in
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various other cases. Our goal has been to give the general flavour of some
of the results that can be obtained when certain finiteness conditions hold,
so we presented only certain key situations. The interested reader can also
find a number of papers related to these results, a list which includes, but
is not limited to, the following papers: [4,5,8-10,25-31] and [43].
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