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ABSTRACT. Let M be an H-supplemented coatomic module
with FIEP. Then we prove that M is dual square free if and only if
every maximal submodule of M is fully invariant. Let M = D, ; M;
be a direct sum, such that M is coatomic. Then we prove that M
is dual square free if and only if each M; is dual square free for all
i € I and, M; and P 2 Mj are dual orthogonal. Finally we study
the endomorphism rings of dual square free modules. Let M be
a quasi-projective module. If Endr (M) is right dual square free,
then M is dual square free. In addition, if M is finitely generated,
then Endg (M) is right dual square free whenever M is dual square
free. We give several examples illustrating our hypotheses.

Introduction

We consider associative rings R with identity and all modules consid-
ered are unitary right R-modules. The notations Rad(M) and Endg(M)
denote the radical and the endomorphism ring of any module M, respec-
tively.

A module M is said to be dual square free or briefly DSF if whenever
its factor module is isomorphic to N2 = N @ N for some module N, then
N = 0. Note that any factor module of a DSF module is also DSF. A ring
R is said to be right (resp. left) dual square free if it is dual square free as
a right (resp. left) R-module. This concept was introduced first in [6]. We
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note that R is right DSF if and only if every cyclic right R-module is DSF.
We also know that a module M is DSF if and only if M has no proper
submodules A and B with M = A+ B and M/A = M/B (see [12]).

Recall that a module M is coatomic if every proper submodule of M
is contained in a maximal submodule. It is not difficult to see that M is
coatomic if and only if every nonzero factor module of M has a maximal
submodule. Let M and N be two right R-modules. M and N are called
dual orthogonal if, no nonzero factor module of M is isomorphic to a factor
module of N (it is called factor-orthogonal in [10]).

Let {M; | i € I} be a family of modules. Recall that the direct sum
decomposition M = @, M; is said to be exchangeable if, for any direct
summand X of M, there exist M/ C M; (i € I) such that M = X @®(drM]).
A module M is said to have the (finite) internal exchange property (or
briefly, (F)IEP) if, any (finite) direct sum decomposition M = &M, is
exchangeable.

The organization of our paper is as follows:

In the first section, we investigate some properties of DSF modules.
We also prove that for an H-supplemented coatomic module M with FIEP,
M is DSF if and only if every maximal submodule of M is fully invariant.
We illustrate our hypotheses in this section, as well.

In the second section, we work on direct sums of DSF modules. Let
M = @,;c; M; be a direct sum, such that M is coatomic. Then M is
DSF if and only if each M; is DSF for all ¢ € I and, M; and @#i M; are
dual orthogonal. As a corollary we obtain that if M = A & B where A
is a finitely generated DSF module and B = ,; S; is a direct sum of
non-isomorphic simple modules, then M is a DSF module if and only if
A and B are dual orthogonal.

In the last section, we investigate the endomorphism rings of DSF
modules. In [10, Example 2.5|, they prove that a strongly regular ring is
a DSF ring. In [15], it is presented a module-theoretic version of strongly
regular rings called abelian endoregular modules. As a generalization of
[10, Example 2.5] we prove that if M is an endoregular quasi-projective
module, then M is abelian if and only if M is a DSF. It sounds interesting
to know when the endomorphism ring of a DSF module is a DSF ring and
the converse. In this vein we prove that for any quasi-projective module
M, if Endgr(M) is right DSF, then M is DSF. In addition, if M is finitely
generated, then Endr (M) is right DSF whenever M is DSF. Again we
give examples illustrating our hypotheses in this section.

For undefined notions we refer to [12] and [13].
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1. Dual square free modules

We start with the following result which can be established using
the same arguments in [10, Proposition 2.13 and Proposition 2.15]. We
just point out that, in Theorem 1, the implication (1) = (2) is the proof
of (1) = (2) in [12, Lemma 2.6] and for the implication (2) = (3), if
Rad(M) = M, then trivially M satisfies (3).

Theorem 1. (compare with [10, Theorem 2.16|) Consider the following
conditions for a module M :

1) M is DSF,

2) For any simple module S and every nonzero homomorphisms f, g

from M to S, Kerf = Kerg,

3) Every mazimal submodule of M is fully invariant.
Then (1) = (2) = (3). If M is coatomic, then (2) = (1). In addition, if
M is quasi-projective, then (3) = (1).

The following examples illustrate that coatomic and quasi-projective
hypotheses on Theorem 1 are not superfluous.

Example 1. Let A = B = Z(p™) and C' = Z,, where p and g are primes.
Put Gz = A@ B®C. Note that G is not coatomic and not quasi-projective.
Also G is not DSF since it has the part A ® B.

Since Rad(A® B) = A® B, A® B does not have a maximal submodule.
On the other hand, A @ B is the unique maximal submodule of GG. Say
X=A®B.

Now let f : G — G be any endomorphism of G. If f(X) ¢ X, then
G =X+ f(X). Hence C =2 G/X = f(X)/(X N f(X)). By considering
the epimorphism X — f(X)/(X N f(X)) we have the epimorphism
a: X — C. Then Kera is a maximal submodule of X, a contradiction.
Therefore f(X) C X.

Example 2. Consider the above example. The Z-module G is not coatomic
and not DSF. Since it has a unique maximal submodule, condition (2) in
Theorem 1 is satisfied.

Example 3. We take the next example from |3, Example 1.12]. Let
R =7y x (Za @ Z2) be the trivial extension of Zg by Zs @ Zg. This ring
can be described as
{5
xr
y

R
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0
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with the usual operations of matrices. This ring is a finite local ring, hence
there is only one simple right R-module up to isomorphism, say S. Consider
an injective hull £(S) of S. The right R-module E(S) can be seen as the
abelian group M.3(Zs2) with action the product of vectors by matrices.
In |4, Section 3, Example 4] it is proved that every submodule of E(S)
is fully invariant. Thus, E(S) satisfies (3) in Theorem 1 and is coatomic.
Consider the lattice of submodules {0, S, K, L, N, E(S)} of E(S), which
is drawn in |3, Example 1.12|. The module E(S) is not DSF because
E(S)/S = S & S. On the other hand, assume E(S) is quasi-projective.
Consider the following diagram

E(S)—=S®S

where 7 is the composition E(S) — E(S)/S = S @ S and f is the
composition E(S) — E(S)/N = S — S & S. Suppose there exists
a: E(S) — E(S) such that f = ma. Note that « cannot be the zero
homomorphism neither an isomorphism. We have that every proper factor
module of E(S) is semisimple, hence «(E(S)) C S. This implies that
0 = ma = f, which is a contradiction. Thus E(S) is not quasi-projective.

Example 4. Let Zz be the ring of p-adic integers and Qg its quotient field.
It is known that Zp is a Dedekind domain which is a complete discrete
valuation ring. Note that Qg is a nonsingular injective Zg-module. By
[16, Lemma 5.1], Q5 is quasi-projective. Let M = Q5 & Q5 be a right
Zp-module. It follows from the fact that M is an injective module over
a PID that M has no maximal submodules. Hence, we have that M is
quasi-projective and every maximal submodule of M is fully invariant.
Note that M is not coatomic neither DSF.

Recall that a module A is said to be weakly generalized (epi-)B-
projective if, for any homomorphism (epimorphism) f : A — X and
any epimorphism g : B — X, there exist a small epimorphism p: X — Y
for some module Y, decompositions A = A1 Ay, B = B1® By, a homomor-
phism (an epimorphism) h; : Ay — Bj and an epimorphism hy : By — Aj
such that p(f|a,) = pghi and p(g|p,) = pfha.

Proposition 1. Let M be an H-supplemented coatomic module with
FIEP. Then M is DSF if and only if every maximal submodule of M is
fully tnvariant.
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Proof. “Only if” part: By Theorem 1.

“If” part: Suppose that M is not DSF. Then, by the assumption,
there exists an epimorphism p : M — S? with S a simple module. Let
pi: 82 =81® 8 — S; (i =1,2) be the projections. Since M is H-
supplemented, there exist a decomposition M = M@ M, and a submodule
K of M such that K;/Mj is small in M/M; and K;/Kerp;p is small in
M /Kerpp. Then M = Kerpyp+Ms. As Kerpyp is a maximal submodule of
M, Kerpyp = K. Clearly, we have M = Kerpip+ Kerpsp = M; + Kerpap.
Let p: M = M; & My — Ms be the projection. Now My = p(Kerpep) and
since every maximal submodule of M is fully invariant, Ms C Kerpop.

Let m; : M — M /Kerp;p (i = 1,2) be the natural epimorphisms. Then
mi|a; « My — M/Kerpip (i # j) is onto. By [13, Proposition 2.4], M is
weakly generalized epi-Ms-projective. Hence there exist decompositions
M; = M ® M]" and epimorphisms h; : M] — M (i,j = 1,2, i # j)
such that (m1|ap)h1 = a(malpy) and a(ma|ay )he = mi|yy, where a :
M /Kerpsp — S1 — So — M /Kerpyp is the natural isomorphism.

In the case that Mj is not contained in Kerpap, then M = M| +Kerpap.
Define ¢ : M = M| & M{ & My — M by o(m] +mf +mg) = hi(m)),
where m} € M{, m{ € M{ and my € M>. Since ¢(Kerpip) C Kerpip
(every maximal submodule is fully invariant), for any m} € M{ — Kerpap,
0 # almalar,)(mh) = (milar i (m}) = (il )p(mh) € w1 (Kerpip) = 0,
a contradiction.

In the case of M| C Kerpap, then 0 = ame(M]) = (m1|pm,)h1 (M)
and so MY = hy(M]) C Kerpip. Hence M) is not contained in Kerp;p.
Define ¢ : M = My @ M} & M} — M{" by 1¥(mq + mb + m¥) = ha(mh),
where my € My, m,, € M} and m} € M. Since ¢(Kerpap) C Kerpap, for
any my € My — Kerpip, 0 # (m1|a)(m5) = amsha(my) = amab(my) €
amy(Kerpap) = 0, a contradiction.

Therefore M is DSF. [

Example 5. Following the notation in Example 3, set M = E(S). Then
every maximal submodule of M is fully invariant, M is coatomic and
satisfies FIEP because it is uniform. Consider K < M in Example 3.
Note that the unique submodule X* of M satisfying X*/K <« M/K is
K = X*, and there is no direct summand A of M such that K/A < M/A.
Thus, M is not H-supplemented neither DSF.

Example 6. Let A=B=Z(p>) and put M =A@ B. Let f: A— X
be a nonzero homomorphism and g : B — X be an epimorphism for some
module X. If f is onto, then Kerf C Kerg or Kerg C Kerf since Z(p™)
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is a uniserial module. Hence there exists an epimorphism h : A — B such
that gh = f or an epimorphism h : B — A such that fh = g by Kerf and
Kerg is small in Z(p*). If f is not onto, then f(A) is small in X since X
is hollow. Let p : X — X/ f(A) be the natural epimorphism and let A’ = 0.
Then p is a small epimorphism and pf = 0 = pgh’. Thus A is weakly
generalized B-projective. By [13, Theorem 2.7|, M is H-supplemented.
In addition, since M has no maximal submodules, it satisfies that every
maximal submodule of M is fully invariant. Moreover, M is injective and
so it satisfies the exchange property. Thus M is H-supplemented with the
exchange property. But it is not coatomic, not DSF.

Let Ur be a module. U is called quasi-small if given a family of
modules {U, : @ € I'} such that U is isomorphic to a direct summand
of ®aerUy, there exists a finite subset F' C I' such that U is isomorphic
to a direct summand of GycpU,. Suppose that U is a uniserial module.
Then the endomorphism ring E = Endg(U) has two (two sided) ideals
L = {f € E : fis not injective} and K = {f € E : { is not surjective}
such that every proper right ideal of E is contained either in L or in K
(see [11, Proposition 3.7| and |7, Theorem 1.2|).

Now we give the following example which is important in terms of
existing of an H-supplemented module that does not satisfy FIEP.

Example 7. Let U be a uniserial right R-module which is not quasi-
small with £ = Endg(U). Let K = {f € E : f is not surjective} and
L ={f € E: fisnot injective} be two two-sided ideals of E. Consider
the subset {f, : n € N*} of FE such that f,41f, = f, for all n € N*
and K = Y >, foE. Fix m € N* such that f,, ¢ KJ(E). By [12,
Example 3.3|, the right F-module E/f,,E is radical projective hollow
and Endg(E/ fm E) is not local. By [13, Theorem 2.7] and [1, Proposition
12.10|, E/ fmE ® E/ f;n E is an H-supplemented E-module which does not
satisfy FIEP.

In [9, Lemma 2.2] it is proved that a module M is distributive if and
only if every submodule of M is DSF. The next proposition adds new
equivalent conditions to that lemma and makes a connection with the
general distributivity presented in [2]. For, we introduce some terminology
from [2]. Given a cardinal w, we write w™ for the smallest cardinal larger
that w. By crs(R) we denote the cardinality of all (non-isomorphic) simple
left R-modules and if M is a semisimple module, then dimM denotes the
cardinal number of simple summands of M. Let w be a cardinal. It is
said that a module M is w-thick provided dimS < w for any semisimple
subfactor S of M.



MEDINA-BARCENAS, KESKIN TUTONCU, KURATOMI 273

Proposition 2. Let M be a module. Then the following are equivalent:
1) M is distributive.
2) X/Rad(X) is DSF for any submodule X of M.
3) M is crs(R) ™ -thick. (In particular M is crs(R)™ -distributive)

Proof. (1)=(2) By Lemma 2.2 in [9], M is distributive if and only if any
factor module of M is square free if and only if any submodule of M is
DSF. Hence it is clear that, if M is distributive, then X/Rad(X) is DSF
for any submodule X of M.

(2)=(3) We claim that Soc(M/X) is square free for any submodule
X of M. Suppose that Soc(M/X) is not square free. Then there exists
a submodule N of Soc(M/X) such that N = S} @ Sy, where S1 = S
is simple. Let 7 : M — M/X be the natural epimorphism and put
T =n"YN), f =7 |r . Then Kerp;f is maximal in T, where p; : N =
S1 @S2 — S; is the projection. By Rad(T") C Kerp; f N Kerpaf = Kerf,
there exists an epimorphism from 7'/Rad(T’) to T'/Kerf = N = S; & Ss.
Since T'/Rad(T') is DSF, N = 0, a contradiction. Thus Soc(M/X) is square
free for any submodule X of M. Now, let S be a semisimple subfactor of M,
that is, S = N/X for submodules N and X of M. Since S is semisimple,
S < Soc(M/X). By the claim above, the homogeneous components of S
have size one. This implies that dimS < crs(R) < crs(R)™. Thus, M is
crs(R) T -thick.

(3)=(1) Let N be a submodule of M. Suppose that there is an epi-
morphism p : N — L & L for some module L. If L is nonzero, there is
a semisimple subfactor S @ S of N for some simple module S. It follows
from |2, Corollary 4.5(c)| that S & 0 is fully invariant in S & S which
cannot be. Thus, L = 0. This implies that every submodule of M is DSF.
Hence, M is distributive by Lemma 2.2 in [9]. O

2. Direct sums of dual square modules

Proposition 3. Let M = @, ; M; be a direct sum, such that M is
coatomic. Then M is DSF if and only if each M; is DSF for all i € I and,
M; and @j# M; are dual orthogonal.

Proof. (=) It is clear.

(<) Let f: M — S @ Sy be an epimorphism, with 0 # S; = Ss.
Since any nonzero factor module of M has a maximal submodule, we can
assume Sp is simple. Put N = 51 & Ss.

Since f # 0, there is ¢ € I such that f(M;) # 0. If f(M;)NS; # 0
for each j = 1,2, then f(M;) = N = S; @& Ss, a contradiction. Then,
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suppose f(M;) N S = 0. Then f(M;) & So = f(M;) + f (G%# Mj>. If
this sum is not direct, then f(M;) is a direct summand of f (@#i Mj)
or f (@j# Mj> is a direct summand of f(M;), which is a contradic-
tion because M; and €P;; M; are dual orthogonal. Therefore f(M;) &
So = f(M;) & f (€D, M;). This implies that f(M;) = S = Sy =
f (EB#Z» Mj), a contradiction. Thus S; = 0 = Ss. O

The proof of next lemma can be found in |8, Corollary 5|, we write
the statement here for the convenience of the reader.

Lemma 1. Let M and N be two coatomic modules. Then M @& N is
coatomic.

Corollary 1. Let My, ..., M, be coatomic modules and M = @@, M;.
Then M is DSF if and only if each M; is DSF for all 1 <1 < n and, M;
and @j# M; are dual orthogonal.

The following corollary should be compared with Proposition 2.8
in [10].

Corollary 2. Let M = A& B where A is a finitely generated DSF module
and B = @, S; is a direct sum of non-isomorphic simple modules. Then
M is a DSF module if and only if A and B are dual orthogonal.

3. Endomorphism rings of dual square free modules

Next proposition is a generalization of [10, Example 2.5].

Proposition 4. If M is an endoregular quasi-projective module, then M
is abelian if and only if M is DSF.

Proof. (=) Let A and B proper submodules of M such that M = A+B and
M/A = M/B. Since M is quasi-projective, Endr(M) = Homp (M, A) +
Homp (M, B). This implies that M = Hompg(M, A)M + Hompr(M, B)M.
Set A" = Hompg(M, A)M and B’ = Hompg(M, B)M. Then M = A’ + B’
and there are epimorphisms p; : M/A" — M/A and ps : M/B' — M/B.
By [15, Proposition 2.9], A" and B’ are fully invariant submodules of M.
Hence A'NB’ is fully invariant. It follows that M /A’NB’ is quasi-projective
and by [15, Proposition 2.8], it is an abelian endoregular module. Moreover,
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M/A' OB = (A'JA'NB') & (B'/A' N B') with A'/A'N B' =~ M/B' and
B'/JA'NnB' = M/A'. By |15, Proposition 2.11(d)],

0 = Homp (A'/A'N B, B'/A'N B") = Homgr(M/B', M/4A’).

Since M /A'NB' is quasi-projective, M/ B" is M /A’-projective. This implies
that the following diagram can be completed commutatively only with
the zero homomorphism

M/B' - %= M/A

pzl ipl

M/B——= M/A.

Thus po = 0, that is, M = B. Analogously M = A. Therefore, M is DSF.

(<) Let A and B be M-generated submodules of M such that ANB =0
and A = B. There exists a nonzero homomorphism « : M — A. Then
there exists B' < B such that (M) = B’ and «(M) N B’ = 0. Hence,
without loss of generality we can take A = «(M) and B = B’. Since M is
endoregular, A and B are direct summands of M. The module M satisfies
SSP (sum of any two direct summands of M is again a direct summand
of M) by [14, Theorem 2.4]. Then A @ B is a direct summand of M,
that is, there exists, D < M such that M = A® B ® D. It follows that
M/(B®D)=2 A= B>~ M/(A® D). Since M is DSF, A@ D =B®D.
In particular, A C B @ D. Therefore, 0 = AN (B & D) = A. Analogously
B = 0. Hence M is abelian endoregular by [15, Proposition 2.11(c)]. O

Corollary 3. ([10, Example 2.5]) Let R be a ring. Then, R is strongly
reqular if and only if R is a reqular and left (right) DSF module.

Remark 1. Any DSF module M with SSP and SIP (intersection of any
two direct summands of M is again a direct summand of M) satisfies the
internal cancellation property. For, let M be a DSF module with SSP and
SIP.Let M =A@ C =B®D and let f : A — B be an isomorphism.
Since M satisfies SIP, there exist decompositions A = (AN D) @& A’ and
D=(AND)® D'. Then B= f(AND)® f(A"). Hence M = B® D =
f(AnD)®(ANnD)® f(A"Y® D'. Since M is DSF with SSP, AND = 0 and
A® D is a direct summand of M. Put M = (A@D)® K. By M = B& D,
there exists a decomposition B = B’ @ B” such that K = B’. Hence
M=AoDoK=f'BYofY(B")YeD®Kand f~Y(B)=2B ~2K.
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Since M is DSF, B’ = 0 and hence K = 0. Thus we see M = A@® D and
so C' = D. This means that M satisfies the internal cancellation property.

Now by [14, Theorem 2.4|, any endoregular module satisfies the SSP
and SIP properties. Hence any DSF endoregular module satisfies the
internal cancellation property.

Theorem 2. Let M be a quasi-projective module. Consider the following
conditions:

1) S =Endg(M) is a right DSF ring.

2) M is a DSF module.
Then (1) = (2). In addition, if M is finitely generated, then (2) = (1).

Proof. (1) = (2): Let A and B submodules of M such that M = A+ B
with M/A = M/B. Since M is quasi-projective, S = Hompg(M, A) +
Homp (M, B). Let f : M/A — M/B be an isomorphism, and let 74 :
M — M/A and g : M — M /B be the natural epimorphisms.

M—"% M/A

4\
gl g fl< )f
%

M ——> M/B
B

Since M is quasi-projective, there exists g € S such that mpg =
fma. It follows that g(A) C B. We claim that 6 : S/Hompg(M,A) —
S/Homp (M, B) given by 6(1 + Hompg(M, A)) = g + Hompg(M, B) is an
isomorphism of right S-modules. Let h € Hompg (M, A). Then gh(M) C
g(A) C B. Thus gh € Hompg(M, B) and so 6 is well defined. It is clear that
6 is an S-homomorphism of right S-modules. Now, if h + Homp(M, A)
is such that 6(h + Hompg (M, A)) = 0, that is, gh € Hompg(M, B), then
0 =7mpgh = frah. Since f is an isomorphism, m4h = 0. This implies that
h(M) C A and hence h € Hompg(M, A). Thus, 6 is a monomorphism. If we
take now f~!: M/B — M/A, there exists j € S such that 747 = f~np
because M is quasi-projective. Note that 7 = ff lnp = fraj = ©BYJ.
Let | + Homp(M, B) € S/Hompg(M, B). Then,

mp(gjl — 1) = mpgjl — mpl = wpl — 7l = 0.

It follows that gjl — ! € Hompg (M, B). Therefore, 6(jl + Hompg(M, A)) =
gjl+Homp(M, B) = l+Hompg (M, B). Hence 6 is an epimorphism and so
an isomorphism. Since S is right DSF, Hompg(M, A) = S = Hompg(M, B).
Hence M = SM = Homp (M, A)M C A. Analogously, B = M. Thus, M
is DSF.
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Now, assume that M is a finitely generated quasi-projective module.
(2) = (1): Let I and J be right ideals of S such that S = I + J and
S/I = S/J. It follows that M = IM + JM. Let 6 : S/I — S/J be
an isomorphism of right S-modules. Write h + J = 6(1 + I). Let f :
M/IM — M/JM be given by f(m + IM) = h(m) + JM. Suppose
m —n € IM. Therefore m —n = Zle gi(k;) with g; € I and k; € M.
Then, 0=60(g; +1) =60(1 +1)g; = (h+ J)gi = hg; + J, for all 1 <i < /.
Thus, hg; € J for all 1 <17 < £. Hence,

h(m—n) =h(>_gi(k:)) = hgi(k;) € JM.

It is clear that f is an R-homomorphism. Analogously, if =1 (14.J) = A/ +1
then we have an R-homomorphism g : M /JM — M/IM given by g(m +
JM) = h'(m)+IM. Note that 1+ = 07 10(1+1) = 6~ (h+J) = Wh+1,
hence 1 — h'h € I. Analogously, 1 — hh' € J. Now, let m+ IM € M/IM.
Then

gf(m+IM) = g(h(m)+ JM) = h'h(m)+IM =m+IM,
and
fg(m + JM) = f(h(m)+IM) = hh'(m) + JM = m + JM.

It follows that M /IM = M/JM. Since M is DSF, IM = M = JM and so
S = Homp(M,IM) = Hompg(M, JM). We have that I = Homp(M, IM)
and J = Hompg(M, JM) because M is finitely generated and quasi-
projective [17, 18.4]. Thus, I = S = J, that is, S is right DSF. O

Example 8. Let K be a field and A a hereditary K-algebra. Let P be an
indecomposable projective A-module. By [15, Example 2.2(v)| we know
that, End4(P) = K. Therefore End4(P) is a right (and left) DSF ring.
Then from the above Theorem, P is a DSF A-module.

Example 9. (see |5, Example 2.3]) Let K be a field and let A be the

hereditary K-algebra given by the quiver S —— e . Let M

be the indecomposable injective left A-module I(3) = L2 . Here the

3

1
indecomposable projective non-isomorphic left A-modules are P(1) = 5
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Note that the projective left A-module P = P(1) & P(2) is the projective
cover of M. Since M is finitely generated, P is finitely generated. On the
other hand, End 4(P) =2 K@ K. Therefore End 4(P) is not a left (and right)
DSF ring. Hence P is not DSF left A-module by Theorem 2. But from
Example 8, each P(1) and P(2) is DSF. Clearly, M = P(1) + P(2) and
M/P(1) 2 M/P(2), where P(1) and P(2) are the only proper submodules
of M with sum M. Therefore M is clearly a DSF left A-module. Also
End4 (M) is a left (right) DSF ring since End4 (M) = K.

As we see in the following example, in Theorem 2 (1) = (2), “quasi-
projective” hypothesis is not superfluous.

Example 10. Consider the module E(S) in Example 3. E(S) is not
quasi-projective and it is not DSF. On the other hand, since E(S) is
indecomposable injective, Endr(E(S)) is local, which is a right and left
DSF ring.
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