© Algebra and Discrete Mathematics Volume **32** (2021). Number 2, pp. 267–279 DOI:10.12958/adm1512

A study on dual square free modules

M. Medina-Bárcenas, D. Keskin Tütüncü, and Y. Kuratomi

Communicated by R. Wisbauer

ABSTRACT. Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule of M is fully invariant. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum, such that M is coatomic. Then we prove that Mis dual square free if and only if each M_i is dual square free for all $i \in I$ and, M_i and $\bigoplus_{j \neq i} M_j$ are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let M be a quasi-projective module. If $\operatorname{End}_R(M)$ is right dual square free, then M is dual square free. In addition, if M is finitely generated, then $\operatorname{End}_R(M)$ is right dual square free whenever M is dual square free. We give several examples illustrating our hypotheses.

Introduction

We consider associative rings R with identity and all modules considered are unitary right R-modules. The notations $\operatorname{Rad}(M)$ and $\operatorname{End}_R(M)$ denote the radical and the endomorphism ring of any module M, respectively.

A module M is said to be *dual square free* or briefly DSF if whenever its factor module is isomorphic to $N^2 = N \oplus N$ for some module N, then N = 0. Note that any factor module of a DSF module is also DSF. A ring R is said to be *right (resp. left) dual square free* if it is dual square free as a right (resp. left) R-module. This concept was introduced first in [6]. We

²⁰²⁰ MSC: 16D40, 16D70.

Key words and phrases: dual square free module, endoregular module, (finite) internal exchange property.

note that R is right DSF if and only if every cyclic right R-module is DSF. We also know that a module M is DSF if and only if M has no proper submodules A and B with M = A + B and $M/A \cong M/B$ (see [12]).

Recall that a module M is *coatomic* if every proper submodule of M is contained in a maximal submodule. It is not difficult to see that M is coatomic if and only if every nonzero factor module of M has a maximal submodule. Let M and N be two right R-modules. M and N are called *dual orthogonal* if, no nonzero factor module of M is isomorphic to a factor module of N (it is called *factor-orthogonal* in [10]).

Let $\{M_i \mid i \in I\}$ be a family of modules. Recall that the direct sum decomposition $M = \bigoplus_I M_i$ is said to be *exchangeable* if, for any direct summand X of M, there exist $M'_i \subseteq M_i$ $(i \in I)$ such that $M = X \oplus (\bigoplus_I M'_i)$. A module M is said to have the *(finite) internal exchange property* (or briefly, *(F)IEP*) if, any (finite) direct sum decomposition $M = \bigoplus_I M_i$ is exchangeable.

The organization of our paper is as follows:

In the first section, we investigate some properties of DSF modules. We also prove that for an H-supplemented coatomic module M with FIEP, M is DSF if and only if every maximal submodule of M is fully invariant. We illustrate our hypotheses in this section, as well.

In the second section, we work on direct sums of DSF modules. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum, such that M is coatomic. Then M is DSF if and only if each M_i is DSF for all $i \in I$ and, M_i and $\bigoplus_{j \neq i} M_j$ are dual orthogonal. As a corollary we obtain that if $M = A \oplus B$ where A is a finitely generated DSF module and $B = \bigoplus_{i \in I} S_i$ is a direct sum of non-isomorphic simple modules, then M is a DSF module if and only if A and B are dual orthogonal.

In the last section, we investigate the endomorphism rings of DSF modules. In [10, Example 2.5], they prove that a strongly regular ring is a DSF ring. In [15], it is presented a module-theoretic version of strongly regular rings called *abelian endoregular modules*. As a generalization of [10, Example 2.5] we prove that if M is an endoregular quasi-projective module, then M is abelian if and only if M is a DSF. It sounds interesting to know when the endomorphism ring of a DSF module is a DSF ring and the converse. In this vein we prove that for any quasi-projective module M, if $End_R(M)$ is right DSF, then M is DSF. In addition, if M is finitely generated, then $End_R(M)$ is right DSF whenever M is DSF. Again we give examples illustrating our hypotheses in this section.

For undefined notions we refer to [12] and [13].

1. Dual square free modules

We start with the following result which can be established using the same arguments in [10, Proposition 2.13 and Proposition 2.15]. We just point out that, in Theorem 1, the implication $(1) \Rightarrow (2)$ is the proof of $(1) \Rightarrow (2)$ in [12, Lemma 2.6] and for the implication $(2) \Rightarrow (3)$, if $\operatorname{Rad}(M) = M$, then trivially M satisfies (3).

Theorem 1. (compare with [10, Theorem 2.16]) Consider the following conditions for a module M:

- 1) M is DSF,
- For any simple module S and every nonzero homomorphisms f, g from M to S, Kerf = Kerg,
- 3) Every maximal submodule of M is fully invariant.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. If M is coatomic, then $(2) \Rightarrow (1)$. In addition, if M is quasi-projective, then $(3) \Rightarrow (1)$.

The following examples illustrate that coatomic and quasi-projective hypotheses on Theorem 1 are not superfluous.

Example 1. Let $A = B = \mathbb{Z}(p^{\infty})$ and $C = \mathbb{Z}_q$, where p and q are primes. Put $G_{\mathbb{Z}} = A \oplus B \oplus C$. Note that G is not coatomic and not quasi-projective. Also G is not DSF since it has the part $A \oplus B$.

Since $\operatorname{Rad}(A \oplus B) = A \oplus B$, $A \oplus B$ does not have a maximal submodule. On the other hand, $A \oplus B$ is the unique maximal submodule of G. Say $X = A \oplus B$.

Now let $f: G \to G$ be any endomorphism of G. If $f(X) \not\subseteq X$, then G = X + f(X). Hence $C \cong G/X \cong f(X)/(X \cap f(X))$. By considering the epimorphism $X \to f(X)/(X \cap f(X))$ we have the epimorphism $\alpha: X \to C$. Then Ker α is a maximal submodule of X, a contradiction. Therefore $f(X) \subseteq X$.

Example 2. Consider the above example. The \mathbb{Z} -module G is not coatomic and not DSF. Since it has a unique maximal submodule, condition (2) in Theorem 1 is satisfied.

Example 3. We take the next example from [3, Example 1.12]. Let $R = \mathbb{Z}_2 \rtimes (\mathbb{Z}_2 \oplus \mathbb{Z}_2)$ be the trivial extension of \mathbb{Z}_2 by $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. This ring can be described as

$$R \cong \left\{ \begin{pmatrix} a & 0 & 0 \\ x & a & 0 \\ y & 0 & a \end{pmatrix} \mid a, x, y \in \mathbb{Z}_2 \right\}$$

with the usual operations of matrices. This ring is a finite local ring, hence there is only one simple right *R*-module up to isomorphism, say *S*. Consider an injective hull E(S) of *S*. The right *R*-module E(S) can be seen as the abelian group $M_{1\times 3}(\mathbb{Z}_2)$ with action the product of vectors by matrices. In [4, Section 3, Example 4] it is proved that every submodule of E(S)is fully invariant. Thus, E(S) satisfies (3) in Theorem 1 and is coatomic. Consider the lattice of submodules $\{0, S, K, L, N, E(S)\}$ of E(S), which is drawn in [3, Example 1.12]. The module E(S) is not DSF because $E(S)/S \cong S \oplus S$. On the other hand, assume E(S) is quasi-projective. Consider the following diagram

where π is the composition $E(S) \twoheadrightarrow E(S)/S \cong S \oplus S$ and f is the composition $E(S) \twoheadrightarrow E(S)/N \cong S \hookrightarrow S \oplus S$. Suppose there exists $\alpha : E(S) \to E(S)$ such that $f = \pi \alpha$. Note that α cannot be the zero homomorphism neither an isomorphism. We have that every proper factor module of E(S) is semisimple, hence $\alpha(E(S)) \subseteq S$. This implies that $0 = \pi \alpha = f$, which is a contradiction. Thus E(S) is not quasi-projective.

Example 4. Let $\mathbb{Z}_{\widehat{p}}$ be the ring of *p*-adic integers and $\mathbb{Q}_{\widehat{p}}$ its quotient field. It is known that $\mathbb{Z}_{\widehat{p}}$ is a Dedekind domain which is a complete discrete valuation ring. Note that $\mathbb{Q}_{\widehat{p}}$ is a nonsingular injective $\mathbb{Z}_{\widehat{p}}$ -module. By [16, Lemma 5.1], $\mathbb{Q}_{\widehat{p}}$ is quasi-projective. Let $M = \mathbb{Q}_{\widehat{p}} \oplus \mathbb{Q}_{\widehat{p}}$ be a right $\mathbb{Z}_{\widehat{p}}$ -module. It follows from the fact that M is an injective module over a PID that M has no maximal submodules. Hence, we have that M is quasi-projective and every maximal submodule of M is fully invariant. Note that M is not coatomic neither DSF.

Recall that a module A is said to be weakly generalized (epi-)B-projective if, for any homomorphism (epimorphism) $f : A \to X$ and any epimorphism $g : B \to X$, there exist a small epimorphism $\rho : X \to Y$ for some module Y, decompositions $A = A_1 \oplus A_2$, $B = B_1 \oplus B_2$, a homomorphism (an epimorphism) $h_1 : A_1 \to B_1$ and an epimorphism $h_2 : B_2 \to A_2$ such that $\rho(f|_{A_1}) = \rho g h_1$ and $\rho(g|_{B_2}) = \rho f h_2$.

Proposition 1. Let M be an H-supplemented coatomic module with FIEP. Then M is DSF if and only if every maximal submodule of M is fully invariant.

Proof. "Only if" part: By Theorem 1.

"If" part: Suppose that M is not DSF. Then, by the assumption, there exists an epimorphism $\rho: M \to S^2$ with S a simple module. Let $p_i: S^2 = S_1 \oplus S_2 \to S_i \ (i = 1, 2)$ be the projections. Since M is Hsupplemented, there exist a decomposition $M = M_1 \oplus M_2$ and a submodule K_1 of M such that K_1/M_1 is small in M/M_1 and $K_1/\text{Ker}p_1\rho$ is small in $M/\text{Ker}p_1\rho$. Then $M = \text{Ker}p_1\rho + M_2$. As $\text{Ker}p_1\rho$ is a maximal submodule of M, $\text{Ker}p_1\rho = K_1$. Clearly, we have $M = \text{Ker}p_1\rho + \text{Ker}p_2\rho = M_1 + \text{Ker}p_2\rho$. Let $p: M = M_1 \oplus M_2 \to M_2$ be the projection. Now $M_2 = p(\text{Ker}p_2\rho)$ and since every maximal submodule of M is fully invariant, $M_2 \subseteq \text{Ker}p_2\rho$.

Let $\pi_i: M \to M/\operatorname{Ker} p_i \rho$ (i = 1, 2) be the natural epimorphisms. Then $\pi_i|_{M_j}: M_j \to M/\operatorname{Ker} p_i \rho$ $(i \neq j)$ is onto. By [13, Proposition 2.4], M_1 is weakly generalized epi- M_2 -projective. Hence there exist decompositions $M_i = M'_i \oplus M''_i$ and epimorphisms $h_i: M'_i \to M''_j$ $(i, j = 1, 2, i \neq j)$ such that $(\pi_1|_{M_2})h_1 = \alpha(\pi_2|_{M'_1})$ and $\alpha(\pi_2|_{M_1})h_2 = \pi_1|_{M'_2}$, where $\alpha: M/\operatorname{Ker} p_2 \rho \to S_1 \to S_2 \to M/\operatorname{Ker} p_1 \rho$ is the natural isomorphism.

In the case that M'_1 is not contained in $\operatorname{Ker} p_2 \rho$, then $M = M'_1 + \operatorname{Ker} p_2 \rho$. Define $\varphi : M = M'_1 \oplus M''_1 \oplus M_2 \to M''_2$ by $\varphi(m'_1 + m''_1 + m_2) = h_1(m'_1)$, where $m'_1 \in M'_1$, $m''_1 \in M''_1$ and $m_2 \in M_2$. Since $\varphi(\operatorname{Ker} p_1 \rho) \subseteq \operatorname{Ker} p_1 \rho$ (every maximal submodule is fully invariant), for any $m'_1 \in M'_1 - \operatorname{Ker} p_2 \rho$, $0 \neq \alpha(\pi_2|_{M_1})(m'_1) = (\pi_1|_{M_2})h_1(m'_1) = (\pi_1|_{M_2})\varphi(m'_1) \in \pi_1(\operatorname{Ker} p_1 \rho) = 0$, a contradiction.

In the case of $M'_1 \subseteq \text{Ker}p_2\rho$, then $0 = \alpha \pi_2(M'_1) = (\pi_1|_{M_2})h_1(M'_1)$ and so $M''_2 = h_1(M'_1) \subseteq \text{Ker}p_1\rho$. Hence M'_2 is not contained in $\text{Ker}p_1\rho$. Define $\psi : M = M_1 \oplus M'_2 \oplus M''_2 \to M''_1$ by $\psi(m_1 + m'_2 + m''_2) = h_2(m'_2)$, where $m_1 \in M_1, m'_2 \in M'_2$ and $m''_2 \in M''_2$. Since $\psi(\text{Ker}p_2\rho) \subseteq \text{Ker}p_2\rho$, for any $m'_2 \in M'_2 - \text{Ker}p_1\rho, 0 \neq (\pi_1|_{M_2})(m'_2) = \alpha \pi_2 h_2(m'_2) = \alpha \pi_2 \psi(m'_2) \in \alpha \pi_2(\text{Ker}p_2\rho) = 0$, a contradiction.

Therefore M is DSF.

Example 5. Following the notation in Example 3, set M = E(S). Then every maximal submodule of M is fully invariant, M is coatomic and satisfies FIEP because it is uniform. Consider $K \leq M$ in Example 3. Note that the unique submodule X^* of M satisfying $X^*/K \ll M/K$ is $K = X^*$, and there is no direct summand A of M such that $K/A \ll M/A$. Thus, M is not H-supplemented neither DSF.

Example 6. Let $A = B = \mathbb{Z}(p^{\infty})$ and put $M = A \oplus B$. Let $f : A \to X$ be a nonzero homomorphism and $g : B \to X$ be an epimorphism for some module X. If f is onto, then Ker $f \subseteq$ Kerg or Ker $g \subseteq$ Kerf since $\mathbb{Z}(p^{\infty})$

is a uniserial module. Hence there exists an epimorphism $h: A \to B$ such that gh = f or an epimorphism $h: B \to A$ such that fh = g by Kerf and Kerg is small in $\mathbb{Z}(p^{\infty})$. If f is not onto, then f(A) is small in X since X is hollow. Let $\rho: X \to X/f(A)$ be the natural epimorphism and let h' = 0. Then ρ is a small epimorphism and $\rho f = 0 = \rho g h'$. Thus A is weakly generalized B-projective. By [13, Theorem 2.7], M is H-supplemented. In addition, since M has no maximal submodules, it satisfies that every maximal submodule of M is fully invariant. Moreover, M is injective and so it satisfies the exchange property. Thus M is H-supplemented with the exchange property. But it is not coatomic, not DSF.

Let U_R be a module. U is called *quasi-small* if given a family of modules $\{U_{\alpha} : \alpha \in \Gamma\}$ such that U is isomorphic to a direct summand of $\bigoplus_{\alpha \in \Gamma} U_{\alpha}$, there exists a finite subset $F \subseteq \Gamma$ such that U is isomorphic to a direct summand of $\bigoplus_{\alpha \in F} U_{\alpha}$. Suppose that U is a uniserial module. Then the endomorphism ring $E = \operatorname{End}_R(U)$ has two (two sided) ideals $L = \{f \in E : f \text{ is not injective}\}$ and $K = \{f \in E : f \text{ is not surjective}\}$ such that every proper right ideal of E is contained either in L or in K(see [11, Proposition 3.7] and [7, Theorem 1.2]).

Now we give the following example which is important in terms of existing of an H-supplemented module that does not satisfy FIEP.

Example 7. Let U be a uniserial right R-module which is not quasismall with $E = \operatorname{End}_R(U)$. Let $K = \{f \in E : f \text{ is not surjective}\}$ and $L = \{f \in E : f \text{ is not injective}\}$ be two two-sided ideals of E. Consider the subset $\{f_n : n \in \mathbb{N}^*\}$ of E such that $f_{n+1}f_n = f_n$ for all $n \in \mathbb{N}^*$ and $K = \sum_{n=1}^{\infty} f_n E$. Fix $m \in \mathbb{N}^*$ such that $f_m \notin KJ(E)$. By [12, Example 3.3], the right E-module $E/f_m E$ is radical projective hollow and $\operatorname{End}_E(E/f_m E)$ is not local. By [13, Theorem 2.7] and [1, Proposition 12.10], $E/f_m E \oplus E/f_m E$ is an H-supplemented E-module which does not satisfy FIEP.

In [9, Lemma 2.2] it is proved that a module M is distributive if and only if every submodule of M is DSF. The next proposition adds new equivalent conditions to that lemma and makes a connection with the general distributivity presented in [2]. For, we introduce some terminology from [2]. Given a cardinal ω , we write ω^+ for the smallest cardinal larger that ω . By $\operatorname{crs}(R)$ we denote the cardinality of all (non-isomorphic) simple left R-modules and if M is a semisimple module, then dimM denotes the cardinal number of simple summands of M. Let ω be a cardinal. It is said that a module M is ω -thick provided dim $S < \omega$ for any semisimple subfactor S of M. **Proposition 2.** Let M be a module. Then the following are equivalent: 1) M is distributive.

- 2) X/Rad(X) is DSF for any submodule X of M.
- 3) M is $crs(R)^+$ -thick. (In particular M is $crs(R)^+$ -distributive)

Proof. $(1) \Rightarrow (2)$ By Lemma 2.2 in [9], M is distributive if and only if any factor module of M is square free if and only if any submodule of M is DSF. Hence it is clear that, if M is distributive, then X/Rad(X) is DSF for any submodule X of M.

 $(2)\Rightarrow(3)$ We claim that $\operatorname{Soc}(M/X)$ is square free for any submodule X of M. Suppose that $\operatorname{Soc}(M/X)$ is not square free. Then there exists a submodule N of $\operatorname{Soc}(M/X)$ such that $N = S_1 \oplus S_2$, where $S_1 \cong S_2$ is simple. Let $\pi : M \to M/X$ be the natural epimorphism and put $T = \pi^{-1}(N), f = \pi \mid_T$. Then $\operatorname{Ker} p_i f$ is maximal in T, where $p_i : N = S_1 \oplus S_2 \to S_i$ is the projection. By $\operatorname{Rad}(T) \subseteq \operatorname{Ker} p_1 f \cap \operatorname{Ker} p_2 f = \operatorname{Ker} f$, there exists an epimorphism from $T/\operatorname{Rad}(T)$ to $T/\operatorname{Ker} f \cong N = S_1 \oplus S_2$. Since $T/\operatorname{Rad}(T)$ is DSF, N = 0, a contradiction. Thus $\operatorname{Soc}(M/X)$ is square free for any submodule X of M. Now, let S be a semisimple subfactor of M, that is, S = N/X for submodules N and X of M. Since S is semisimple, $S \leq \operatorname{Soc}(M/X)$. By the claim above, the homogeneous components of S have size one. This implies that $\dim S \leq \operatorname{crs}(R) < \operatorname{crs}(R)^+$. Thus, M is $\operatorname{crs}(R)^+$ -thick.

 $(3) \Rightarrow (1)$ Let N be a submodule of M. Suppose that there is an epimorphism $\rho : N \to L \oplus L$ for some module L. If L is nonzero, there is a semisimple subfactor $S \oplus S$ of N for some simple module S. It follows from [2, Corollary 4.5(c)] that $S \oplus 0$ is fully invariant in $S \oplus S$ which cannot be. Thus, L = 0. This implies that every submodule of M is DSF. Hence, M is distributive by Lemma 2.2 in [9].

2. Direct sums of dual square modules

Proposition 3. Let $M = \bigoplus_{i \in I} M_i$ be a direct sum, such that M is coatomic. Then M is DSF if and only if each M_i is DSF for all $i \in I$ and, M_i and $\bigoplus_{j \neq i} M_j$ are dual orthogonal.

Proof. (\Rightarrow) It is clear.

(\Leftarrow) Let $f: M \to S_1 \oplus S_2$ be an epimorphism, with $0 \neq S_1 \cong S_2$. Since any nonzero factor module of M has a maximal submodule, we can assume S_1 is simple. Put $N = S_1 \oplus S_2$.

Since $f \neq 0$, there is $i \in I$ such that $f(M_i) \neq 0$. If $f(M_i) \cap S_j \neq 0$ for each j = 1, 2, then $f(M_i) = N = S_1 \oplus S_2$, a contradiction. Then, suppose $f(M_i) \cap S_2 = 0$. Then $f(M_i) \oplus S_2 = f(M_i) + f\left(\bigoplus_{j \neq i} M_j\right)$. If this sum is not direct, then $f(M_i)$ is a direct summand of $f\left(\bigoplus_{j \neq i} M_j\right)$ or $f\left(\bigoplus_{j \neq i} M_j\right)$ is a direct summand of $f(M_i)$, which is a contradiction because M_i and $\bigoplus_{j \neq i} M_j$ are dual orthogonal. Therefore $f(M_i) \oplus$ $S_2 = f(M_i) \oplus f\left(\bigoplus_{j \neq i} M_j\right)$. This implies that $f(M_i) \cong S_1 \cong S_2 \cong$ $f\left(\bigoplus_{j \neq i} M_j\right)$, a contradiction. Thus $S_1 = 0 = S_2$. \Box

The proof of next lemma can be found in [8, Corollary 5], we write the statement here for the convenience of the reader.

Lemma 1. Let M and N be two coatomic modules. Then $M \oplus N$ is coatomic.

Corollary 1. Let $M_1, ..., M_n$ be coatomic modules and $M = \bigoplus_{i=1}^n M_i$. Then M is DSF if and only if each M_i is DSF for all $1 \leq i \leq n$ and, M_i and $\bigoplus_{i \neq i} M_j$ are dual orthogonal.

The following corollary should be compared with Proposition 2.8 in [10].

Corollary 2. Let $M = A \oplus B$ where A is a finitely generated DSF module and $B = \bigoplus_{i \in I} S_i$ is a direct sum of non-isomorphic simple modules. Then M is a DSF module if and only if A and B are dual orthogonal.

3. Endomorphism rings of dual square free modules

Next proposition is a generalization of [10, Example 2.5].

Proposition 4. If M is an endoregular quasi-projective module, then M is abelian if and only if M is DSF.

Proof. (⇒) Let *A* and *B* proper submodules of *M* such that M = A+B and $M/A \cong M/B$. Since *M* is quasi-projective, $\operatorname{End}_R(M) = \operatorname{Hom}_R(M, A) + \operatorname{Hom}_R(M, B)$. This implies that $M = \operatorname{Hom}_R(M, A)M + \operatorname{Hom}_R(M, B)M$. Set $A' = \operatorname{Hom}_R(M, A)M$ and $B' = \operatorname{Hom}_R(M, B)M$. Then M = A' + B' and there are epimorphisms $\rho_1 : M/A' \to M/A$ and $\rho_2 : M/B' \to M/B$. By [15, Proposition 2.9], *A'* and *B'* are fully invariant submodules of *M*. Hence $A' \cap B'$ is fully invariant. It follows that $M/A' \cap B'$ is quasi-projective and by [15, Proposition 2.8], it is an abelian endoregular module. Moreover,

 $M/A' \cap B' = (A'/A' \cap B') \oplus (B'/A' \cap B')$ with $A'/A' \cap B' \cong M/B'$ and $B'/A' \cap B' \cong M/A'$. By [15, Proposition 2.11(d)],

$$0 = \operatorname{Hom}_R(A'/A' \cap B', B'/A' \cap B') = \operatorname{Hom}_R(M/B', M/A').$$

Since $M/A' \cap B'$ is quasi-projective, M/B' is M/A'-projective. This implies that the following diagram can be completed commutatively only with the zero homomorphism

$$\begin{array}{c|c} M/B' - \stackrel{0}{-} \succ M/A' \\ \rho_2 \\ & & \downarrow \\ \rho_1 \\ M/B \xrightarrow{} \longrightarrow M/A. \end{array}$$

Thus $\rho_2 = 0$, that is, M = B. Analogously M = A. Therefore, M is DSF.

(⇐) Let A and B be M-generated submodules of M such that $A \cap B = 0$ and $A \cong B$. There exists a nonzero homomorphism $\alpha : M \to A$. Then there exists $B' \leq B$ such that $\alpha(M) \cong B'$ and $\alpha(M) \cap B' = 0$. Hence, without loss of generality we can take $A = \alpha(M)$ and B = B'. Since M is endoregular, A and B are direct summands of M. The module M satisfies SSP (sum of any two direct summands of M is again a direct summand of M) by [14, Theorem 2.4]. Then $A \oplus B$ is a direct summand of M, that is, there exists, $D \leq M$ such that $M = A \oplus B \oplus D$. It follows that $M/(B \oplus D) \cong A \cong B \cong M/(A \oplus D)$. Since M is DSF, $A \oplus D = B \oplus D$. In particular, $A \subseteq B \oplus D$. Therefore, $0 = A \cap (B \oplus D) = A$. Analogously B = 0. Hence M is abelian endoregular by [15, Proposition 2.11(c)]. \Box

Corollary 3. ([10, Example 2.5]) Let R be a ring. Then, R is strongly regular if and only if R is a regular and left (right) DSF module.

Remark 1. Any DSF module M with SSP and SIP (intersection of any two direct summands of M is again a direct summand of M) satisfies the internal cancellation property. For, let M be a DSF module with SSP and SIP. Let $M = A \oplus C = B \oplus D$ and let $f : A \to B$ be an isomorphism. Since M satisfies SIP, there exist decompositions $A = (A \cap D) \oplus A'$ and $D = (A \cap D) \oplus D'$. Then $B = f(A \cap D) \oplus f(A')$. Hence $M = B \oplus D =$ $f(A \cap D) \oplus (A \cap D) \oplus f(A') \oplus D'$. Since M is DSF with SSP, $A \cap D = 0$ and $A \oplus D$ is a direct summand of M. Put $M = (A \oplus D) \oplus K$. By $M = B \oplus D$, there exists a decomposition $B = B' \oplus B''$ such that $K \cong B'$. Hence $M = A \oplus D \oplus K = f^{-1}(B') \oplus f^{-1}(B'') \oplus D \oplus K$ and $f^{-1}(B') \cong B' \cong K$. Since M is DSF, B' = 0 and hence K = 0. Thus we see $M = A \oplus D$ and so $C \cong D$. This means that M satisfies the internal cancellation property.

Now by [14, Theorem 2.4], any endoregular module satisfies the SSP and SIP properties. Hence any DSF endoregular module satisfies the internal cancellation property.

Theorem 2. Let M be a quasi-projective module. Consider the following conditions:

- 1) $S = \operatorname{End}_R(M)$ is a right DSF ring.
- 2) M is a DSF module.

Then $(1) \Rightarrow (2)$. In addition, if M is finitely generated, then $(2) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2): Let A and B submodules of M such that M = A + Bwith $M/A \cong M/B$. Since M is quasi-projective, $S = \operatorname{Hom}_R(M, A) + \operatorname{Hom}_R(M, B)$. Let $f : M/A \to M/B$ be an isomorphism, and let $\pi_A : M \to M/A$ and $\pi_B : M \to M/B$ be the natural epimorphisms.

$$\begin{array}{ccc} M & \stackrel{\pi_A}{\longrightarrow} & M/A \\ \downarrow & \downarrow g & f^{-1} \\ \downarrow & \downarrow & M \\ & & M \\ & & & \pi_B \end{array} M/B$$

Since M is quasi-projective, there exists $g \in S$ such that $\pi_B g = f\pi_A$. It follows that $g(A) \subseteq B$. We claim that $\theta : S/\operatorname{Hom}_R(M, A) \to S/\operatorname{Hom}_R(M, B)$ given by $\theta(1 + \operatorname{Hom}_R(M, A)) = g + \operatorname{Hom}_R(M, B)$ is an isomorphism of right S-modules. Let $h \in \operatorname{Hom}_R(M, A)$. Then $gh(M) \subseteq g(A) \subseteq B$. Thus $gh \in \operatorname{Hom}_R(M, B)$ and so θ is well defined. It is clear that θ is an S-homomorphism of right S-modules. Now, if $h + \operatorname{Hom}_R(M, A)$ is such that $\theta(h + \operatorname{Hom}_R(M, A)) = 0$, that is, $gh \in \operatorname{Hom}_R(M, B)$, then $0 = \pi_B gh = f\pi_A h$. Since f is an isomorphism, $\pi_A h = 0$. This implies that $h(M) \subseteq A$ and hence $h \in \operatorname{Hom}_R(M, A)$. Thus, θ is a monomorphism. If we take now $f^{-1}: M/B \to M/A$, there exists $j \in S$ such that $\pi_A j = f^{-1}\pi_B$ because M is quasi-projective. Note that $\pi_B = ff^{-1}\pi_B = f\pi_A j = \pi_B gj$. Let $l + \operatorname{Hom}_R(M, B) \in S/\operatorname{Hom}_R(M, B)$. Then,

$$\pi_B(gjl - l) = \pi_B gjl - \pi_B l = \pi_B l - \pi_B l = 0.$$

It follows that $gjl - l \in \operatorname{Hom}_R(M, B)$. Therefore, $\theta(jl + \operatorname{Hom}_R(M, A)) = gjl + \operatorname{Hom}_R(M, B) = l + \operatorname{Hom}_R(M, B)$. Hence θ is an epimorphism and so an isomorphism. Since S is right DSF, $\operatorname{Hom}_R(M, A) = S = \operatorname{Hom}_R(M, B)$. Hence $M = SM = \operatorname{Hom}_R(M, A)M \subseteq A$. Analogously, B = M. Thus, M is DSF.

Now, assume that M is a finitely generated quasi-projective module. (2) \Rightarrow (1): Let I and J be right ideals of S such that S = I + J and $S/I \cong S/J$. It follows that M = IM + JM. Let $\theta : S/I \to S/J$ be an isomorphism of right S-modules. Write $h + J = \theta(1 + I)$. Let f : $M/IM \to M/JM$ be given by f(m + IM) = h(m) + JM. Suppose $m - n \in IM$. Therefore $m - n = \sum_{i=1}^{\ell} g_i(k_i)$ with $g_i \in I$ and $k_i \in M$. Then, $0 = \theta(g_i + I) = \theta(1 + I)g_i = (h + J)g_i = hg_i + J$, for all $1 \leq i \leq \ell$. Thus, $hg_i \in J$ for all $1 \leq i \leq \ell$. Hence,

$$h(m-n) = h(\sum g_i(k_i)) = \sum hg_i(k_i) \in JM.$$

It is clear that f is an R-homomorphism. Analogously, if $\theta^{-1}(1+J) = h'+I$ then we have an R-homomorphism $g: M/JM \to M/IM$ given by g(m + JM) = h'(m) + IM. Note that $1+I = \theta^{-1}\theta(1+I) = \theta^{-1}(h+J) = h'h+I$, hence $1 - h'h \in I$. Analogously, $1 - hh' \in J$. Now, let $m + IM \in M/IM$. Then

$$gf(m + IM) = g(h(m) + JM) = h'h(m) + IM = m + IM,$$

and

$$fg(m + JM) = f(h'(m) + IM) = hh'(m) + JM = m + JM.$$

It follows that $M/IM \cong M/JM$. Since M is DSF, IM = M = JM and so $S = \operatorname{Hom}_R(M, IM) = \operatorname{Hom}_R(M, JM)$. We have that $I = \operatorname{Hom}_R(M, IM)$ and $J = \operatorname{Hom}_R(M, JM)$ because M is finitely generated and quasi-projective [17, 18.4]. Thus, I = S = J, that is, S is right DSF. \Box

Example 8. Let K be a field and A a hereditary K-algebra. Let P be an indecomposable projective A-module. By [15, Example 2.2(v)] we know that, $\operatorname{End}_A(P) \cong K$. Therefore $\operatorname{End}_A(P)$ is a right (and left) DSF ring. Then from the above Theorem, P is a DSF A-module.

Example 9. (see [5, Example 2.3]) Let K be a field and let A be the hereditary K-algebra given by the quiver $\begin{array}{c} \bullet \\ 1 \end{array} \xrightarrow{} \bullet \\ \begin{array}{c} \bullet \\ 3 \end{array} \xrightarrow{} \bullet \\ \begin{array}{c} \bullet \\ 2 \end{array}$. Let M be the indecomposable injective left A-module $I(3) = \begin{array}{c} 1 & 2 \\ 3 \end{array}$. Here the indecomposable projective non-isomorphic left A-modules are $P(1) = \begin{array}{c} 1 \\ 3 \end{array}$,

277

 $P(2) = \frac{2}{3}$ and P(3) = 3. Then the lattice of submodules of M is

Note that the projective left A-module $P = P(1) \oplus P(2)$ is the projective cover of M. Since M is finitely generated, P is finitely generated. On the other hand, $\operatorname{End}_A(P) \cong K \oplus K$. Therefore $\operatorname{End}_A(P)$ is not a left (and right) DSF ring. Hence P is not DSF left A-module by Theorem 2. But from Example 8, each P(1) and P(2) is DSF. Clearly, M = P(1) + P(2) and $M/P(1) \ncong M/P(2)$, where P(1) and P(2) are the only proper submodules of M with sum M. Therefore M is clearly a DSF left A-module. Also $\operatorname{End}_A(M)$ is a left (right) DSF ring since $\operatorname{End}_A(M) \cong K$.

As we see in the following example, in Theorem 2 (1) \Rightarrow (2), "quasiprojective" hypothesis is not superfluous.

Example 10. Consider the module E(S) in Example 3. E(S) is not quasi-projective and it is not DSF. On the other hand, since E(S) is indecomposable injective, $\operatorname{End}_R(E(S))$ is local, which is a right and left DSF ring.

References

- F. W. Anderson, and K. R. Fuller, *Rings and categories of modules*, Springer-Verlag, New York, 1974.
- [2] G. M. Brodskii, and R. Wisbauer, General distributivity and thickness of modules, Arab. J. Sci. Eng., N. 25(2), PART C, 2000, pp. 95-128.
- [3] J. Castro Pérez, and J. Ríos Montes, Prime submodules and local gabriel correspondence in σ[M], Comm. Algebra, N. 40, 2012, pp. 213-232.
- [4] J. Castro Pérez, M. Medina Bárcenas, J. Ríos Montes, and A. Zaldívar, On semiprime Goldie modules, Comm. Algebra, N. 44, 2016, pp. 4749-4768.
- [5] G. D'este and D. Keskin Tütüncü, Pseudo projective modules which are not quasi-projective and quivers, Taiwanese J. Math., N. 22, 2018, pp. 1083-1090.

- [6] N. Ding, Y. Ibrahim, M. Yousif and Y. Zhou, D4-modules, J. Algebra Appl., 16(09), 2017, 1750166 (25 pages).
- [7] A. Facchini, Krull-Schmidt fails for serial modules, Trans. Amer. Math. Soc. N. 348, 1996, pp. 4561-4575.
- [8] G. Güngöroğlu, *Coatomic modules*, Far East J. Math. Sciences, Special Volume 2, 1998, pp. 153-162.
- [9] Y. Ibrahim and M. Yousif, Rings whose injective hulls are dual square free, Comm. Algebra 48(3), 2020, pp. 1011-1021.
- [10] Y. Ibrahim, and M. Yousif, *Dual-square-free modules*, Comm. Algebra, N. 47, 2019, pp. 2954-2966.
- M. C. Izurdiaga, Supplement submodules and a generalization of projective modules, J. Algebra, N. 277, 2004, pp. 689-702.
- [12] D. Keskin Tütüncü, I. Kikumasa, Y. Kuratomi, and Y. Shibata, On dual of square free modules, Comm. Algebra, N. 46, 2018, pp. 3365-3376.
- [13] Y. Kuratomi, Direct sums of H-supplemented modules, J. Algebra Appl., N. 13, 2014, 1350075-1–1350075-12.
- [14] G. Lee, S. T. Rizvi and C. Roman, Module whose endomorphism rings are von Neumann regular, Comm. Algebra, N. 41, 2013, pp. 4066-4088.
- [15] M. Medina-Bárcenas and H. Sim, Abelian endoregular modules, J. Algebra Appl., N. 19(11), 2020.
- [16] K.M. Rangaswamy, and N. Vanaja, Quasi-projectives in abelian and module categories, Pacific J. Math., N. 43(1), 1972, pp. 221-238.
- [17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

CONTACT INFORMATION

Mauricio	Facultad de Ciencias Físico-Matemáticas,
Medina-Bárcenas	Benemérita Universidad Autónoma de Puebla, Av. San Claudioy 18 Sur, Col.San Manuel, Ciudad Universitaria, 72570, Puebla, México <i>E-Mail(s)</i> : mmedina@fcfm.buap.mx
Derya Keskin Tütüncü	Department of Mathematics, Hacettepe University, 06800, Beytepe, Ankara, Turkey E-Mail(s): keskin@hacettepe.edu.tr
Yosuke Kuratomi	Department of Mathematics, Faculty of Science, Yamaguchi University, Yamaguchi, Japan <i>E-Mail(s)</i> : kuratomi@yamaguchi-u.ac.jp

Received by the editors: 11.12.2019 and in final form 04.02.2021.