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Abstract. In this survey paper the authors specify all
the known findings related to the norms of the group and their
generalizations. Special attention is paid to the analysis of their
own study of different generalized norms, particularly the norm of
non-cyclic subgroups, the norm of Abelian non-cyclic subgroups, the
norm of infinite subgroups, the norm of infinite Abelian subgroups
and the norm of other systems of Abelian subgroups.

Introduction

In group theory findings related to the study of characteristic sub-

groups (in particular, the center, the derived subgroup, Frattini subgroup,

etc.) and the impact of properties of these subgroups on the structure

of the group are in the focus. Nowadays the list of such characteristic

subgroups can be broaden by means of different Σ-norms of a group.

Let Σ be the system of all subgroups of the group which have some

theoretical group property. For example, Σ can consist of all subgroups

of the group, of all cyclic, all non-cyclic, all Abelian, all non-Abelian,

all subnormal, all maximal, all infinite subgroups of the group. The

intersection NΣ(G) of the normalizers of all subgroups of the group which
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belong to the system Σ is called Σ-norm of a group G. In the case Σ=∅

we assume that G=NΣ(G).

By the definition of the Σ-norm it follows that it is a characteristic

subgroup of the group and contains the center of the group. Also, NΣ(G)

is the maximal subgroup of the group that normalizes all Σ-subgroups

of the group. Therefore, all subgroups of the Σ-norm, which belong to

the system Σ, are normal in NΣ(G) (although these subgroups may not

exist).

Considering the Σ-norm, there are several problems related to the

study of the group properties with the given system Σ of subgroups and

some restrictions, which the norm satisfies. Many algebraists solved the

similar problems but the choice of a system Σ and properties of the

Σ-norm varied.

Knowing the structure of Σ-norms and the nature of its attachment

to the group, the properties of the group can be characterized in many

cases. For example, if the Σ-norm coincides with the group and Σ 6= ∅,

then all subgroups of the system Σ are normal in the group. First non-

Abelian groups with this property were considered in the XIX century by

R. Dedekind [1], who gave a complete description of finite non-Abelian

groups, all subgroups of which are normal, and called them Hamiltonian

groups. Infinite Hamiltonian groups were described in 1933 by R. Baer

[2]. Sets of Abelian and Hamiltonian groups combined are called the set

of Dedekind groups.

However, the study of groups with other systems Σ of normal subgroups

were continued only in the second part of the XX century, that slowed

down the study of Σ-norms. The findings of S. M. Chernikov and his

disciples are from the very field of the research. Thus nowadays the

structure of groups that coinside with the norm NΣ(G) is known for many

systems of subgroup. So the question on the study of the properties of

groups, in which the Σ-norm is a proper subgroup, arises naturally.

1. The norm of group and subgroups close to it

For the first time the problem of the study of the properties of groups,

which differ from the Σ-norm, was formulated by R. Baer in 30s of the

previous century. In [3] he introduced a subgroup N(G), which is the

intersection of normalizers of all subgroups of a group, and called it the

norm of the group G. It is clear that the norm N(G) is the Σ-norm of the

group for the system Σ, which consists of all subgroups of the group. The
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norm N(G) is contained in all other Σ-norms and they can be considered

as its generalizations. It is also clear that Dedekind groups coincide with

their norms, so the index of the norm in a group can serve as a certain

"degree of Dedekindness” of a group.

The norm of a group was studied by R. Baer [3–10] and several other

authors [11–28]. R. Baer noticed that the restrictions that are imposed

on the norm of the group influence the structure of the group in a certain

way. Thus, there is a proposition.

Proposition 1.1 ([3]). If a norm N(G) of a group G is Hamiltonian,

then the following propositions take place:

1) G is a periodic group;

2) G contains no elements which orders are divisible by 8;

3) all elements of a group G, which have orders multiple of 4, can be

represented in the form of za, where a ∈ N(G), |a| = 4, and z ∈ G,

more over z is permutable with each element of a norm N(G);

4) any element, which order is not divisible by 4, is permutable with

every element of the subgroup N(G).

Studying the relations between the norm and the center of the group

R. Baer showed that the norm coincides with the center of the group, if

it contains elements of infinite order [3]. Another important result, which

specifies the influence of the center of the group on its norm, was offered

in [10].

Proposition 1.2 ([10]). The norm of a group G is identity if and only

if G is a group with an identity center.

Developing the study of the properties of the norm of a group L. Wos

[11] found out that the norm N(G) is contained in the third hypercentre

of the group, and the group of automorphisms, which are induced on the

subgroup N(G) by G, is nilpotent of class at most 2. In addition, it was

proved that the norm of the group is contained in the second hypercentre

if and only if the group of automorphisms induced on N(G) by the group

G is Abelian. This result was substantially refined by E. Shenkman in

[12].

Proposition 1.3 ([12]). The norm N(G) of a group G is contained in

the second hypercentre of G. The derived subgroup G′ is a subgroup of

centralizer of a norm N(G) in G.
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So the group of automorphisms induced on N(G) by G is Abelian. Let’s

note that N(G) = E in groups with the identity center by Proposition 1.3.

In [6,8] the properties of periodic groups with an Abelian norm quotient

group were considered. In particular, in [6] it was proved that a periodic

group G, which quotient group G/N(G) is Abelian and N(G) 6= Z(G),

is a direct product of its primary components, and its norm N(G) is a

direct product of norms of these components.

In this regard, let’s note that unlike some other characteristic sub-

groups (the center of the group, the derived subgroup, Fitting subgroup

and others) the norm of the direct product of arbitrary subgroups is not

equal to the direct product of the norms of the correlative components in

general case.

Example 1.1. Let G = Q × B, where B is a non-periodic Abelian group

of rank 1, Q is a quaternion group of order 8. In this group

N(G) = N(Q × B) = Q2 × B 6= N(Q) × N(B) = G.

The problem of finding the norms of direct products of groups was

studied by J. Evan in [13].

Let’s also regard the following finding of R. Baer, which characterizes

the properties of p-groups with an Abelian norm quotient group.

Proposition 1.4 ([8]). If G is a p-group (p 6= 2, p 6= 3) that has an

Abelian quotient group for the norm N(G), more over N(G) 6= Z(G) and

pr is the exponent of the group CG(N(G)), then:

1) G is a group of finite exponent;

2) N(G)/Z(G) is a cyclic group, the order of which is equal to the

exponent of the group of automorphisms induced on N(G) by G;

3) centralizer CG(N(G)) consists of those and only those elements

x ∈ G for which xpr

= 1.

The restrictions p 6= 2, p 6= 3 in Proposition 1.4 are significant, as it is

illustrated by the examples of the respective groups (see [6]).

Nowadays the interest to the norm N(G) of a group is not reduced,

as research works [13–31], devoted to the study of its properties, are still

numerous. Thus, in [17,18] R. Bryce and J. Cossey considered series of

norms

1 = N0(G) ⊆ N1(G) ⊆ . . . ⊆ Ni(G) ⊆ . . . ,

where Ni(G)/Ni−1(G) = N(G/Ni−1(G)) for i > 1.
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It was proved that in the class of 2-groups from the fact that quotient

group Ni+1(G)/Ni(G) is Hamiltonian it follows that Ni+1(G) = G. More-

over a finite 2-group, in which the quotient group G/N(G) is Hamiltonian,

but any quotient group Ni(G)/Ni−1(G) is not Hamiltonian, has order 27

and is uniquely determined up to isomorphism [18].

Starting from R. Baer, L. Wos and E. Schenkman studies of the norm

N(G) focus on its relation to the centre of the group. In particular, in

[19] J. Beidleman, H. Heineken and M. Newell have shown that in an

arbitrary p-group G either quotient group G/Z(G) or group [G, N(G)] is

cyclic. In this article the problem of the influence of properties of a norm

of a group and its center on the capability of a group G is considered.

A group G is called capable, if it is a group of inner automorphisms

of some group H that is G ∼= H/Z(H). R. Baer [29] studied such groups

for the first time. He described capable finitely generated Abelian groups

G = Zn1
⊕ Zn2

⊕ . . . ⊕ Znk
,

where ni+1
...ni, ni ∈ N

⋃

{0} and Zni
= Z is an infinite cyclic group for

ni = 0. It was found out that the group G is capable if and only if k > 2

and nk−1 = nk. The Baer’s characterization remains the only complete

one for a certain class of capable groups today.

Developing studies of the norm of a group in capable groups, X. Guo

and X. Zhang [20] in 2012 established necessary and sufficient conditions

for the coinsiding of the norm of the group with its centre, and also

dwelled upon the properties of the norm N(G) in the class of nilpotent

groups with a cyclic derived subgroup.

In 2005 N. Gavioli, L. Legarreta, S. Sica, M. Tota [22] considered

the relations between the centre Z(G), the norm N(G) and the second

hypercentre Z2(G) depending on the number v(G) of conjugacy classes

of non-normal subgroups and the number w(G) of conjugacy classes of

subgroups, which are normalizers of some subgroups, in finite p-groups

(p 6= 2) of nilpotency class c.

In 2008 F. Russo [23] studied the relations between the centre Z(G),

the norm N(G), the quazicenter Q(G) and the hyperquazicenter Q∗(G)

of quazicentral-by-finite groups. Let’s regard that the quazicenter Q(G)

of a group G is the subgroup, generated by all elements x of a group

G, such that the subgroup 〈x〉 is permutable in a group G (with other

subgroups). Accordingly, the hyperquazicenter Q∗(G) of a group G is the
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largest term of the chain of normal subgroups

E = Q0(G) 6 Q1(G) = Q(G) 6 . . . 6 Qα 6 Qα+1 6 . . . ,

where α is an ordinal and Qα+1(G)/Qα(G) = Q(G/Qα(G)).

Proposition 1.5 ([23], Proposition 3.2). Let G be a quasicentral-by-finite

group, Q(G) be the quasicenter of G, N(G) be the norm of G, then

1) if Q(G) contains only elements of prime or infinite order and

Q(G) = N ′, where N is the subgroup generated by the quasicentral

elements of infinite order, then G is finite;

2) if there is an element x ∈ N(G) such that the index |Q(G) : 〈x〉G|

is finite, then G is central-by-finite;

3) G is central-by-finite if and only if the index |Q(G) : N(G)| is finite.

The relations between the norm N(G) and the center Z(G) in the

class of finite groups have also been studied by I. V. Lemeshev in [24].

His findings add much to Baer’s results related to finite groups.

The study of finite groups, in which Baer norm has a certain index, is

very effective. In particular, in [25] J. Wang and X. Guo studied finite

p-groups, in which the norm has a prime index, in [26] they studied finite

groups, in which the norm is a subgroup of index p or pq, where p and q

are different prime numbers. J. Smith [27] studied groups in which each

subgroup of the norm is normal in the group.

Subgroups of an arbitrary group can be considered as elements of some

subgroups lattice L(G) relative to the operations of union and intersection,

ordered by inclusion. In this sense, the norm N(G) of a group can be

defined as following [28]:

N(G) =
⋂

X∈L(G)

NG(X).

In this context, in [28] the relation between the non-cyclicness of the

norm N(G) on the one hand and the subgroup lattice L(G) of the group

G and generalized degree of commutativity of the group G on the other

hand is under the analysis.

A question naturally arises why this characteristic subgroup, in con-

trast to the center and the derived subgroup, did not get adequate attention

in the early development of group theory in view of the simple definition

of the norm and its usefullness in the study of groups. G. Miller [31]

explains that at that time other problems were posed in algebra and the
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main focus of group theory has been directed to the study of solutions of

algebraic equations (in this theory simple groups play a fundamental role,

while the norm of a simple group of composite order is identity). The

norm was also not of high importance in the study of permutation groups

of low degrees, which were used in the theory of algebraic equations at

that time. The smallest degree of permutation group, which has the norm

of prime index, is equal to 8, moreover only one of 200 groups of this

order has the norm of prime index. And perhaps R.Baer drew attention

to this characteristic subgroup only in 1934 for these reasons.

Considering the intersection of normalizers of subgroups of the group,

we can get subgroups associated with Baer norm. These are the intersection

of normalizers of all subgroups contained in the given subgroup [32–

34] or conversely the intersection of the normalizers which contain the

given subgroup [35]. In particular, the concept of invariator IG(A) of the

subgroup A in the group G, which was introduced by I. Ya. Subbotin, is

the closest to the concept of the norm N(G) of the group G.

Invariator IG(A) of subgroup A in the group G [32] (quazicenralizer

[34]) is the intersection of normalizers of all subgroups of the group A in

G. This subgroup can also be called the norm of the subgroup A in the

group G [36]. In the case when the subgroup A coincides with the whole

group G the invariator IG(G) is exactly the norm N(G) of the group G.

In 2001 M. De Falco, F. de Giovanni, C. Musella [35] introduced the

concept of H-norm of the group G for some subgroup H of the group

G. H-norm of a group G is called a subgroup ker(G : H) that consists

of all elements which normalize every subgroup of X in G containing H.

Obviously, if H 6 K 6 G, then H 6 ker(G : H) 6 NG(H), ker(G : H) 6

ker(G : K). Let’s note that the E-norm, where E is the identity subgroup

of a group G, coincides with the norm N(G) of the group G.

It is clear that the norm N(G) can be defined as the subgroup of a

group G consisting of all elements of this group, which normalize every

subgroup in G. Replacing the condition of normality to pronormality we

get some analogue of the norm of a group for pronormality. It is called

pronorm P (G).

Let’s regard that an element x of the group G pronormalizes subgroup

H of a group G, if subgroups H and Hx are conjugate in 〈H, Hx〉. Ac-

cordingly, the pronorm P (G) of a group G is the set of all elements of a

group G which pronormalize every subgroup of a group. For the first time

the concept of pronorm P (G) group was introduced by F. de Giovanni,

S. Vincenzi [37] in 2000.
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In contrast to the norm of a group the pronorm is not always a

subgroup of a group. In [38] some classes of groups, in which the set of

all elements of a group G that pronormalize every subgroup of a group,

forms a subgroup, were studied.

Proposition 1.6 ([37]). If G is polycyclic group, then its pronorm P (G)

is a subgroup.

In this work a similar statement for the class of locally soluble groups

was proved.

Subgroups generated by normalizers of given subgroups are considered

in some researches about groups with restrictions on normalizers of given

systems of subgroups. In this context, let’s consider the research of J.

Smith [39], who studied the subgroup R = R(G) generated by all proper

normalizers, and called it conorm of a group. If the group G has not

proper normalizers, then the group G is Dedekind and R(G) = E.

In 1990 H. Bell, F. Guzman, L.-Ch. Kappe [40] studied so-called Baer-

kernel, which is a ring analogue of the norm of the group. Baer-kernel of

the ring K is defined as the set

B(K) = {a ∈ K|∀y ∈ K, ∃r, s ∈ N(ay = yra ∧ ya = ays)}.

In 2010 year M. R. Dixon, L. A. Kurdachenko, D. Otal used the so-

called norm of subspace in linear groups in the research of linear groups

with finite dimensional orbits [41].

Let A be a vector space over a field F , GL(F, A) be a group of all

automorphisms of a space A, G be a subgroup of a group GL(F, A), B

be a subspace of a space A. The norm of the subspace B in the group G

is the intersection of normalizers of all F -subspases in B:

NormG(B) =
⋂

b∈B

NG(bF ).

It is known when the group G coincides with the norm NormG(B),

then the group G is isomorphic to a subgroup of the multiplicative

group U(F ). If the group G has finite dimensional orbits over A, then A

contains a FG-submodule D of finite dimension dimF (D). If K = CG(D),

then K 6 NormG(A/D). When G-orbits of every subspace from A are

finite, then A contains a FG-submodule B such that dimF (A/B) and

|G : NormG(B)| are also finite.
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Therefore, the research devoted to the study of the norms of the group

and related subgroups is a very important and interesting direction in the

group theory. At the same time, there are still many questions regarding

the structural characteristics of the group depending on the structure

of its norms, conditions of coinsiding of the norm of the group and its

center, etc. left.

2. Generalized norms of some systems of maximal and

subnormal subgroups

As noted above, the norm N(G) is the Σ-norm of the group, in which

the system Σ is a system of all subgroups of this group. Narrowing the

system of all subgroups, for example, to the system of all Abelian or all

maximal subgroups of a group, we will get new Σ-norms, which can be

considered as generalizations of the norm N(G).

The first generalizations of this kind were made in the 50-th of the XX

century. In particular, in 1953 R. Baer [42] considered the intersection

H(G) of normalizers of all Sylow subgroups of a group G and called this

intersection as hypercenter of a group G. It is clear that hypercenter H(G)

is the Σ-norm, where the system Σ consists of all Sylow subgroups of

the group. R. Baer proved that H(G) coincides with the intersection of

all maximal nilpotent subgroups, and the quotient group G/H(G) is a

group with an identity center. Moreover, it was found out that the normal

subgroup belongs to a hypercenter if and only if its elements of order pn

generate cyclic subgroups of index pn.

In 1968 B. Huppert [43] generalized the concept of a hypercenter

introducing the concept of ℑ-hypercenter. Let ℑ be a class of finite groups

which can be represented as direct products of their Hall π-subgroups

with respect to some partition of non-empty set π of all primes. This class

is a local formation. The chief factor H/K of a group G is called ℑ-central

[44], if H/Kλ(G/CG(H/K)) ∈ ℑ. The product of all normal subgroups of

G which G-chief factors are ℑ-central in G is called ℑ-hypercenter Zℑ(G)

of a group G [45]. In 2013 V. I. Murashka [46] studied the properties of

ℑ-hypercenter and got some Baer’s results on the norm of the group as

corollaries in some cases.

One of the mentioned generalizations of the norm of the group is a so-

called A-norm NA(G) of the group G. It is the intersection of normalizers of

all maximal Abelian subgroups. This norm was introduced by W. Kappe

[47] in 1961. As it turned out (see [47]) in finite group A-norm is a
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subgroup, each element of which is permutable with its conjugate (such

groups were studied, in particular, by F. Levi [48]). In addition, it was

found that the A-norm is close to a subgroup of right Engel elements of

length 2, that allowed to use it in the study of Engel groups.

Let’s regard (see e.g. [49]) that the element x ∈ G is called the right

Engel element of length 2, if for any element g ∈ G there is a relation

[[x, g], g] = 1.

Let R(G) denote the subgroup of a group G generated by all right

Engel elements of length 2 of a group G. The following propositions take

place.

Proposition 2.1 ([47]). A-norm NA(G) of a group G contains the second

hypercenter of a group G and is contained in the subgroup R(G). Moreover

the quotient group R(G)/NA(G) is elementary Abelian group of exponent

not exeeding 2.

Proposition 2.2 ([47]). For an element x ∈ G which order is not divisible

by 2, the following statements are equivalent:

1) x ∈ NA(G);

2) x is right Engel element of length 2 in G;

3) if 〈x〉 ⊳ G and U is the group of automorphisms induced on 〈x〉 by

G, then x belongs to A-norm of the group 〈x〉U ;

4) for any elements g, h ∈ G the equality [[x, g], h] = [[x, h], g]−1 takes

place.

The following proposition on a A-norm is a generalization of Wos’ [11]

and Schenkman’s results [12] related to the norm N(G) of the group.

Proposition 2.3 ([47]). Group G induces on the subgroup NA(G) a

nilpotent group of automorphisms. Its class of nilpotency does not exceed 2.

Later on W. Kappe [50–52] generalized the concept of the A-norm of

the group and introduced a so-called E-norm, which was defined as the

intersection of normalizers of all maximal subgroups of the group with

the given theoretical group property E. Clearly, E-norm NE(G) contains

the norm N(G). The intersection of an arbitrary subgroup of a group G

and the E-norm of the group is contained in the E-norm of this subgroup.

Besides NE(NE(G)) = NE(G).

A subgroup ∆(G) is related to the concept of the E-norm. It was

studied by W. Gashutz [53] and was defined as the intersection of nor-

malizers of all maximal subgroups of the group. It is clear that Gashutz
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subgroup ∆(G) can be considered as Σ-norm of a group for the system Σ

that consists of non-normal in G maximal subgroups. In [53] it was found

out that ∆(G) is nilpotent and ∆(G)/Φ(G) = Z(G/Φ(G)), where Φ(G)

is Frattini subgroup.

In 1958 H. Wielandt [54] studied the properties of normalizers of

subnormal subgroups and introduced the subgroup W (G). It is the inter-

section of normalizers of all subnormal subgroups of a group. It is clear

that Wielandt subgroup W (G) is the norm of subnormal subgroups of a

group.

It is obvious that a subnormal norm coincides with the norm N(G) in

a nilpotent group. In addition, the condition G = W (G) is equivalent to

the fact that all subnormal subgroups of a group are normal. By Theorem

13.3.7 [55] Wielandt subgroup W (G) contains every simple non-Abelian

subnormal subgroup of G and every minimal normal subgroup of G which

satisfies the minimal condition for subnormal subgroups. Therefore, the

subgroup W (G) is not identity in a finite group G [54].

D. Robinson [56] and J. Roseblade [57] independently from each other

got similar results for some classes of infinite groups.

Proposition 2.4 ([56,57]). If a group G satises the minimal condition

for subnormal subgroups, then the quotient group G/W (G) is finite.

These results were summarized by J. Cossey [58] for polycyclic

groups. It was found out that these groups have a finite quotient group

G/CG(W (G)).

Wieland subgroup and its generalizations were studied intensively

by O. Kegel [59], J. Cossey, R. Bryce [60–62], R. Brandl, F. Giovanni,

S. Franciosi [63]. A. Camina [64], C. Casolo [65, 66], E. Ormerod [67],

C. Wetherell [68, 69], X. Zhang and X. Guo [70,71].

In [60] it was proved that the subnormal norm W (G) is contained

in the FC-centre in a finitely generated soluble-by-finite group of a

finite rank. Furthermore, if the norm W (G) coincides with the whole

group, then all subnormal subgroups are normal in this group, that is,

the normality is transitive relation. Groups with such a property were

studied by D. Robinson in [72] and were called T -groups. If G is a finite

soluble T -group and G/L is the unique maximal nilpotent quotient group

of group G, then the quotient group G/L is Abelian or Hamiltonian and

L is Abelian.

In 1989 J. Cossey, R. Bryce [60] introduced local Wielandt subgroup

W p(G) that is the intersection of normalizers of all p′-perfect subnormal
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subgroup of a group G. Let’s regard that the p′-perfect group is a group

that has no non-identity quotient groups of order coprime with p.

In 1992 C. Casolo [66] studied a special subgroup of a group W (G),

which was called strong Wielandt subgroup W (G), and defined as the

intersection of the centralizers of nilpotent subnormal quotient groups of

the group G:

W (G) =
{

g ∈ G|[S, g] 6 SR for all S << G
}

,

where SR is nilpotent residual of the subgroup S or the smallest normal

subgroup N of S such that the quotient group S/N is nilpotent. C. Casolo

proved that strong Wielandt subgroup W (G) is non-identity in a finite

group. Note that this subgroup was also studied by C. Wetherell [68, 69].

In 1990 R. Bryce [62] introduced one more generalization of Wielandt

subgroup, so-called m-Wielandt subgroup Um(G) of a group G that is the

intersection of normalizers of all subnormal subgroups of a group G with

a defect at most m for integer m > 1. He studied a polynilpotent lattice

of finite soluble groups in terms of Wielandt m-length. The concept of

m-series of Wielandt group is widely used. It is defined as following: for

each natural m > 1, Um,0(G) = E; if i > 1, then Um,i(G) is determined

from the condition

Um,i(G)/Um,i−1(G) = Um(G/Um,i−1(G)).

If Um,n(G) = G for some integer n, then such a minimal number n

is called Wielandt m-length. R. Bryce proved that there are limits of

commutator length and Fitting length of finite soluble groups in terms

of Wielandt m-length (m > 2), and identified the best such a restriction.

Properties of Wielandt m-subgroup Um(G) have also been studied by

C. Franchi [76,77].

In 1995 J. Biedleman, M. Dixon, D. Robinson [73,74] considered one

more Σ-norm of a group – generalized Wielandt subgroup IW (G) which

is the intersection of normalizers of all infinite subnormal subgroups of a

group. It is clear that IW (G) is a characteristic subgroup and contains

a subnormal norm W (G). If G = IW (G), then all infinite subnormal

subgroups are normal in the group. Such groups have been studied by

F. Giovanni, S. Franciosi [75] and were called IT -groups. In [73] the

structure of the group G with the property IW (G) 6= W (G) and the

structure of the quotient group IW (G)/W (G) were studied.
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In [78] F. Mari, F. Giovanni introduced a new Σ-norm, in which

system Σ consists of all nonsubnormal subgroups of a group. This norm

of nonsubnormal subgroups was denoted by W ∗(G). It is clear that if

W ∗(G) = G, then all subgroups are subnormal in a group. Moreover, if

a group G is a group with a finite number of normalizers of subnormal

subgroups, then the quotient group G/W ∗(G) is finite [78].

Let’s also mention the research [79], in which so-called generalized

N -Wielandt subgroup WN (G) was introduced. It consists of all elements

of the group G, which normalize all subnormal subgroups of N . It is a

normal subgroup and, in general, may differ from N .

It is clear that W (G) ⊆ WN (G), in particular, W (G) = WN (G), if

N = G, or N = W (G), or N is the unique maximal normal subgroup. If

G is a T -group and N is a normal subgroup of G, then WN (G) = G. The

following example proves that the converse is not true.

Example 2.1 ([79]). Let G = D8 = 〈x, y〉, x8 = y2 = (xy)2 = 1,

N1 = 〈x2〉, N2 = 〈x〉, then WN1
(G) = WN2

(G) = G, but G is not a

T -group.

3. Generalized norms of characteristic subgroups

of a group

Nowadays algebraists direct their attention to a generalization of the

norm when the system Σ is selected as a system of some characteristic

subgroups. In this context Sh. Lia and Zh. Shen [80,81] considered the

Σ-norm D(G) of a finite group, where the system Σ is chosen as a system

of derived subgroups of all subgroups of the group. The authors proved

that in the case when D(G) contains all the elements of prime order,

the group G is solvable of Fitting length at most 3. In the case when

G = D(G), derived subgroup G′ is nilpotent and G′′ has nilpotency class

at most 2.

Recently a number of researches concern the norms of different systems

of residuals. In particular, Zh. Shen, W. Shi and G. Qian [82] studied the

norm S(G) of nilpotent residuals of all subgroups of prime order. It was

proved that if all elements of prime order of a finite group G are contained

in the norm S(G), then the group G is solvable. L. Gong and X. Guo

[83] studied the norm of nilpotent residuals of all subgroups of a finite

group. N. Su and Ya. Wang [84] considered the norm DF(G) of F-residual

GF of all subgroups of the group G and the norm DF
p (G)HFOp′(G) of all



M. Drushlyak, T. Lukashova, F. Lyman 61

subgroups H of a finite group G, where F is the formation. Recall that

F-residual GF of a group G is the smallest normal subgroup N of G such

that G/N ∈ F.

X. Chen and W. Guo [85] introduced the hF-norm NhF(G) of a group G.

It is the intersection of normalizers of products of F-residuals of all

subgroups of a group G and h-radical of a group G

Nh,F(G) =
⋂

H6G

NG(HFGh),

where h is Fitting class, F is formation. Let’s regard that h-radical Gh of

a group G is maximal normal h-subgroup of a group G.

If h = 1, then the subgroup N1,F(G) is called F-norm NF(G) of a

group G and defined as

NF(G) =
⋂

H6G

NG(HF).

If h = Gπ, where Gπ is the class of finite π-solvable groups, then the

subgroup NGπ ,F(G) is called πF-norm NπF(G) of a group G and defined

as

NπF(G) =
⋂

H6G

NG(HFOπ(G)).

X. Chen and W. Guo studied the properties of hF-norm, in particular,

πF-norm of a finite group G and the relations between π′F-norm and

πF-hypercentre of a group G.

In 2014 A. Ballester-Bolinches, J. Cossey, L. Zhang [86] proposed to

generalize the structure of Σ-norms which had appeared recently. The

authors defined the C-norm kC(G) of a finite group G as the intersection

of the normalizers of all subgroups of the group G which do not belong to

the class C

kC(G) =
⋂

H /∈C

NG(H)

provided that kC(G) = G, if G ∈ C. With this approach Baer norm N(G)

can be considered as the norm kC(G), where C is the class of groups

of order 1. Groups with kC(G) = G are called C-Dedekind. In [86] the

structure of non-nilpotent C-Dedekind groups for the class of nilpotent

groups is described. It is also shown that the groups, which C-norm is

not hypercentral, have a very restricted structure. The authors gave the

classification of nilpotent classes closed under subgroups, quotient groups
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and direct products of groups of coprime orders, and showed that the

known classifications can be deduced from this one.

Proposition 3.1 ([86]). If kC(G) contains a non-central chief factor of

G, then kC(G) contains exactly one non-central chief factor (in any chief

series through kC(G) of a group G) and if p is a prime divisor of the

order of this chief factor, then Hall p′-subgroup of G is C-group and G

has nilpotency class at most 3.

Consider also R. Laue’s research [87]. He dealt with a subgroup close

to the Σ-norm

A(Σ) =
⋂

X∈Σ

NAut(G)(X),

which consists of automorphisms that normalize every Σ-subgroup of a

group G.

4. Generalized norms of different systems of Abelian and

non-cyclic subgroups

The narrowing of a system Σ of all subgroups of the group G to the

system of all Abelian and all cyclic subgroups does not lead to extension

of the concept of the norm N(G). However, when the system Σ is the

system of all non-cyclic subgroups (provided that such subgroups exist

in the group), then such Σ-norm (let’s call it the norm of non-cyclic

subgroups) differs from the norm N(G) in a general case. The opportunity

to study the norm of non-cyclic subgroups was provided by F. M. Lyman’s

research [88–90]. He received a description of some classes of non-Abelian

groups in which all non-cyclic subgroups are normal. These groups were

called H-groups (Hp-groups in the case of p-groups).

The concept of the non-cyclic norm NG of a group as the intersection

of the normalizers of all non-cyclic subgroups of the group was introduced

by F. M. Lyman in 1997 [91], where he studied infinite groups, in which

a non-cyclic norm is locally-graded and has a finite index.

Proposition 4.1 ([91]). In the group G a non-cyclic norm is locally-

graded and has a finite index if and only if the group G is central-by-finite.

In addition, it was proved that for the condition 1 < |G/NG| < ∞

in the class of infinite locally finite groups the non-cyclic norm NG is

Dedekind, and in the class of non-periodic locally soluble-by-finite groups

it is Abelian [91].
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The study of the non-cyclic norm was continued by F. M. Lyman and

T. D. Lukashova in [92–96], where the authors characterized the structure

of wide classes of groups, which non-cyclic norm is non-Dedekind. Since

O. Yu. Olshansky infinite groups [97] exist, periodic groups were considered

by the authors provided their local finiteness. O. Yu. Olshansky infinite

groups are groups, all subgroups of which are cyclic and which are the

norms of their non-cyclic subgroups. Thus, in [98] it was proved that the

class of infinite locally finite p-groups (p 6= 2), in which a non-cyclic norm

NG is non-Abelian, coincides with the class of non-Abelian p-groups, all

non-cyclic subgroups of which are normal. At the same time, there are

infinite locally finite 2-groups which have a proper non-Dedekind norm of

non-cyclic subgroups. The structure of locally finite p-groups (p is prime),

which non-cyclic norm is non-Dedekind, is described in [92–94].

Proposition 4.2 ([92]). Locally finite p-groups (p 6= 2), which have

non-Abelian non-cyclic norm NG, are groups of the following types:

1) G is an Hp-group, NG = G;

2) G = (〈x〉 × 〈b〉)λ〈c〉, |x| = pn, n > 1, |b| = |c| = p, [b, c] = xpn−1

,

[x, c] = xpn−1αbβ, (β, p) = 1; NG = (〈xp〉 × 〈b〉)λ〈c〉;

3) G = 〈x〉〈b〉, |x| = pk, |b| = pm, m > 1, k > m + r, Z(G) = 〈xpr+1

〉 ×

〈bpr+1

〉, 1 6 r 6 m − 1, [x, b] = xpk−r−1sbpm−1t, (s, p) = 1, NG =

〈xpr

〉λ〈b〉.

Proposition 4.3 ([93,94]). Locally finite 2-groups G with a non-Dedekind

non-cyclic norm NG are groups of the following types:

1) G is a non-Hamiltonian H̄2-group, G = NG;

2) G = (A × 〈b〉)λ〈c〉λ〈d〉, A is a quasicyclic 2-group, [A, 〈c〉] = 1,

|b| = |c| = |d| = 2, d−1ad = a−1 for any element a ∈ A, [b, c] =

[d, b] = [d, c] = a1, a1 ∈ A, |a1| = 2; NG = (〈a〉 × 〈b〉)λ〈c〉, where

a ∈ A, |a| = 4;

3) G = (A × H)〈d〉 A is a quasicyclic 2-group, d2 = a1 ∈ A, | a1 |=

2, d−1ad = a−1 for any element a ∈ A, H = 〈h1, h2〉, |h1| =

|h2| = 4, h2
1 = h2

2 = [h1, h2], [d, h1] = a1, [d, h2] = 1; NG =

〈h2〉λ〈h1a〉, |a| = 4, a ∈ A, | a |= 4;

4) G = (〈x〉 × 〈b〉)λ〈c〉λ〈d〉, |x| = 2n,n > 2, |b| = |c| = |d| = 2, [x, c] =

1, d−1xd = x−1, [b, c] = [d, b] = [d, c] = x2n−1

; NG = (〈x2n−2

〉 ×

〈b〉)λ〈c〉;

5) G = (〈x〉λ〈b〉)λ〈c〉, |x| = 2n, n > 3, |b| = |c| = 2, [x, c] = x±2n−2

b,

[x, b] = x2n−1

; NG = (〈x2〉 × 〈b〉)λ〈c〉;
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6) G = 〈x〉λH, |x| = 2n, n > 2, H = 〈h1, h2〉, |h1| = |h1| = 4, h2
1 =

h2
2 = [h1, h2], [〈x〉, H] = 〈x2n−1

〉; NG = 〈x2〉 × H;

7) G = (〈x〉 × H)〈y〉, |x| = 2n, n > 2, H = 〈h1, h2〉, |h1| = |h2| =

4, h2
1 = h2

2 = [h1, h2], y2 = x2n−1

, [y, h2] = 1, [y, h1] = y2, y−1xy =

x−1; NG = 〈h2〉λ〈h1x2n−2

〉;

8) G = 〈x〉〈b〉, |x| = 2k, |b| = 2m, m > 1; if m = 1, then k = 3,

[x, b] = x2 and NG = 〈x2〉λ〈b〉; if m > 1, then k > m + r, 1 6 r 6

m − 1, Z(G) = 〈x2r+1

〉 × 〈b2r+1

〉, [x, b] = x2k−r−1sb2m−1t, 0 < s <

2, 0 6 t < 2, (k > 3 and t = 0 if m = 2); NG = 〈x2r

〉λ〈b〉.

Non-primary locally finite groups with a non-Dedekind non-cyclic

norm were studied in [93,105]. It was found out that infinite locally finite

non-primary groups with such restrictions on the norm NG are locally

nilpotent.

Proposition 4.4 ([93]). Infinite locally finite non-primary groups with a

non-Dedekind non-cyclic norm NG, are locally nilpotent and are groups

of the following types:

1) G is an infinite non-primary non-Hamiltonian H̄–group, G = NG;

2) G = G2 × 〈y〉, G2 is a group of one type 2) or 3) of proposition 4.3,

(|y|, 2) = 1; NG = NG2
× 〈y〉.

Thus, a locally finite group, which non-cyclic norm NG is non-nilpotent,

is finite.

Developing the study of locally finite groups with a non-Dedekind

non-cyclic norm, in [95] it was proved that finite nilpotent groups with

such restrictions are groups of the type

G = Gp × 〈y〉,

where Gp is a Sylow p-subgroup of a group G and a finite group with a

non-trivial norm NGp
, (|y|, p) = 1. In addition, if the non-cyclic norm NG

is non-nilpotent in the class of locally finite groups, then all non-cyclic

subgroups in a group are normal.

Non-periodic locally soluble-by-finite groups with a non-Dedekind

non-cyclic norm are considered in [96].

Proposition 4.5 ([96]). Any non-periodic locally soluble-by-finite group

G that has a non-Dedekind non-cyclic norm NG is H-group and G = NG.

Note that locally finite or non-periodic locally soluble-by-finite groups

with a non-Dedekind norm of non-cyclic subgroups are soluble and their

degree of solvability does not exceed 3 according to the results of [92–96].
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Zh. Shen, W. Shi, J. Zhang [98,99] studied the properties of the norm

NG of non-cyclic subgroups in the class of finite groups and its influence

on the group. The authors proved that the norm of non-cyclic subgroups

of a finite group is soluble. Note that this proposition is a direct corollary

from the description of finite H-groups (see [88–90]). It was also proved

that a finite group is soluble if all its elements of prime order are contained

in norm NG of non-cyclic subgroups. In addition, it was found out that

the derived subgroup is nilpotent if all elements of prime order or of order

4 of a group are contained in NG [98].

Proposition 4.6 ([98]). A finite group has a nilpotent derived subgroup

if and only if a derived subgroup of a quotient group through norm NG is

also nilpotent.

The study of infinite groups with given restrictions on normalizers of

different systems Σ of infinite subgroups have been the subject matter

of many theoretical-group researches for a long time. Therefore, when

considering infinite groups with restrictions on Σ-norm, it is naturally to

choose one of systems of infinite subgroups as a system Σ.

In this context, in the study of Σ-norms of infinite groups F. M. Lyman

and T. D. Lukashova [96,100–102] considered systems of all infinite, all

infinite Abelian and all infinite cyclic subgroups, provided that these

systems are non-empty. These Σ-norms were denoted as follows: NG(∞)

is the norm of infinite subgroups of a group G; NG(A∞) is the norm of

infinite Abelian subgroups of a group G; NG(C∞) is the norm of infinite

cyclic subgroups of a group G.

If the group G coincides with one of these Σ-norms, then all Σ-

subgroups are normal in it. Infinite non-Abelian groups with the property

NG(∞) = G and NG(A∞) = G (if such subgroups exist in them) were

studied by S. M. Chernikov [103, 104] and called INH-groups and IH-

groups respectively.

Restrictions, which these Σ-norms satisfied, were non-Dedekindness of

Σ-norm or finiteness of its index in the group. The following proposition

gives sufficient conditions of Dedekindness of each of these norms.

Proposition 4.7 ([100]). In non-periodic groups the norm NG(∞) of

infinite subgroups, the norm NG(A∞) of Abelian infinite subgroups, the

norm NG(C∞) of infinite cyclic subgroups are Dedekind in each of the

following cases:

1) G is a torsion free group or a mixed group without involution;
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2) the center of a group G contains elements of infinite order;

3) G is central-by-finite;

4) these norms are finite;

5) G contains a subgroup M from the system Σ such that M
⋂

NG(Σ) =

E.

The problem of the relations between these norms in non-periodic

groups is quite interesting. The following relation is derived from the

above definitions

Z(G) ⊆ N(G) ⊆ NG(∞) ⊆ NG(A∞) ⊆ NG(C∞).

So the natural question is: under what conditions do these norms coin-

cide? The following proposition gives the answer (in terms of sufficient

conditions).

Proposition 4.8 ([100]). In a non-periodic group G the equality takes

place

N(G) = NG(∞) = NG(A∞) = NG(C∞)

provided that at least one of the statements takes place:

1) the center of a group G contains elements of infinite order;

2) G is a torsion free group;

3) G is central-by-finite.

Infinite groups with restrictions on the norm NG(∞) of infinite sub-

groups were studied in [100]. It turned out that non-periodic groups,

which norm NG(∞) has a finite index, are mixed and are finite extensions

of their centres.

It was also proved that the norm NG(∞) of infinite subgroups of the

non-periodic group is Abelian and coincides with the center of the group,

if it contains elements of infinite order. This result generalizes Baer’s

theorem [10] on the coincidence of the norm N(G) of the group and its

center in the case of a non-periodic norm N(G). Infinite locally finite

groups, which norm NG(∞) is non-Dedekind, are a finite extension of a

quasicyclic subgroup, which is a divisible part of the norm NG(∞) [101].

The structure of non-periodic groups, which norm NG(A∞) of infi-

nite Abelian subgroups is IH-group, are characterized by the following

proposition.

Proposition 4.9 ([96]). A non-periodic group G has non-Abelian norm

NG(A∞) of infinite Abelian subgroups, if and only if all elements of infinite
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order of the group G generate Abelian normal subgroup D that contains

every infinite Abelian subgroup of a group G and there is an element b

of order 2 or 4, such that b−1db = d−1 for an arbitrary element d ∈ D.

Moreover NG(A∞) = D〈b〉.

A natural generalization of Baer norm for non-periodic groups is the

norm NG(C∞) of infinite cyclic subgroups. The study of this norm and

its influence on properties of the group was started by F. M. Lyman and

T. D. Lukashova in [102]. It was proved that the norm NG(C∞) coincides

with the center of the group in torsion free groups, and any finite over the

norm NG(C∞) torsion free group is Abelian. The following proposition

characterizes the properties of the group that has non-Abelian norm

NG(C∞).

Proposition 4.10 ([102]). A non-periodic group G has non-Abelian

norm NG(C∞), if and only if all elements of infinite order of the group G

generate an Abelian normal subgroup A and there is an element b of order

2 or 4, such that b−1ab = a−1 for an arbitrary element a ∈ A. Moreover

NG(C∞) = A〈b〉.

Let’s note, if the norm NG(A∞) is non-Abelian in a non-periodic

group, then the norm NG(C∞) of infinite cyclic subgroups is non-Abelian.

Moreover, in this case NG(C∞) = NG(A∞). The following example shows

that non-periodic groups, which norm NG(C∞) is non-Abelian and norm

NG(A∞) is Abelian, exist.

Example 4.1. G = (〈a〉λ〈b〉) × C, |a| = ∞, |b| = 2, C is an infinite

elementary Abelian 2-group, b−1ab = a−1.

It is easy to prove that NG(A∞) = C is Abelian, NG(C∞) = G and

NG(A∞) 6= NG(C∞).

The following proposition characterizes the conditions when the norm

NG(A∞) coinsides with the norm NG(C∞) in a non-periodic group G

(provided that the subgroup NG(C∞) is non-Abelian).

Proposition 4.11. Let G be a non-periodic group, which norm NG(C∞)

of infinite cyclic subgroups is non-Abelian. Subgroups NG(C∞) and

NG(A∞) coincide, if and only if NG(C∞) is central-by-finite and contains

every infinite Abelian subgroup of G.

In connection with the existence of O. Yu. Olshansky groups, periodic

groups with non-Dedekind norm of infinite Abelian subgroups were studied
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under the condition of their local finiteness. In [100] it was proved that

such groups satisfy the minimal condition for subgroups, if and only if

subgroup NG(A∞) satisfies this condition. Moreover, if NG(A∞) is a

group with minimal condition for subgroups, then G is a finite extension

of its divisible part and therefore [G : NG(A∞)] < ∞.

Note that the norm N(G) can be considered as the intersection of the

normalizers of all cyclic subgroups. In this connection it is naturally to

consider Σ-norm, where Σ consists of all cyclic subgroups of non-prime

order of this group. Such a norm was studied by T. D. Lukashova and

M. G. Drushlyak [105] in the class of non-periodic groups and was called

the norm NG(Cp̄) of cyclic subgroups of non-prime order of the group G.

It is clear that all cyclic subgroups of compound or infinite order are

normal in non-periodic group G, which coincides with the norm NG(Cp̄).

Such non-Dedekind groups were studied by T. G. Lelechenko, F. M. Lyman

[106] and were called almost Dedekind groups.

Since the norm NG(Cp̄) normalizes each infinite cyclic subgroup of a

group G, NG(Cp̄) ⊆ NG(C∞) in non-periodic groups. It turns out that

these norms coincide, if the norm NG(Cp̄) of cyclic subgroups of non-prime

order is non-Abelian.

Proposition 4.12 ([105]). Any non-periodic group G that has non-

Abelian norm NG(Cp̄) of cyclic subgroups of non-prime order is almost

Dedekind and coincides with this norm. Moreover G = Aλ〈b〉, where A is

a normal Abelian subgroup which contains all elements of prime order of

group G, |b| = 2, b−1ab = a−1 for an arbitrary element a ∈ A.

In 2004 in [107,108] F. M. Lyman and T. D. Lukashova introduced one

more Σ-norm, where Σ is a system of all Abelian non-cyclic subgroups of

a group. This Σ-norm was called the norm of Abelian non-cyclic subgroups

of a group G and denoted by NA
G . It is clear if the group G coincides

with the norm NA
G then all Abelian non-cyclic subgroups are normal in it

(assuming the existence of at least one of such a subgroup). Non-Abelian

groups with this property were fully described in [107,109,110] and called

HA-groups (HAp-groups in the case of p-groups).

In [92,107,114] infinite locally finite p−groups (p is an arbitrary prime),

which norm NA
G is non-Dedekind, are considered. The authors obtained

a complete description of such groups and proved that if the norm NA
G

is infinite and non-Dedekind, then all Abelian non-cyclic subgroups are

normal in a group, that is in this case G = NA
G . It was also proved that
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locally finite p-groups with non-Dedekind norm NA
G are finite extensions

of a quazicyclic group. In particular, the following propositions take place.

Proposition 4.13 ([107]). Infinite 2-groups with non-Dedekind norm

NA
G of Abelian non-cyclic subgroups are groups of one of the following

types:

1) G is an infinite HA2-group, NA
G = G;

2) G = (A × 〈b〉)λ〈c〉λ〈d〉, where A is a quasicyclic 2-group,|b| =

|c| = |d| = 2, [A, 〈c〉] = 1, [b, c] = [b, d] = [c, d] = a1 ∈ A, |a1| =

2, d−1ad = a−1 for any element a ∈ A; NA
G = NG = (〈a2〉 ×

〈b〉)λ〈c〉, a2 ∈ A, |a2| = 4;

3) G = A〈y〉H, where A is a quasicyclic 2-group, [A, H] = E, H =

〈h1, h2〉, |h1| = 4, h2
1 = h2

2 = [h1, h2], |y| = 4, y2 = a1 ∈ A, y−1ay =

a−1 for any element a ∈ A, [〈y〉, H] ⊆ 〈a1〉 × 〈h2〉; NA
G = 〈a2〉 ×

H, a2 ∈ A, |a2| = 4, NG = 〈h2〉λ〈h1a2〉.

Proposition 4.14 ([108]). Infinite locally finite p-groups (p 6= 2), which

norm NA
G of Abelian non-cyclic subgroups is non-Dedekind, are HAp-

groups and G = NA
G = NG.

Let’s note that Proposition 4.14 fails in the case of infinite locally

finite 2-groups: there are infinite 2-groups with finite non-Dedekind norm

NA
G of Abelian non-cyclic subgroups, which may not coincide with the

norm NG.

The study of finite p-groups for certain restrictions on the norm NA
G

of Abelian non-cyclic subgroups were continued by M. G. Drushlyak,

T. D. Lukashova and F. M. Lyman in [112,113]. In particular, in [112] the

structure of finite p-groups (p 6= 2) with a non-Abelian norm of Abelian

non-cyclic subgroups was completely described, in [113] the structure of

finite 2-groups with a non-cyclic centre and non-Dedekind norm NA
G of

Abelian non-cyclic subgroups was described. It is also proved that an

arbitrary 2-group with a non-cyclic centre and a non-Dedekind norm NA
G

does not contain a quaternion subgroup, if and only if the norm NA
G does

not contain such a subgroup. In this case the norm NA
G coinsides with

the norm NG [113].

The following proposition clarifies the result of [92] on the coincidence

of norms NA
G and NG for infinite locally finite p-groups (p 6= 2) under the

condition that the subgroup NG is non-Abelian.

Proposition 4.15 ([112]). If either norm NA
G or NG is non-Abelian,

then NG = NA
G in the class of locally finite p-groups (p 6= 2).
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The Proposition 4.15 leads to the conclusion that any finite p-group

(p 6= 2) with non-Abelian norm NA
G is a group of one of the types of 1)-3)

of Proposition 4.2.

Proposition 4.16 ([113]). Finite 2-groups with a non-cyclic centre and

a non-Dedekind norm NA
G of Abelian non-cyclic subgroups is a group of

the following types:

1) G is a non-Dedekind non-metacyclic HA2–group with a non-cyclic

center, G = NA
G ;

2) G = H · Q is a product of a quaternion group of order 8 and

a generalized quaternion group; H = 〈h1, h2〉, |h1| = |h2| = 4,

[h1, h2] = h2
1 = h2

2, Q = 〈y, x〉, |y| = 2n, n > 3, |x| = 4, y2n−1

=

x2, x−1yx = y−1, [Q, H] ⊆ 〈x2, h2
1〉; NA

G = 〈y2n−2

〉 × H;

3) G = 〈x〉〈b〉, |x| = 2k, |b| = 2m, m > 2, k > m + r, 1 6 r < m −

1, Z(G) = 〈x2r+1

〉 × 〈b2r+1

〉, [x, b] = x2k−r−1sb2m−1t, (s, 2) = 1, 0 6

t < 2; NA
G = NG = 〈x2m−1

〉λ〈b〉.

Developing the study of finite 2-groups T. D. Lukashova, F. M. Lyman

and M. G. Drushlyak obtained a structural description of groups with a

cyclic center and a non-metacyclic non-Dedekind norm NA
G .

Proposition 4.17. Finite 2-groups with a non-metacyclic non-Dedekind

norm NA
G of Abelian non-cyclic subgroups and a cyclic centre are groups

of the following types:

1) G is a non-metacyclic non-Hamiltonian HA2-group with a cyclic

center, G = NA
G ;

2) G = (〈x〉λ〈c〉)λ〈b〉, |x| = 2n, n > 3, |b| = |c| = 2, [x, b] = x±2n−2

c,

[b, c] = [x, c] = x2n−1

, NA
G = NG = (〈x2〉 × 〈c〉)λ〈b〉;

3) G = (〈x〉 × 〈b〉)λ〈c〉λ〈d〉, |x| = 2n, n > 2, |b| = |c| = |d| = 2,

[x, c] = [x, b] = 1, [b, c] = [c, d] = [b, d] = x2n−1

, d−1xd = x−1,

NA
G = NG = (〈x2n−2

〉 × 〈b〉)λ〈c〉;

4) G = (〈c〉λH)〈y〉, H = 〈h1, h2〉, |h1| = |h2| = 4, h2
1 = h2

2 = [h1, h2],

|c| = 4, [c, h2] = 1, [c, h1] = c2, y2 = h1, [y, h2] = c2h2
1, [y, c] =

h±1
2 ; NA

G = 〈c〉λH.

The question of the structure of finite 2-groups with a cyclic center,

in which the norm NA
G is a metacyclic non-Dedekind group, is still open.

Study of the influence of the properties of the norm of Abelian non-

cyclic subgroups on the properties of the group was continued in [114],

where infinite periodic groups, which norm NA
G is non-Dedekind and
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locally nilpotent, were considered. It was proved that such groups satisfy

the minimal condition for Abelian subgroups and are Chernikov groups.

Proposition 4.18 ([114]). An infinite periodic locally nilpotent group G

has a non-Dedekind norm of Abelian non-cyclic subgroups, if and only if

G = Gp × Gp′ ,

where Gp is an infinite Sylow p-subgroup of a group G with a non-Dedekind

norm NA
Gp

of Abelian non-cyclic subgroups (where p ∈ π(G)) and Gp′ is

a finite cyclic or finite Hamiltonian p′-subgroup, all Abelian subgroups of

which are cyclic, and NA
G = NA

Gp
× Gp′.

If G is a locally finite, not locally nilpotent group which has an infinite

locally nilpotent non-Dedekind norm NA
G , then G = Gp ⋋ H, where Gp

is an infinite HAp-group, which coincides with a Sylow p-subgroup of a

norm NA
G , and H is a finite group, all Abelian subgroups of which are

cyclic, (|H|, p) = 1. In addition, the structure of infinite locally finite

non-nilpotent groups, which norm NA
G is finite non-Dedekind nilpotent

subgroup, was described.

Study of the norm NA
G of Abelian non-cyclic subgroups in the class of

non-periodic groups were continued by M. G Drushlyak and F. M. Lyman.

In [115, 116] non-periodic groups with non-Dedekind norm of Abelian

non-cyclic subgroups depending on the presence [115] or the absence [116]

of a free Abelian subgroup of rank 2 were considered.

Proposition 4.19 ([115]). If a non-periodic group G contains a free

Abelian subgroup of rank 2, its norm NA
G of Abelian non-cyclic subgroups

is non-Dedekind, contains an Abelian non-cyclic subgroup and a finite

Abelian, normal in G, subgroup F and the centralizer CG(F ) contains all

elements of infinite order of a group, then NA
G = NG(C∞) = B〈d〉, where

B is the Abelian subgroup generated by all elements of infinite order of

the group G, |d| = 2 or |d| = 4, d2 ∈ B, d2 is a unique involution in G

and d−1bd = b−1 for an arbitrary element b ∈ B.

It was also proved that the non-periodic group G does not contain

free Abelian subgroups of rank 2, if its norm NA
G is non-Hamiltonian

HA-group and does not contain such subgroups.

In 2015 F. M. Lyman and T. D. Lukashova [117] considered one more

generalization of the concept of the norm of the group – the norm Nd
G

of decomposable subgroups, which is defined as the intersection of the
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normalizers of all decomposable subgroups of the group. In the case when

the group does not contain any decomposable subgroups, we can assume

that Nd
G = G. The structure of locally soluble groups, in which a system

of decomposable subgroups is empty, as well as groups, in which each

decomposable subgroup is normal (groups with the condition Nd
G = G),

was described in [118].

It is clear that the group contains decomposable subgroups, if and

only if it contains decomposable Abelian subgroups. Therefore, the study

of the norm Nd
G of decomposable subgroups was conducted, regarding on

the existence of systems of decomposable Abelian subgroups in the group.

Thus the norm Nd
G of decomposable subgroups is closely related to the

norm NA
G of Abelian non-cyclic subgroups. In particular, in [117] it was

proved that these norms coinside in the class of locally finite p-groups.

The inclusion NA
G ⊇ Nd

G takes place and the case NA
G 6= Nd

G is achieved

in classes of finite non-primary groups, as well as in classes of infinite

periodic locally nilpotent non-primary groups.

Proposition 4.20 ([117]). A periodic locally nilpotent group G which

contains an Abelian non-cyclic subgroup has a non-Dedekind norm Nd
G of

decomposable subgroups, if and only if G is a locally finite p-group with a

non-Dedekind norm NA
G of Abelian non-cyclic subgroups.

Study of the influence of the norm Nd
G of decomposable subgroups on

the properties of the group were extended by the authors in the class of

non-periodic groups. In particular, in [119] the following was established.

Proposition 4.21 ([119]). Let G be a non-periodic group that has a

non-Dedekind norm Nd
G of decomposable subgroups. Then the following

propositions take place:

1) G does not contain decomposable subgroups if and only if the norm

Nd
G of the group does not contain them;

2) G contains a free Abelian subgroup of rank r > 2, if and only if the

norm Nd
G contains a free Abelian subgroup of such a rank;

3) G contains a non-primary Abelian subgroup, if and only if the norm

Nd
G of the group contains subgroups with this property;

4) any decomposable Abelian subgroup of a group G is mixed, if and

only if any decomposable Abelian subgroup of its norm Nd
G is mixed.

It was also proved that in the class of non-periodic locally soluble

groups only one of the inclusions NA
G ⊇ Nd

G or NA
G ⊆ Nd

G takes place,

provided that at least one of these norms is non-Dedekind and the norm



M. Drushlyak, T. Lukashova, F. Lyman 73

Nd
G is infinite. The following examples confirm that the condition of the

infiniteness of the norm Nd
G is essential.

Example 4.2 ([119]). G = (〈a〉⋋B)⋋〈c〉, where |a| = p, p is a prime (p 6=

2), B is a group isomorphic to an additive group of q-adic numbers, q /∈

{2, p} , B = B1〈x〉, x2 ∈ B1, x−1ax = a−1, [B1, 〈a〉] = E, |c| = 2, [c, a] =

1, c−1bc = b−1 for any element b ∈ B.

In this group all periodic decomposable subgroups are of order 2p

and are groups of the type 〈amcbk
1〉, where b1∈ B1, k ∈ {0, 1} , (m, p) = 1.

Accordingly, all non-periodic decomposable subgroups are mixed and

contained in the group B1 × 〈a〉 and therefore are normal in G. Since

NG(〈amcbk
1〉) = 〈amcbk

1〉, Nd
G = 〈a〉.

On the other hand, G does not contain periodic Abelian non-cyclic

subgroups and all mixed Abelian subgroups contain 〈a〉 and are subgroups

of the group (B1×〈a〉) and therefore are normal in G. Moreover, all Abelian

non-cyclic subgroups of rank 1 are contained either in the subgroup B, or

in subgroups conjugated with it g−1Bg, g ∈ G, or in the group (B1 × 〈a〉).

Let’s consider an infinite sequence of subgroups in B1:

〈b1〉 ⊂ 〈b2〉 ⊂ · · · ⊂ 〈bn〉 ⊂ · · · ,

|b1| = ∞, b
αn+1

n+1 = bn, αn+1 ∈ N, (αn+1, p) = 1 for n = 1, 2, . . . Since

the isolator A of the subgroup 〈ab1〉 is non-cyclic (because the root of

an arbitrary degree coprime with p can be taken from the element a),

NG(A) = 〈a, B1〉. NA
G = B1 and Nd

G ∩ NA
G = E by NG(B) = B ⋋ 〈c〉.

Example 4.3 ([119]). G = (〈a〉⋋B)⋋〈c〉, where |a| = p, p is a prime (p 6=

2), B is a group isomorphic to an additive group of p-adic numbers, B =

B1〈x〉, x2 ∈ B1, x−1ax = a−1, [B1, 〈a〉] = E, |c| = 2, [c, a] = 1, c−1bc =

b−1 for any element b ∈ B.

As in Example 4.2 in this group the norm of decomposable subgroups

is Nd
G = 〈a〉. However, the norm of Abelian non-cyclic subgroups is

NA
G = (B1 ⋋ 〈c〉). This follows from the fact that for any non-identity

element y1 ∈ B1 the isolator of a subgroup 〈ay1〉 is cyclic, and therefore the

element c normalizes each Abelian non-cyclic subgroup of a group G. In

this case, the norm NA
G of Abelian non-cyclic subgroups is non-Dedekind

and Nd
G ∩ NA

G = E.

In 2005 F. Mari, F. de Giovanni [78] considered the concept of the

non-Abelian norm N∗(G) that is the intersection of normalizers of all
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non-Abelian subgroups of the group. If N∗(G) = G, then all non-Abelian

subgroups are normal in the group. These groups were studied by G. M. Ro-

malis and N. F. Sesekin [120–122] and were called metahamiltonian.

Further metahamiltonian groups were studied by V. T. Nagrebezkiy

[123], O. A. Makhnev [124], S. M. Chernikov [125], M. M. Semko and

M. F. Kuzennyi [126].

In [78] the results that generalize Schur theorem [127] on finiteness of

derived subgroups in central-by-finite groups were offered.

Proposition 4.22 ([78]). If G is a locally graded group and the quotient

group G/N∗(G) is finite, then a derived subgroup G′ is finite.

Conclusion

The authors make a conclusion that the study of different Σ-norms

and properties of groups with respect on properties of their Σ-norms is a

very important field in the group theory. Nowadays the research of groups

that differ from their Σ-norms as well as groups that have a non-Dedekind

Σ-norm becomes possible, because the structure of groups that coincide

with Σ-norms is well known in many cases. Therefore it will give the

opportunity to extend the known classes of generalized Dedekind groups

and will allow to study groups with restrictions on the normalizers of

different systems of subgroups more effectively.

There are still a number of problems in the study of groups with

generalized norms:

– the study of groups that coincide with their Σ-norms;

– the study of groups that have identity Σ-norms or their Σ-norms

coinside with the center;

– the study of groups that have non-central Dedekind Σ-norms;

– the study of groups that have non-Dedekind Σ-norms;

– the study of infinite groups that have Σ-norms of finite index.

The solution of these problems will significantly expand the base of

the modern group theory.
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