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Abstract. We prove the product formula cd(Γ×Γ) = 2 cdΓ
for cohomological dimension of geometrically finite groups.

1. Introduction

We recall that the cohomological dimension of a group Γ is defined as

cdΓ = max{n | Hn(Γ,M) 6= 0}

where the maximum is taken over all ZΓ-modules M . If there is no such
maximum we write cdΓ =∞. By the Eilenberg-Ganea theorem [Br] the
cohomological dimension cdΓ coincides with the geometric dimension
of Γ whenever cdΓ 6= 2. The geometric dimension of Γ is the minimal
dimension of CW-complexes representing the Eilenberg-MacLane space
K(Γ, 1).

Bestvina and Mess made a connection between the cohomological
dimension of a hyperbolic torsion free group and topological dimension of
its boundary [BM],[Be]:

cdΓ = dim ∂Γ− 1.

In the 30s Pontryagin constructed compact subsets Xp ⊂ R5 for all prime
p, now called Pontryagin surfaces, such that dim(Xp ×Xq) = 3 whenever
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p 6= q and dim(Xp ×Xp) = 4 for all p. Then in the late 40s Boltyanskii
constructed a 2-dimensional compact subset B ⊂ R5 with dim(B×B) = 3.
In [Dr1] the right-angled Coxeter groups with boundaries Pontryagin
surfaces Xp were constructed for all p. This brought an example of a family
of hyperbolic groups Γp with cdΓp = 3 for all p and cd(Γp × Γq) = 5
for p 6= q [Dr2]. Also in [Dr1] it was proven that Boltyanskii compactum
cannot be a boundary of a Coxeter group. This result left some hope for
the logarithmic law

cd(Γ× Γ) = 2 cdΓ

for all geometrically finite groups. The above equality is the main result of
this paper. We recall that a group Γ is called geometrically finite if there is
a finite Eilenberg-MacLane complex K(Γ, 1). Generally, for groups which
are not geometrically finite the above equality does not hold: For example,
for the group of rationals cdQ = 2 and cd(Q×Q) = 3.

The author is thankful to Alex Margolis for valuable remarks.

2. Dimension of the square of a group

2.1. Cohomological dimension of group with respect to a ring

Let R be a commutative ring with unit and let Γ be a group. By
RΓ we denote the group ring. Recall that RΓ is the ring of all functions
f : Γ→ R with finite support and the convolution as the product. The
cohomological dimension of a group Γ with respect to the ring R is defined
as follows [Br],[Bi],

cdR Γ = max
M
{n | Hn(Γ,M) 6= 0}

where the maximum is taken over all RΓ-modules. In the case R = Z we
use the notation cdΓ = cdZ Γ and call the number cdΓ the cohmological

dimension of Γ.
For a Γ-module M we use notations H∗(Γ,M) for cohomology groups

of a discrete group Γ and H∗(X;M) for cohomology groups of a topological
space X with the fundamental group π1(X) = Γ. Note that a Γ-module
defines a locally trivial sheaf M on X and H∗(X;M) can be treated as
cohomology with coefficients in the sheaf [Bre], H∗(X;M) = H∗(X;M).
Note that H∗(Γ,M) = H∗(BΓ;M).

For abelian groups A and B we are using the notation A ∗ B =
Tor(A,B). A group Γ is a group of finite type if there is a classifying CW
complex BΓ with finite skeletons BΓ(n) for all n.
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We recall the Cohomology Universal Coefficient Formula (UCF) for
twisted coefficients

UCF: For a group Γ of finite type, a ZΓ-module M , and an abelian group

R there the Universal Coefficient Formula [Bre]:

Hn(Γ,M ⊗R) = Hn(Γ,M)⊗R
⊕

Hn+1(Γ,M) ∗R.

Note that RΓ = ZΓ ⊗ R for any commutative ring R. Then the UCF
turns into

Hn(Γ, RΓ) = Hn(Γ,ZΓ)⊗R
⊕

Hn+1(Γ,ZΓ) ∗R.

We recall the following facts about cohomological dimension of groups
[Bi], [Br]:

(1) cdR Γ equals the minimal length of projective resolution of R as a
trivial RΓ-module;

(2) For geometrically finite groups cdR Γ = max{n | Hn(Γ, RΓ) 6= 0}.

Proposition 2.1. For any group Γ of finite type and any ring R, cdR Γ 6

cdΓ.

Proof. We may assume that cd Γ <∞. By the UCF if Hn(Γ, RΓ) 6= 0, then
either Hn(Γ,ZΓ) 6= 0 or Hn+1(Γ,ZΓ) 6= 0. In either case cd(Γ) > n.

The main technical result of the paper is the following theorem which
will be proven at the end of the section.

Theorem 2.2. For any geometrically finite group Γ there is a field k such

that cdΓ = cdk Γ.

The Kunneth Formula [Bre]: For groups Γ, Γ′ of finite type, a ZΓ-

module M , and a ZΓ′ module M ′ with M ∗M ′ = 0 as abelian groups,

there is the equality

Hn(Γ× Γ′,M ⊗M ′)

=
⊕

k

Hk(Γ,M)⊗Hn−k(Γ′,M ′)⊕
⊕

k

Hk+1(Γ,M) ∗Hn−k(Γ′,M ′).

Usually the Kunneth Formula as well as the Universal Coefficient
Formula are stated as short exact sequences. This happens because the
splitting of those short exact sequences is not natural. Since the naturality
is not used in this paper we state both as formulas.
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There is a similar formula for RΓ and RΓ′ modules M and M ′ for
any principal ideal domain R in which ⊗ and ∗ are taken over R. When
R = k is a field, the Kunneth Formula turns into the following

Hn(Γ× Γ′,M ⊗k M
′) =

n⊕

k=0

Hk(Γ,M)⊗k H
n−k(Γ′,M ′).

Proposition 2.3. For any geometrically finite group Γ and any field k,

cdk(Γ× Γ) = 2 cdk Γ.

Proof. Let cdk Γ = n. Then the vector space Hn(Γ,kΓ) 6= 0 is nonzero.
By the Kunneth Formula over a field,

H2n(Γ× Γ,kΓ⊗k kΓ) = Hn(Γ,kΓ)⊗k Hn(Γ,kΓ) 6= 0.

Here is our main result.

Theorem 2.4. For any geometrically finite group Γ,

cd(Γ× Γ) = 2 cdΓ.

Proof. Let a field k be as in Theorem 2.2. Then by Proposition 2.3 and
Proposition 2.1

2 cdΓ = 2 cdk Γ = cdk(Γ× Γ) 6 cd(Γ× Γ).

The result follows in view of an obvious inequality 2 cdΓ > cd(Γ×Γ).

Corollary 2.5. For any geometrically finite group Γ,

cd(Γn) = n cdΓ.

Proof. In view of the obvious inequality cd(Γn) 6 n cdΓ it suffices to
show the inequality cd(Γn) > n cdΓ.

By induction on k we obtain the equality cd(Γ2k) = 2k cd Γ. For n < 2k

the inequality

2k cdΓ = cd(Γ2k) 6 cd(Γn) + cd(Γ2k−n) 6 cd(Γn) + (2k − n) cd Γ

implies that n cdΓ 6 cd(Γn).

Corollary 2.6. Boltyaskii’s compactum cannot be a Z-boundary of a

geometrically finite group.
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Proof. Suppose that Boltyanskii’s compactum B is a Z-boundary of a
geometrically finite group Γ. Then the join product B ∗B is a Z-boundary
of Γ× Γ. In view of Bestvina’s formula

dimZ ∂G+ 1 = cdG.

for a group G with a Z-boundary ∂G [Be] we obtain a contradiction:

5 = dimZ(B ∗B) + 1 = cd(Γ× Γ) = 2 cdΓ = 2(dimZB + 1) = 6.

We use the notations Zp = Z/pZ for the cyclic group of order p,
Zp∞ = lim→{Zpk} for the quasi-cyclic group, and Z(p) for the localization
of Z at p.

Proposition 2.7. For any geometrically finite group Γ there is a prime

number p such that cdΓ = cdZ(p)
Γ.

Proof. Let cdΓ = n. Let T (A) denote the torsion subgroup of A =
Hn(Γ,ZΓ). If A/T (A) 6= 0, then A/T (A) ⊗ Z(p) 6= 0 and, hence, A ⊗
Z(p) 6= 0 for all p. By the UCF, Hn(Γ,Z(p)Γ) 6= 0. Hence cdZ(p)

Γ > n.
Proposition 2.1 implies that cdΓ = cdZ(p)

Γ.

Let T (A) = A. Every torsion abelian group A contains either Zpk or
Zp∞ for some p as a direct summand [Fu]. Since Zpk ⊗ Z(p) 6= 0 as well as
Zp∞⊗Z(p) 6= 0, we obtain Hn(Γ,ZΓ)⊗Z(p) 6= 0 . Hence Hn(Γ,Z(p)Γ) 6= 0
and therefore, cdΓ = cdZ(p)

Γ.

Proposition 2.8. Suppose that J ⊂ ⊕mRΓ is a RΓ-submodule with the

quotient module M = (⊕mRΓ)/J for which M ⊗Z Q = 0 where R = Z(p)

for some prime p. Then pnM = 0 for some n ∈ N.

Proof. We apply induction on m. In the case m = 1 we may assume that
J does not contain e ∈ Γ. Since (RΓ/J) ⊗ Q = 0 there is r such that
pre ∈ J . Then prRΓ ⊂ J . This implies that prM = 0.

Assume that the statement of Proposition holds for m. Let J ⊂
⊕m+1RΓ and M⊗Q = 0 where M = (⊕m+1RΓ)/J . Let π : ⊕mRΓ⊕RΓ→
⊕mRΓ denote the projection. Let M ′ = (

⊕k
i=1RΓ)/π(J). We consider
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the following commutative diagram

0

��

0

��

0

��

0 // J ∩RΓ //

��

J //

��

π(J) //

��

0

0 // RΓ //

��

⊕m+1RΓ
π

//

��

⊕mRΓ //

��

0

0 // RΓ/(J ∩RΓ) //

��

M
π̄

//

��

M ′ //

��

0

0 0 0

with exact columns and rows.
In view of surjectivity of M ⊗ Q → M ′ ⊗ Q and the assumption

of the Proposition we obtain M ′ ⊗ Q = 0. By induction assumption
psM ′ = 0 for some s. Tensoring the bottom row with Q implies that
RΓ/(J ∩ RΓ) ⊗ Q = 0. By induction assumption pr(RΓ/(J ∩ RΓ)) = 0
for some r. Then pr+sM = 0. Indeed, for any x ∈ M we have π̄(psx) =
psπ̄(x) = 0 and, hence, psx ∈ RΓ/(J ∩RΓ). Thus, prpsx = 0.

Proof of Theorem 2.2.1 Let cdΓ = n. Then Hn(Γ,ZΓ) 6= 0 [Br]. Let
p be as in Proposition 2.7. Then Hn(Γ,Z(p)Γ) 6= 0. Since BΓ is a finite
complex, the chain complex for EΓ consists of finitely generated free ZΓ
modules:

0→ Cn → Cn−1 → · · · → C1 → C0.

Then the cohomology group Hn(Γ,Z(p)Γ) is defined by the cochain com-
plex

0 ←−−−− HomZΓ(Cn,Z(p)Γ)
δ

←−−−− HomZΓ(Cn−1,Z(p)Γ) ←−−−− · · · .

Note that HomZΓ(Cn,Z(p)Γ) ∼= ⊕
mZ(p)Γ for some m ∈ N. We denote

by F r = ⊕rZ(p)Γ and by J = im(δ : F ℓ → Fm) the image of δ. Thus,
Fm/J 6= 0. If (Fm/J)⊗Q 6= 0, then Hn(Γ,QΓ) 6= 0 and we take k = Q.
If (Fm/J)⊗Q = 0 we apply Proposition 2.8 to obtain Hn(Γ,ZpΓ) 6= 0
for some prime number p. Then k = Zp.

1After the paper was accepted, the author learned about a shorter proof of Theorem
2.2 based on some basic facts on the structure of finitely presented modules.
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3. Cohomological dimension over fields

We recall the excision theorem for cohomology with coefficients in a
sheaf [Bre], Proposition 12.3.

Theorem 3.1. If A ⊂ X is a closed subset of compact space, then for

any sheaf M on X there is a natural isomorphism

Hp(X,A;M) ∼= Hp
c (X \A;M).

The excision theorem and the long exact sequence of pair imply the
following

Proposition 3.2. For a finite complex X and any local coefficient system,

Hm(X;M) = Hm(X(m+1);M)

for all m.

Theorem 3.3. For geometrically finite groups cdZ(p)
Γ = cdQ Γ for all

but finitely many prime numbers p.

Proof. Let BΓ be a finite complex of dimBΓ = n. Let m > d = cdQ Γ.
Then Hn(Γ,QΓ) = 0 and in view of Proposition 3.2, Hm(BΓ(m+1);QΓ) =
0. Let {Ci, ∂i} denote the cellular chain complex for EΓ. The cohomology
groups of BΓ(m+1) are defined by means of the truncated chain complex

0→ Cm+1 → Cm → · · · → C1 → C0.

Since Cm+1 is a free ZΓ-module, Ext1ZΓ(Cm+1,QΓ) = 0. Then the exact
sequence

← Ext1ZΓ(Cm+1,QΓ)← HomZΓ(Cm/Cm+1,QΓ)← HomZΓ(Cm,QΓ)←

implies that HomZΓ(Cm/Cm+1,QΓ) is a finitely generated module.
The condition Hm(BΓ(m+1),QΓ) = 0 means that the homomorphism

δ : HomZΓ(Cm−1,QΓ)→ HomZΓ(Cm/Cm+1,QΓ)

defined by means of ∂ : Cm → Cm−1 is onto. Let φ1, . . . φk be a gener-
ating set for the ZΓ-module HomZΓ(Cm/Cm+1,QΓ). Let {α1, . . . , αk} ∈
HomZΓ(Cm−1,QΓ) be such that δ(αj) = φj . For all (m− 1)-cells in BΓ,
κ1, . . . , κℓ, we fix lifts κ̄1, . . . , κ̄ℓ. Let

αj(κ̄i) =
∑

λi,j
k gi,jk where λi,j

k ∈ Q and gi,jk ∈ Γ.



“adm-n4” — 2020/1/24 — 13:02 — page 210 — #60

210 On dimension of product of groups

Clearly, there is a finite set of primes Pm = {p1, . . . , psm} such that
λi,j
k ∈ Z[ 1

p1···ps
]. Then the homomorphism

δp : HomΓ(C̄m−1,Z(p)Γ)→ HomΓ((C̄m/C̄m+1,Z(p)Γ)

is surjective for all p /∈ Pm. Therefore, Hm(BΓ(m+1);Z(p)Γ) = 0 for all
p /∈ Pm. By Proposition 3.2, Hm(BΓ;Z(p)Γ) = 0 for all p /∈ Pm. Hence,
cdZ(p)

Γ 6 d for all p /∈
⋃

d<m6n Pm.

The inequality cdQ Γ 6 cdZ(p)
Γ completes the proof.

Proposition 3.4. For all groups for every prime p and any k ∈ N,

cdZ
pk

Γ = cdZp
Γ.

Proof. We apply induction on k. The short exact sequence 0 → Zpk →
Zpk+1 → Zp → 0 produces the short exact sequence of Γ-modules

0→ ZpkΓ→ Zpk+1Γ→ ZpΓ→ 0.

Let cdZ
pk+1

Γ = n. Then the coefficient long exact sequence

· · · → Hn(Γ,ZpkΓ)→ Hn(Γ,Zpk+1Γ)→ Hn(Γ,ZpΓ)→ . . .

and the induction assumption imply that cdZp
Γ > n. The same sequence

at dimension n+ 1 together with the induction assumption implies that
cdZp

Γ < n+ 1.

Problem 3.5. Does the equality cdZp
Γ = cdZ(p)

Γ for a geometrically

finite group Γ hold true for all prime numbers p ?

4. Some remarks

4.1. Finitely generated torsion modules over ZΓ

An algebraic reason for the main result of the paper is the fact that for
a geometrically finite group Γ any finitely generated torsion ZΓ-module
does not contain Zp∞ for any prime p:

Proposition 4.1. Let M be a finitely generated ZΓ-module for a geomet-

rically finite group Γ where the underlying abelian group M is a torsion

group. Then for any prime p the subgroup of p-torsions M [p] ⊂ M is

bounded, i.e., there is r ∈ N such that prx = 0 for all x ∈M [p].
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Proof. Let ξ : ⊕mZΓ→M be an epimorphism of ZΓ-modules. Then the
tensor product with Z(p) defines an epimorphism

ξ ⊗ 1Z(p)
: (⊕mZΓ)⊗ Z(p) = ⊕

mZ(p)Γ→M [p] = M ⊗ Z(p)

with the kernel J = ker(ξ). Proposition 2.8 implies that M [p] has bounded
order.

Remark 4.2. The examples of right-angled Coxeter groups Γ in [Dr1]
mentioned in the introduction have geometrically finite subgroups Γ′ that
admit infinite finitely generated ZΓ′-modules M which are torsions as the
additive groups.

4.2. Application to topological complexity

Motivated by Topological Robotics, Michael Farber introduced the
notion of topological complexity TC(X) of the configuration space X [F]
as the minimal number k such that X ×X can be covered by k + 1 open
sets U0, . . . , Uk for each of which there is a continuous map φi : Ui →
C([0, 1], X) satisfying the condition φi(x, y)(0) = x and φi(x, y)(1) = y
for all (x, y) ∈ Ui. Since TC(X) is a homotopy invariant, the topological
complexity can be defined for groups Γ as TC(BΓ). Computation of
topological complexity of groups presents a great challenge. The main
theorem of this paper allows to complete the computation of topological
complexity of hyperbolic groups [Dr3]

TC(Γ) = 2 cdΓ

originated by Farber and Mescher [FM]. Also in the case of geometrically
finite groups the main theorem simplifies the formula for topological
complexity of the free product of groups [DS] to the following

TC(Γ ∗ Γ) = 2 cdΓ.
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