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On the character tables of symmetric groups
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ABSTRACT. In this paper, some zeros and non-zeros in the
character tables of symmetric groups are displayed in the partition
forms. In particular, more zeros of self conjugate partitions beside
odd permutations are heavily investigated.

1. Introduction

Representation theory of finite groups has evidently wide application
in many areas of mathematics, such as graph theory [14], combinatoric
theory [6], and number theory [15] et cetera. Investigating character tables
of finite groups is one of the most important and useful topic in this
subject. Even if there are many properties dealing with the construction
of character tables of finite groups, there is a very few of such explicit
tables. Also, it seems that there is no a simple way to construct them.
However, some researchers devoted times to study some general behavior
of character tables, see for example [1-3,5,11,13].

For symmetric groups S, there is a question of Navarro to Olsson
(2010): “If p is a prime, what are the elements x of the symmetric groups
Sy, such that x(z) = 0 for all x € Irr(Sy) of degree divisible by p?” (see [9]).
In 2015 and 2016, Lucia Morotti found that the partition of p-adic type is
p-vanishing, but for p = 2,3 there are some p-vanishing conjugacy classes
which are not the p-adic type, |9, 10]. However, for primes p > 3 such
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a conjugacy class is not found yet and she made a conjecture that “for
prime p = 5, all p-vanishing classes are p-adic types” (the meanings of
p-vanishing and p-adic types are provided in the next section).

This conjecture motivates us to study conditions on vanishing conju-
gacy classes for some characters of symmetric groups .S,,. Some zeros and
non-zeros in the character tables of symmetric groups are displayed as
partitions of the forms in sections 3 and 4. Some more zeros besides odd
permutations of the characters associated to self conjugate partitions are
found in section 5.

2. Preliminary

A partition of a positive integer n is a tuple o = (a1, ag,..., ;) of
positive integers a; > ag > - -+ > . such that ay +as+-- -+, = n. The
integers a;’s are called the parts of a and r := () the length of a [12]. To

indicate that « is a partition of n, we write a =n. Fori=1,...,n, if ¢; is
the number of parts of « equal to 4, then we can also write v = (rfr, ... 1),
Usually i% is left out if t; = 0. If & = (a1, q9,...,q,) is a partition of

n then the Young diagram [a] of « consists of n boxes placed into r
rows, where the i-th row has a; boxes. The box in the i-th row and j-th
column of [a] is called the (i,5) node of [a]. For each i, denote o the
number of parts of a which are bigger than or equal to . The partition

al = (a?, a;, e ,oz;r) is called the conjugate partition associated with c.
If o =o', then a is called a self-conjugate partition.

If (4, 7) is a node of [a] we denote by Hf; the (i, j)-hook of a which
is the set of nodes of [a] of the form (i,5") for some j' > j or (¢, ) for
some i’ > 1. The hook-length hi; of the (1, 7)-node is equal to the number
of nodes in H7;. The set of nodes (I,k)’'s with [ > i,k > j of o such that
(I+1,k+1) is not in [a] is called the (4,j)-rim of [a] and is denoted by Rf',.
For h > 1, let wy, () be the h-weight of o which is the maximum number
of h-hooks which can be recursively removed from « [6]. The h-weight of
a partition is also equal to the number of its hooks of length divisible by
h. For a partition « of n and k € N, we also denote:

I = A, 7) | hij = k}.

In the symmetric group S, each conjugacy class of 5, corresponds
naturally to the partitions of n associated to the cycle structure of that
class. The value of the irreducible character x%, labeled by the partition
a, evaluated at the conjugacy class corresponding to a partition § can
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be calculated recursively by the well known Murnaghan-Nakayama for-
mula, [6]. Precisely, if « is a partition of n = k 4+ m and 8 € S,, contains
a k-cycle and p € S, is of cycle type deleting k-cycle out of 3, then

1A%

23y M (

XM=Y, (-1

(i.g)ely;

P,

where & := a! — i is the leg length of the hook H®, and o\R®. simply
2,7 J 2,7 1,

denotes the partition associated to the Young diagram [a]\R{;. By the
Frame-Robinson-Thrall Hook length formula, the degree of x“ can be
calculated by
n!
X" = =
el M

Note that, for each partition a of n, hi!; = h?‘;, for all (i,7) € [a] and
hence

! |
() = n.a n!

.
= al = Xa (111)
hi,j H hj,i

Namely, the degree of x* and X“T are always equal.

Let p be a prime and n = ag + a1p + - - - + a;p’ be the p-adic decom-
position of n, (with a; # 0). A partition of n is of p-adic type if it is of
the form

¢ ¢
(610", -y SthD' -5 50,1+ -5 50,h0)

with (sj1,...,8ip,) Fa; for 0 <i<t. As0<a; <pfor0<i<kwe
have equivalently that a partition a = (aj);>0 is of p-adic type if and only

if
Z Oéj = aipi

J:p*lay . ptH ey

for 0 < i <k, [8,9]. Let x be an irreducible character of a finite groups
and let p be a prime. We say that y is p-singular if p divides its degree.
A conjugacy class of a finite group G is called p-vanishing if all p-singular
irreducible characters of GG take value 0 on that conjugacy class. For
irreducible characters of symmetric groups, Lucia Morotti discovered that
(Corollary 1.5 in [9]):

Theorem 2.1. Partitions of p-adic type are p-vanishing.
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3. Some non-zeros in the character table of S,

In this section, we provide an observation for conjugacy classes which
are not zero under the evaluation of some irreducible characters of finite
groups. For any finite group G, element g € G and an irreducible character
x of G, it is well known that (see, for example, Lemma 2.15 in [4])

x(1)

X(g) = Z i,
=1

where ¢; ’s are o(g)-roots of unity. For any positive integer m = p{* - - p&r
(prime factorization), the weight set W(m) means the set of all non-
negative integers k in which there are m-roots of unity €1, ..., e such that
€1+ -+ e = 0. The main theorem of T.Y. Lam and K.H. Leung in |7]
asserts that the weight set W (m) is exactly given by Nop; + - - - + Nop,,
where Ny denotes the set of all non-negative integers. Therefore the
following is immediate:

Theorem 3.1. Let o and 8 = (B1,...,5) be partitions of n, m =
lem(B1,...,B8k) =pit - pi and W(m) = {nip1 + -+ + nypy | n; € No}.
If x*(1") ¢ W (m), then x*(8) # 0.

In particular,

Corollary 3.2. Let a and g = (f1, ..., k) be partitions of n such that
lem (B4, ..., Bk) = p' for some integer ¢ > 0. If p{ x*(1™), then x*(3) # 0.

For example, if & = (2,1"72) and 3 be a partition of n such that
lem(B4, ..., Bk) = p' for some integer t > 0 and p { (n—1), then x*(3) # 0
(because deg(x®) =n —1).

Note from the Diophantine Frobenius problem that the largest number
that cannot be written in the form

n
E a;x;, x; € Ny,

i=1
for given positive integers ay, ..., a, with ged(ay, ..., a,) = 1is called the
Frobenius number and denoted by g(ai,...,a,). It is well known that for

ay,az € N with ged(aq,a2) = 1, then g(aq,a2) = ajaz — a3 — as. So the
following is an immediate consequence of Theorem 3.1.

Corollary 3.3. Let a and 8 = (S, (2, ..., %) be partitions of n such
that lem(B1, Ba, ..., Bk) is p™¢*? (prime factorization) for some integer
ar,az > 0. If x*(1") = pg — p — q, then x*(B) # 0.
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For example, if a = (2,1"72) and J are partitions of n = (p —1)(¢—1)
such that lem(B1, B2, ..., Bk) = plq® for some positive integer t, s, then
X“(1") = pg — p — q. Hence x*(B) # 0.

4. Some zeros in the character table of S,
First, we observe that:

Proposition 4.1. Let o and /3 be partitions of n such that a = (a, 1"~ 1)
withn —a; 2 aq > 1. If = (f4,..., B, a1,1), then x*(5) = 0.

Proof. Let k € {1,...,7}. Denote a'®) the partition associated to the

Young diagram obtained by removing the hook of length S, from [a(*=1],

where [a(9)] = [a]. Since a = (a1,1"*) and n — a1 > a1, [a] contains

exactly one hook of length [ for each n — a1 > [ > «ay. Since By > aq,

we have that ng(k_l) contains at most one element. If ng(k_l) has no

element, x“(3) = 0, by the Murnaghan-Nakayama formula. Suppose that
(k

ng Y has exactly one element and let ng(k_l) = {(ig, jr)}. Then, by the
Murnaghan-Nakayama formula,

ey ar=1)

X (8) = (1) o (=1) G - (=1 30, 1),

Let v be the partition associated to the Young diagram obtained by

removing a sequence of hooks of lengths 31, 32, ..., 3, from «; ie., v =
(a1, 1). Since [y] does not contain a hook of length ay, we now conclude
that x*(8) = 0. O

Let « be a partition of n. If v is the partition associated to the Young
diagram [vy] obtained by the process P*(f1, B2, ..., [s):

“removing a hook of length B1 out of [a| at node (i1, j1) following by
removing a hook of length o out of [a] \R?fi1 1) at node (i2,j2) of
[a] \R’(Jg1 ;1) and so on till the sth step”,

then we will denote ~ by aés)(ﬂl,ﬁQ, ..., Bs), where @ = (ay,aq,...,as)
is the finite sequences of pairs of positive integers a; = (i1,7j1),a2 =
(12,72)y .- .,as = (is,Js). Denote I1*(B1, Pa, ... Bs) the set of all sequences
d of pair of the positive integers for which the process P*(f1, B2, ..., 0s)
can be done. Note that if s =1, then I*(51) = If .

Theorem 4.2. Let o and 8 = (B1,...,0s,...,0k) be partitions of n,
for some 1 < s < k. Let p be a prime. If p| deg(xo‘és>(ﬂ1”"’65)) for all
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ae I1%By,...,0s) and (Bst1,.--,0k) F m, (1 < m) is a partition of
p-vanishing, then x*(3) = 0.

Proof. We first remove (1 out of [a] at all possible nodes. By the
Murnaghan—Nagayama formula, we have

o o
B = Y (DA e By BB,
(a1)eI>(B1)

Next, we remove (35 out of [agi)l)(ﬁl)] at all possible nodes. We then have
= (e

)(Bl) (2)

X < Z <_1)la2(al X (al 02)(51’52 (637”'7/887”'7ﬁk))‘

o
(81)
GQEI (al) L

By repeating this process, we conclude that

B = 3 (D S T e G (g, B

(a1)€l*(B1) aselg(s—l)

(s)
DT UG I PN
ael«(f,....0s)

a8
- s—1 ag,..., a 17~~~7/Bs—1)
where @ = (aq,...,as), Igs(s ) = Iy, Sarasn)

(s L 1)(ﬁ17~~75571)

s—1
and 127" =

la (al """ . Since (Bs41,- - -, Bk) F mis a partition of p-vanishing
and Pl deg(xo‘r(;)(ﬁl’“"ﬁs)) for all @ € I1%(fy,...,08s), by Theorem 2.1,
Xaés)(ﬁl"“ﬁs)(ﬂsﬂ, ..., Bk) = 0. Therefore x*(53) = 0. O

For s =1 in Theorem 4.2, we have in particular that:

Corollary 4.3. Let p be a prime, a, ¢, be positive integers such that
a > c¢p+1 and k be a non-negative integer such that a+cp+2l+k+1 = n.
Let o, B F n with a = (a,ep+ 1,2, 1%) and 8 = (a +1 + k + 1,7) with
vEep+1=:m.If pfm and v is of p-vanishing then x*(3) = 0.

Proof. Since h{'; = a+1+k+1, we have that

oW =l ) (881 = (cp,1)

)
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which is a partition of m = n — h{; = cp + [ associated to the Young
diagram obtained by removing the hook of lengths h{'; out of [a]. The
Frame-Robinson-Thrall Hook length formula implies that

O((1)) a(1)( m) (ecp+1)! ~(ep—141)!

(ep+D(ep— DU (cp— D!

:C@_P+g'

We now write ¢p — 1 = egp® +es_1p° L+ ---+eip+egand | = d,p" +
dr_1p" "t 4 -+ dip + dp as p-adic decompostitions. Since p{m, p{1; i.e.,
1 < dgp < p. Also, eg = p— 1. Thus, the number of carries when [ is added
to ¢p — 1 in base p is at least 1. By the Kummer’s Theorem,

%<C@—;yu)>>L

Namely, p | deg(X"‘m). Hence, the result follows by Theorem 4.2. O

deg(x

Moreover, for s = 2 in Theorem 4.2, we also have in particular that:

Corollary 4.4. Let p be a prime, a, b, ¢, [, t be positive integers such that
a>=b>cp+ 2 and k be a non-negative integer such that a + b+ cp +
3l+2t+k+2=n. Let o, 3 F n with a = (a,b,cp+ 2,3',2¢,1%) and
B = (51,B2,7) with vy - ep+ 1 =: m, where 1 =a+1+t+ k+ 2 and
fo=b+ 1+t If pfm and v is of p-vanishing then x*(8) = 0.

Proof. Since h{'y =a+1+t+k+2 = (1, we have that

1
oW =al{] ) (15 = (b—1,ep+1,2,1"
which is a partition associated to the Young diagram obtained by removing
the hook of lengths 31 out of [a]. Since fo =b+ 1+t = hf‘,(ll ' we have

e

— 2 _ ! _ _

= 05((171)7(171)) (ﬁla BZ) - (va 1 ) Fm=mn-— Bl - B2 =cp +1

is a partition associated to the Young diagram obtained from [a(l)] by
removing hooks of lengths f3. The same arguments as in the proof of

Corollary 4.3 can be used to complete the proof. O
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5. Zeros of self conjugate partitions

Recall from Lemma 2.1.8 in [6] that X (B) = x*(p) if B is even and
XO‘T (B) = —x¥(B) if B is odd. Hence, if T = a, then x*(8) = 0 for any
odd . However, there are some more zeros for self conjugate partitions.

Proposition 5.1. Let & = a' and 3 be partitions of n. If 51 is an even
part of 3 such that f; > 4§ and v F (n — 1), then x*(81,7) =

Proof. Since a = a' c h§qy > hiy = RSy > b, for all (i,j) # (1,1),
(1,2), (2, ) and h{'; is odd. Thus, Whe ( ) = 2. So 2h{'y < n and then
h{s < 5. Since Py is even and hf is odd B1 # h{;. Moreover, by the
assumptlon that 81 > 5, we have that the Young dlagram of [a] does not
contain a hook of length ;. Hence x*(f51,v) = 0. O

According to Proposition 5.1, if « is a self conjugate partition and
B is even, it does not necessary to have that x*(3) # 0; for example, if
a = (13,5,23,1%) which is self conjugate and 8 = (20,5,23,1,) which is
even, then x*(3) = 0.

In the remaining, we concentrate only on self conjugate partitions «

of n. Let a = (r’fl,...,rfnm) with 7y > -+ >rp and k; > 0 for 1 <@ <m.
Since « is self conjugate, we have that r; = Z;n R for 1< < m and

then also that k; = ry—i11 — Tm_ipe for 1 <i < m. Let s = [m/2], the
ceiling function of m/2. We also denote |¢q| the floor function of the real
number q.

For each 1 < i,j < m, we denote A;; the k; x k; matrix whose its
entries are hook lengths of [ in the strip (4, j) which is the set of nodes

{(z,y) ENXN|ky+-+ki1<zc<hk+ - +k
and ki + -+ kj1 <y <k 4+ kj}

in [a]. Namely, we can consider the set of all hook lengths of [a] as a block
matrix A in the form

A171 A172 - Al,m
Agn Agn ... Aoy

- : : .. : ’
Amni Am2 . Anm

with A;; = 01if ¢ + 7 > m + 2, in particular if 7,57 > s + 1. This matrix
is symmetric because « is self conjugate. Thus, it suffices to investigate
the matrices A; ; with 1 <4 < s and 7 < j < m. In the following, for
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positive integers n; < ng, we denote [n1,n2] := {k € Z|n1 < k < na}
and also define [ny,ns] = @ if n; > ny. We also denote e(A; ;) the set of
all entries in A; ;. By direct computation, we have that, for each 1 <14 < s
and i < j < m,

i J i—1 Jj—1
e(Aij) = [ri+rj— Z k)= O k) +Lritr— O k)= (O k) —1.
= t=1 t=1 t=1

Moreover, for each 1 <i < |m/2] and 1 < j <m — 1 with i < j and
1+ j < m, we denote

Gi+17]’+1 = [max (B(Ai+1,j+1)) + 1, min (G(AZ'J)) — 1] (5.1)
and, for each 1 < 7 < m,

G1 g = 7“1 +r;— Z k?t (5.2)

Note by the direct calculation that G, = @ for a +b > m + 3. Then

i—1 i+j—2
Giitj—1 = [h‘ +ri = O k) — (Y k),
t=1 t=1 (5 3)

i—1 i+j—2
Tio1+ Tigj—2 — (Z k) — ( Z kt):| ;
t=1 t—1

for all 1 <i < [(m—j+3)/2] =: Mj. In the following results, for each
1 < j < m, define

M;
Gj=|]JGiij1 (5.4)
=1

Note from (5.3) that the union in (5.4) is a disjoint union; namely,
Giitj—1 N Grpyj—1 = D if i # k. Moreover, for each j, we have that
min(Gj iyj—1) > max(Giq1,i+j) for each i = 1,..., M; — 1 and thus the
smallest element of G; belongs to GM].,M].+]-_1. Let H® be the set of all
hook lengths of [a].

Proposition 5.2. For a self conjugate partition o of n and 1 < x < n
integer, we have that x ¢ H® if and only if x € G(«), where G(«) :=
GinGasn---NGy,
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Proof. Suppose that © € G(«). For each j € 1,2,...,m, there exists
i € {1,2,...,M;} such that z € G;;4;—1. By (5.1) and (5.2), we see
that o > max(e(A;;+j—1)) and < min(e(A;—1,i4+j—2)). This implies that
x & e(Aittivj—1+¢) for each 0 < ¢t < M; —i and = ¢ e(Ai—tivj—1-t)
for each 1 < t < ¢ — 1. Namely, x does not appear in the j-diagonal

(South-East) strip
M;
Ue(Aiir;)
i=1
of A. Since j is arbitrary, x is not an entry of A which means that x ¢ H®.
On the other hand, suppose that x ¢ G(«). Then there exists j €
{1,2,...,m} such that = ¢ G;. Note that, for each j =1,...,m,

G; UU Aiiri1) ={1,...,n}.

Then z € e(A;;4j-1) for some 1 <i < Mj, and hence x € H?. O

By the distributive law of sets and the definition of G;’s above, we
have that

G(a) = J(Gi14i-1 N Giy2rin1 NN Gimyin—1), (5.5)
where the union runs over the set
I:={(i1,12,...,im) € Z™|1 < ij < M;j for each 1 < j < m}.

There are exactly
m
114
j=1

terms in the union form of G(«) in (5.5). Since G1 1 NG12N - NGy =
[2r1, n], there are at most 2r; — 1 non-empty terms in (5.5).

Proposition 5.3. Let Y = G, 14i,-1 NGy 24i,—1 0 - N Ghy i —1 be
a term in the union form of G(«) in (5.5).
1) If there exists 1 <1 < m — 1 such that i; —i;41 > 2 or ;41 — iy > 1,
then Y = @.
2) If there exist 1 <1 < m — 2 such that i = ;41 = 4492 and r;, +
Ti4l—1 2 Ti—1 + Tyt — Kijpg — ki1, then Y = @.
3) If there exist 1 <1< m — 2 such that 4y =441 + 1 =i;30 + 2 and
i + Tippo+i+1 > Tipgr T Tigpa+l — kiz+1 - kil+27 then Y = .
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Proof. Suppose that there exits 1 <1 < m — 1 such that i; — 4,41 > 2 or
tipg1 — iy =2 L If g —dp0 22, then 4y — 1 > 441 and 441 + 1 <4+ 1 — 2.
Thus 75,1 < 7, and 75,412 < 75,41 By (5.3), it is now straightforward
to conclude that

maX(Gz’l,il+l—1) < min(Giz+1,iz+1+l)

which means that Gy, ;4+1-1 N Gipyy 4,11 = @ and hence Y = g. If
ipy1 — 4 = 1, then 449 > 4 and 4,49 — 1 > 4. Thus ;1 < r;; and
Tip o +i-1 < Tipri—1- By (5.3), it is now straightforward to conclude that

min(Gj, i,41-1) > max(Gi,, iy +1)

which means that G, ;,+1-1 N Giyis42-1 = & and hence Y = @.
Suppose that there exist 1 <1 < m — 2 such that 4 = 441 = i;49. By
(5.3), we have that

min(Gil,iz-H—l) > min(GiHhilH-‘rl) > min(Giz+2,iz+2+l+1)7

and

max (G, 41-1) > max(Gi g, +1) > Max(Gip o i ti41)-

So,

Girir+i-1 N Gy i+ N Gl i o4
= [min(Gimz-&-l—l)a maX(Giz+27iz+2+l+1)]'

This set is non-empty when 7, + 7;,11-1 < riy—1 + 15,40 — Kij41 — Kijp1—1-
Similar arguments can be applied to conclude the remaining. ]

According to Proposition 5.3, a possibly nonempty set

m
Y = m Gip ket —1
k=1

in the union form of G(«) in (5.3) must satisfy the conditions i — ix41 €
{0,1} for each k = 1,..., m. In other words, the non-empty set Y is the
intersection of nodes, G;, p+i,—1’s in a North-East ladder (possibly with
different steps) of [a].

For each 1 < v < |Z] 4+ 1, let LY be the one step vth North-East
ladder starting in the North direction of [a] defined by

LUN = Gv,v N Gvfl,v N Gvfl,erl N Gv72,v+1 n---N G2,2’U72
NG120—2NGr20-1- NGy,
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Note that Gl,i N GLk = Gl,z’ if 7 < k. Thus,

LY = ( ﬂ (Goijori N Gly—1)—iwsi) N ( m G1,i)

0<i<v—1 i>20—1
= ﬂ (Go—iw+i VG o—1)—ivti)
o<i<v—1

forall 2 <ov < |[%] +1, and LN = G,
Similarly, for each 1 < v < L’"T‘Hj, let L be the one step vth North-
East ladder starting in the East direction of [o] defined by

Lf = Gv,v N Gv,erl N Gvfl,v+1 N Gvfl,erQ NN G2,2v71
NG120-1 N G120 - N Gm.

Using the same arguments as above we have that

E
Ly = ﬂ (Go—ivti N Go—ivtiti),
0<i<v—1

for all 2 < v < |, and LY = Gy 1.

For the following results, for each 2 < v < [%§] 4 1, we denote

v—1—1 v+1—1
af =max {ro_;+ropi— (> k)= (> k) |0<i<v—1},
t=1 t=1
v—1—1 v+1—1
bf)V :min{rv,i,1+rv+i,1 —( Z k) — ( Z k) | 0<i<v— 1},
t=1 t=1
v—i—2 v+i—1
cy:max{m_i_1+m+i—( Z k) — ( Z k) | 0<z’<v—1},
t=1 t=1
v—1—2 v+1—1

df,vzmin{rv_i_g—i—rvﬂ_l—( Z k) — ( Z ki) | O<Z'<v—1}7
t=1 t=1

and for each 2 < v < ||, we denote
v—i—1 v+i—1
avE:maX{rv_i—i—rvH—( Z ke) — ( Z k) | 0<i<v—1},
t=1 t=1
v—i—1 v4i—1

Y =min{ry i1+ ropi1— (> k)= (> k)| 0<i<v—1},
t=1 t=1
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v—i—1 v+t
E
¢, = max {rv_i + ryqit1 — ( g ki) — g ky) <i<o— 1}
t=1
v—i—1 v+1

df =min {r,_i 1 +ropi— (> ki) - Zk:t <i<v—1}.
t=1

Here, we set any sum containing rg or k,,+1 to be n and set r,,+1 = 0.

ks
Theorem 5.4. Let o = (r’fl,r§2, coyrhs, Tt rkm) be a self conju-

gate partition. If 8 is a partition of n and S has a part

for some v > 2, then x*(8) = 0.

Proof. Lete € {N, E'}. Assume the assumption and consider L5 as T; N B,
where

qu\f = ﬂ GU—i,v+i7 Bé\f - ﬂ G(v—l)—i,v+i7

o<i<v—1 0<i<v—1

and

E E
Tv = m Gv—i,v—i—iv Bv = ﬂ Gv—i,v—&—l—&—i.

0<i<v—1 0<i<v—1

It is a direct computation from (5.3) that a® = min(75), b* = max(7T}),
¢ = min(BS) and d° = max(BS). Then L; = [max{a$, ¢}, min{b5, d5 }].

Note that LS C G(«) and then, by Proposition 5.2, x ¢ H® for any x € LS.
By the Murnaghan-Nakayama formula, we complete the proof. O

Note that L§ = G1,1 = [2r1, n]. Thus, if 5 contains a part « > 27y, then
x%(B) = 0, by the Murnaghan-Nakayama formula. For v = 2 and m > 2,
we compute that a} = 2(ry — k1), b = 2(r1 — k1), ¢ =r1 +ro — k1 and
dY = n. Therefore, the following is immediate.

Corollary 5.5. Let o = (r'fl,r§2, . ,TI;S,rfril ...,7Fm) be a self conju-

gate partition of n with m > 2. Then x*(8) = 0 for all partition 8 of n
containing a part x € [max{2(re — k1), 71 + 72 — k1 },2(r1 — k1)].

Moreover, the smaller z belongs to G(«), the larger number of zero
occurs in the row x@ (for any self conjugate partition «). The smallest
element of G(a) belongs to LY, for m = 2s or belongs to LY form = 2s5—1,
if they are not empty.
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The following corollaries are illustration of the usage of Theorem 5.4.
The partition forms in the corollaries are found under the assumption
that LQ{H for m = 2s or L¥ for m = 2s — 1 is not empty in some specific
conditions. However, after the form of « is explicit, there are several
different ways to conclude the corollaries by the Murnaghan-Nakayama
formula as well.

Corollary 5.6. Let s, z,y be positive integers with x <y and s > 2. Let
o = ((sz+sy)", (s2+(s— D)y)", ..., (s2+9)°, (s2)Y, ((s— )Y, .., a¥),

and [ be partitions of n = sz(s(x + y) + y). If 5 contains a part x + y or
2(z + ). then x*(5) = 0.

Proof. The given partition « is a self conjugate partition. We compute
that aY,; =0, b, =z +y =, and

N 2z +y) ifs>3;
sTL™ | 243y if s =2.

Also, af =2(z +y), ¥ =z +y,

. 3(r+y) ifs>4;

> .
df:{i(igy) Ej:;’ and bF ={ 22 +4y ifs=3;
y - x + 5y if s =2.

The conclusion is immediate by Theorem 5.4 and the condition that
r < y. O]

By calculating on LY and L¥ and using the same arguments as above,
we also have:

Corollary 5.7. Let s,z,y be positive integers with x <y and s > 2. Let
o = ((81’ + (S - l)y)x7 (8.’E + (S - 2)y)x7 SRR) (sx)xv ((S - 1>$)y7
((S - 1)1.)2/, B xy)a
and (3 be partitions of n = sz(s(x +y) — y). If B contains a part « + y or
2(x +y), then x*(8) = 0.
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