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Abstract. We consider a class of normal bimodule problems
satisfying some structure, triangularity and finiteness conditions
(one-sided bimodule problems). We study the structure of non-
schurian bimodule problems from our class and describe explicitly
the minimal non-schurian one-sided bimodule problems.

Introduction

The notion of bimodule problem arose as a formal language for so
called matrix problem solving methods, i. e. the equivalence classes repre-
sentatives description problem for a set of matrices with respect to some
set of transformations ([16]). Transition from matrix to bimodule problem
provide us with effective algorithms for obtaining the representation type
of bimodule problem and for its representation category description. Other
important tools closely related to this task are quadratic and bilinear
forms ([8, 14]).

We develop approach to investigation of bimodule problem representa-
tion category and representation type based on results of [1,9] for another
class of bimodule problems. From the representation theory point of view,
the simplest bimodule problems are those for which the dimensions of
indecomposable representations are in bijection with the roots of corre-
sponding Tits quadratic form. This observation leads to the notion of a
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schurian bimodule problem for which any indecomposable representation
has only scalar endomorphisms. In particular, quivers and posets with
weakly positive Tits form are schurian ([4, 13]).

We consider the class of bimodule problems called one-sided bimodule
problems which generalizes well known classes of quivers and posets.
We impose two important restrictions on considered bimodule problems.
Firstly we assume that the quadratic form of bimodule problem is weakly
positive since the problem has an infinite representation type in the
opposite case. The second assumption limits the number of objects in
the category to at least three, otherwise the problems are considered
directly. Bimodule problem from this class has a quasi multiplicative basis
introduced in [2] which is a generalization of the notion of a multiplicative
basis and allows to distinguish the minimal non-schurian subproblems
effectively. Theorem 1 asserts that the minimal non-schurian admitted
bimodule problem having more than two objects is standard. This theorem
is a special case of the main result of [4] on DGC, but we give a new proof
using more invariant language.

We use the definitions, notations and statements from [1–3,16]. The
considered class ∁ of bimodule problems and the notion of quasi multi-
plicative basis are defined in [3]. The notions and facts from the theory of
quadratic forms can be found in [6, 8, 14,17,18].

1. Preliminaries

Basic roots and singular vertices. Denote by WP the set of all weakly
positive locally finite quadratic forms and by ℜ+

q a set of all positive roots
of a form q. Let q(x1, . . . , xn) ∈ WP be an unit form, n > 2. A sincere
x ∈ ℜ+

q is called a basic root, if there exist i1, i2 ∈ I = {1, . . . , n} such
that 2(ei1 , x) = 2(ei2 , x) = 1, xi1 = xi2 = 1 and 2(ei, x) = 0, i ∈ I\{i1, i2}.
We call i1, i2 the singular vertices of x.

Lemma 1. Let q(x1, . . . , xn) ∈ WP be an unit form, n > 3, let x ∈ ℜ+
q be

sincere non-basic, and let i1, i2 ∈ I, i1 6= i2. Then there exists non-sincere
y ∈ ℜ+

q such that y < x, and i1, i2 ∈ supp y.

Proof. Since q ∈ WP, 2(ei, x) ∈ {−1, 0, 1} for any i ∈ I, so the equality
2 = 2q(x) = 2(x, x) =

∑n
i=1 2(ei, x)xi implies 2(ej , x) = 1 for some j ∈ I.

Then z = x− ej ∈ ℜ+
q . If z is sincere, it is non-basic since 2(ej , z) = −1.

Therefore, there exists a minimal sincere non-basic z ∈ ℜ+
q such that

z 6 x. Let J ⊂ I be the set of all j ∈ I such that 2(ej , z) = 1. Then for
any j ∈ J , the root y = z − ej < z is non-sincere by the minimality of z,
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and hence zj = 1. Since 2 =
∑n

i=1 2(ei, x)xi, |J | > 2. If |J | = 2, then z is
basic. Therefore, |J | > 3, and there is j ∈ J\{i1, i2}.

Representation category. For a bimodule problem A = (K,V), a rep-
resentation M of A is a pair M = (MK,MV) of MK ∈ ObaddK and
MV ∈ addV(MK,MK). If M ,N are representations of A, then a morphism
f :M → N is a morphism f ∈ addK(MK, NK) such thatNV·f−f ·MV = 0.
The unit morphisms and composition of morphisms in the representation
category repA and in addK coincide. All indecomposable representations
form the subcategory in repA which we denote by indA.

With a locally finite dimensional bimodule problem A = (K,V) we
associate the Z-lattice dimA = ⊕

ObK

Z of elements x = (xA)A∈ObK with

finite support suppx = {A ∈ ObK | xA 6= 0}. The lattice dimA has
the standard basis {eA, A ∈ ObK} such that (eA)A = 1, and (eA)B = 0
for B ∈ ObK\{A}. Besides, dimA is endowed with the partial product
order: for a vector x ∈ dimA, we write x > 0 if and only if xA > 0 for
all A ∈ ObK. For a representation M ∈ repA such that MK ≃ ⊕

A∈ObK

AxA

where almost all xA = 0, a dimension vector of M is defined by equality
dimM = dimAM = (xA)A∈ObK ∈ dimA. By definition, a support suppM
of the representation M is supp dimAM and is always finite.

There exists the identical on morphisms forgetful functor F(= FA) :
repA−→ addK such that F(M) = MK. A morphism f : M −→N in
repA is an isomorphism if and only if F(f) :MK−→NK is an isomorphism
in addK. We will denote an isomorphism by ≃, and for a family of
representations S from repA, we denote by S/≃ the set the isoclasses of
S. The direct sum in repA is induced by the direct sum in addK. It turns
repA into a fully additive category, and the Krull-Schmidt theorem holds
in repA (see [5, 8]). The following result is clear.

Lemma 2. Let p = (p0, p1) : A−→Ared = (K/AnnK V,V) be a natu-
ral bimodule problem morphism, where p0 : K−→Kred is the canonical
projection and p1 = 1V. Then the functor rep p : repA−→ repAred be-
tween the representation categories induced by p is an epimorphism on the
morphisms, preserves isomorphisms and rep p(indA) = indAred.

The category repA is fully additive, and it is called of finite represen-
tation type provided repA has finitely many isoclasses of indecomposable
objects, and of infinite representation type in the opposite case.

A representation M ∈ repA is called sincere provided (dimM)A 6= 0
for anyA ∈ ObK. In this case ObK is obviously finite. A bimodule problem
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A is called sincere if there exists a sincere indecomposable representation
M ∈ repA.

A representation M ∈ indA is called schurian provided it has only
scalar endomorphisms. A bimodule problem A is called schurian if every
M ∈ indA is schurian ([10, 14]).

Lemma 3 ([11, 14]). Let A be a finite dimensional schurian bimodule
problem. Then A is representation finite, its Tits form qA is unit integral
and WP, the map dimA : indA/≃ → ℜ+

qA
is a bijection, where indA/≃

denote the set of all isoclasses of indecomposable representations.

Some results on representations of partially ordered sets. Let A =
(K,V) be a faithful admitted bimodule problem with ObK−= {O}. If
dimk V(O,A) = 1 for every A ∈ ObK+, then we say that A describes
representations of a poset Q = Q(A) defined in the following way ([12],
4.1). The elements of Q are Σ+

0 , and for A,B ∈ Q, A > B if and only if
K(A,B) 6= 0 (in this case dimk K(A,B) = 1), and the composition of two
non-zero morphisms is again non-zero. The category repA is isomorphic
to the representation category of the poset Q.

Lemma 4 ([12]). Let A describes the representation of the poset Q.

1) If qA is WP, then A is schurian.

2) A is of finite type if and only if qA is WP.

3) A is of finite type if and only if Q does not contain the subposets
1̂⊔ 1̂⊔ 1̂⊔ 1̂, 2̂⊔ 2̂⊔ 2̂, 1̂⊔ 3̂⊔ 3̂, 1̂⊔ 2̂⊔ 5̂, 4̂⊔ 2̂ տ 2̂. The quadratic forms
of these posets are critical (critical posets are indicated in [13]).

4) If Q contains a chain of the length 3, x ∈ dimA is sincere positive
and xO 6 2, then every M ∈ repA with dimAM = x is decomposable.

2. Schurity Problem

Sincere schurian bimodule problem. The following lemma states that
each sincere schurian bimodule problem is faithful.

Lemma 5. If bimodule problem A = (K,V) is non-faithful, then every
sincere M ∈ indA is non-schurian.

Proof. Let AnnK V(A,B) 6= 0, A,B ∈ ObK. Then the subspace generated
by AnnK V(A,B) in addK(MK,MK) consists of nilpotent endomorphisms
of M . Since M is sincere, M is non-schurian.
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Minimal non-schurian bimodule problem. Let A = (K,V) be a sincere
non-schurian bimodule problem such that qA ∈ WP, and for every proper
subset S ⊂ ObK, the restriction AS is schurian. Then A is called a
minimal non-schurian bimodule problem.

Let B, C be bimodule problems, defined by their basic bigraphs (ΣB)0 =
{X}, (ΣB)1 = ∅, and (ΣC)0 = {X,Y }, (ΣC)1 = {a : X → Y }. For a
bimodule problem A having basis with at most 2 vertices, A is sincere
schurian if and only if either A = B or A = C.

The following lemma is similar to the result given in [4] for box problems
(see comments on Theorem 1).

Lemma 6. Let A = (K,V) be a minimal non-schurian admitted bimodule
problem with a basis Σ and |Σ0| > 3. If Ared is a sincere schurian, then
there exist two uniquely defined vertices A,B ∈ Σ+

0 such that:

1) for any sincere M ∈ indA, the vector dimAM is a basic root of
Tits quadratic form qAred

with the singular vertices A,B;

2) if AnnK V(A1, B1) 6= 0, then the sets {A1, B1}, {A,B} coincide.

Proof. Since Ared is sincere, the set ObK is finite. By Lemma 3, the
map dimA : indAred/≃ −→ ℜ+

qAred

is a bijection. Let us consider a pair

A,B ∈ Σ+
0 such that AnnK V(A,B) 6= 0. Since |Σ0| 6= 1 and A is minimal

non-schurian, A 6= B. If there exists sincere non-basic y ∈ ℜ+
qAred

, then by

Lemma 1 there exists non-sincere z ∈ ℜ+
qAred

such that A,B ∈ supp z and

subproblem Asupp z is not schurian by Lemma 5.

If x is a basic root of qAred
with singular vertices A1, B1, then x− eA1

and x− eB1
are the roots, non-sincere in A1 and B1 correspondingly. If

{A,B} 6= {A1, B1}, then by Lemma 5 at least one of the subproblems
AΣ0\{A} or AΣ0\{B} is non-shurian.

A minimal non-schurian bimodule problem A satisfying the conditions
of Lemma 6 is called standard minimal non-schurian bimodule problem
with singular vertices A, B.

Small minimal non-schurian bimodule problems. The following lemma is
proved by direct verification.

Lemma 7. Let A be an admitted minimal non-schurian bimodule problem
with a basis Σ = ΣA. Then:

1) |Σ0| 6= 2;

2) if |Σ| = 1, 3, then A is non-working contour;
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3) if |Σ0| = 4, then Ared = D4 is given by its bigraph Ω where Ω0 =
{A1, A2, E1, E2}, Ω

0
1 = {xi : E1 → Ai, yi : E2 → Ai, i = 1, 2}, Ω1

1 = {ϕ :
A1 → A2} and Pϕ = {(x1, x2), (y1, y2)}. The dimension of non-schurian
representation with singular vertices A1 and A2 is eA1

+ eA2
+ eE1

+ eE2
.

In this case we say that the minimal non-schurian A is of the type D4.

If A is a minimal non-schurian bimodule problem, Σ is its bigraph, and
Σ−

0 = ∅, then |Σ+
0 | = 1, Σ0

1 = ∅, Σ1
1 6= ∅, hence Σ is a union of dotted

loops. Unless otherwise indicated, we exclude this case. Moreover, we will
assume that Tits quadratic form q ∈ WP, and so Σ does not contain
parallel solid arrows.

Lemma 8. Let A be an admitted finite dimensional minimal non-schurian
bimodule problem with Tits form qAred

∈ WP. Then A ∈ ∁, and therefore,
Ared possesses a quasi multiplicative basis, and the bigraph of Ared does
not contain a solid cycle O4.

Proof. Let the bigraph of Ared contain one of the listed in [3, Lemma 2]
bigraphs or a solid cycle O4 as a subbigraph. Since qAred

∈ WP, there exists
two vertices A,B ∈ Σ+

0 such that AnnK V(A,B) 6= 0. Hence Ared contains
a non-shurian proper subproblem (see Lemma 7). By [3, Theorem 1] Ared

possesses a quasi multiplicative basis.

Reduction of direct summand of bimodule. We will use a partial case of
so called reduction functor presented in [5, 7]. We assume that:

1. A = (K,V) is a bimodule problem.
2. W, V̄ ⊂ V are subbimodules of V such that V = V̄⊕W, in particular,

for every M = (MK,MV) ∈ repA, there exists a canonical decomposition
MV = M

V̄
⊕ MW, M

V̄
∈ add V̄, MW ∈ addW. Let iW : addW → addV

be the morphism induced by the canonical inclusion W →֒ V.
3. Let Ā = (K, V̄) be the induced bimodule problem, let L ⊂ rep Ā be

a set of representations of Ā, let L = repA|L, let iL : L →֒ rep Ā be the

inclusion, let jL be the composition jL : L
iL−−→ rep Ā

FĀ−−−→ addK of iL with
the identical on morphisms forgetful functor F(= FA) : repA−→ addK
such that F(M) =MK, and let jW : WL−→ addV be the corresponding
L-bimodule morphism. Without loss of generality we assume that the
representations of L are pairwise non-isomorphic.

We construct a bimodule problems B = (L,WL) and define the functor
FL : repB−→ repA as follows:

• if M = (ML,MWL
) ∈ Ob repB for MWL

∈ addWL(ML,ML), ML ∈
add L, then FL(M) is a couple (jL(ML), (ML)V̄ ⊕ jW(MWL

));
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• if f :M −→N , then FL(f) = jL(f).
The functor FL is called the reduction functor for A with respect to

subbimodule V̄ ⊂ V.

Lemma 9. FL is an equivalence on its image FL(repB).

Proof. If M = (ML,MWL
), N = (NL, NWL

) ∈ repB, then

repB(M,N) = {f ∈ add L(ML, NL) |MWL
f − fNWL

= 0}. (1)

To include repB in repA as a subcategory, we identify f ∈repB(M,N) and
add iL(f) :MK → NK. Then f is a morphism in add iL(repB) if and only
if M

V̄
f − fN

V̄
= 0 (for add V̄ this means that f ∈ rep Ā(M,N)), and (1)

holds. But these conditions mean that f :MK → NK defines a morphism
from M = (MK,MV̄

⊕MW) to N = (NK, NV̄
⊕NW). The composition in

repA and in add iL(repB) coincide with the one in addK.

Remark that reduction functor FL induces a homomorphism dimFL
:

dimB → dimA which keeps the order on dimensions.

Reduction for an admitted bimodule problem. Let P ⊂ ObK−, and
W = V (P ) ⊂ V be a subbimodule such that W(X,Y ) = V(X,Y ) if
X 6∈ P and W(X,Y ) = 0 otherwise. Since A is admitted, then V = W⊕ V̄

with V̄ = V(ObK−\P ) be a K-subbimodule in V. Let Ā = (K, V̄) be the
induced bimodule problem. There are defined the morphisms of bimodule
problems pP = (p0, p1) : A−→Ā = (K, V̄) where p0 = 1K and p1 : V−→ V̄

is a projection, and iP = (i0, i1) : Ā−→A where i0 = 1K and i1 : V̄−→V

is an inclusion. For M ∈ rep Ā, let M |P = rep pP (M).
For M ∈ repA, let Ob L = {M1, . . . ,Mt} where L ⊂ rep Ā is the

full subcategory defined above. Let M |P = Mk1
1 ⊕ . . . ⊕ Mkt

t be the
decomposition in indecomposables in rep Ā. Then the reduction morphism

repB
FL−→ repA

FA−→ addK is called M–reduction of A (with respect to P )
and write RP,M instead of FL and AP,M = (KP,M ,VP,M ) instead of B.

Lemma 10. 1) The bimodule problem AP,M is admitted.
2) The set ObKP,M is a disjoint union (ObK\P̄ )∪Ob L where P̄ ⊃ P

is the set of all vertices in Σ0 incident to the arrows starting in P .
3) There exists MP ∈ repAP,M such that M ≃ repRP,M (MP ).
4) Restrictions of dimAP,M

MP and dimAM on ObK\P̄ coincide.
5) If M is sincere representation, then MP is sincere.
6) Let a ∈ Σ0

1(E,A), A ∈ P̄ , E 6∈ P . Then the bigraph ΣAP,M
of

AP,M contains p = dimkMi(A) solid arrows ak : E → Mi such that
RP,M (a1) + · · ·+ RP,M (ap) =M(a).
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7) Let Eϕ = {s(a), (a, b) ∈ Pϕ}. If Eϕ ∩ P = ∅ for ϕ ∈ Σ1
1(A,B),

A,B ∈ P̄ , then there are pq (p = dimkMi(A), q = dimkMj(B)) dotted
arrows ϕkl :Mi→Mj in ΣAP,M

such that RP,M (ϕkl) :MiK(A)→MjK(B)
having only one non-zero component [RP,M (ϕkl)](ϕ), 16k6p, 16 l6q.

Proof. Statements 3)-6) are the corollaries of the reduction construction.
The property of a bimodule problem to be admitted depends only on
its bigraph which implies 1). To prove 7), remark that KP,M (Mi,Mj) =
rep Ā(Mi,Mj). The conditions on ϕ imply ϕ ∈ AnnK V̄. Without loss of
generality suppose that Mi and Mj are presented as matrices with coeffi-
cients in V. Then the matrix [ϕij ] with only non-zero entry [ϕkl](A,k),(B,l) =
ϕ defines a morphism ϕkl :Mi−→Mj .

We call the arrows ak and ϕkl from Lemma 10 the components of a
and ϕ by the reduction RP,M correspondingly.

Minimal pairs and reductions. Further we will carry out the proof for
pairs (A,M) where M ∈ indA is a sincere. The pair (A,M) is called
minimal if every N ∈ indA with dimN < dimM is schurian.

Lemma 11. Let A = (K,V) ∈ ∁ be a faithful connected finite dimensional
bimodule problem with basis Σ and Tits form q ∈ WP. If M ∈ indA,
x = dimAM , (A,M) is a minimal pair and P ⊂ ObK−, then:

1) (AP,M ,MP ) is a minimal pair.

2) If A,B ∈ P̄ and ϕ ∈ Σ1
1(A,B) is such that Eϕ ∩ P = ∅, then:

(i) There does not exist Mi∈ indA such that Mi(A) 6= 0, Mi(B) 6=
0. If Mi(A) 6= 0 (Mi(B) 6= 0), then Mi(A) ≃ A (Mi(B) ≃ B).

(ii) If Mi(A) 6= 0, Mj(B) 6= 0, then VP,M (E,Mi) = ka, VP,M (E,
Mj) = kb, and a‖bϕ in VP,M , where ϕ = ϕij.

(iii) Let subcategory Iϕ ⊂ addK consists of all representations F
such that F (ϕ) = 0. Then RP,M0(AnnKP,M

(VP,M )) ⊂ Iϕ.

Proof. By [3, Theorem 1], we can assume that the basis Σ is quasi multi-
plicative. Statement 1) is obvious. Suppose there is i = 1, . . . , t such that
Mi is sincere in both A and B. The condition on ϕ gives that ϕ ∈ AnnK V̄,
and Mi is non-schurian by Lemma 5. Hence N = rep iP (Mi) ∈ indA
is non-schurian and dimAN < x. If for some i, Mi(A) ≃ Ap, p > 2,
then by Lemma 10, 6), |Σ0

AP,M1(E,Mi)| = p > 2. Since qAP,M
∈ WP,

|Σ0
AP,M1(Mi,Mi)| > 2 andMi is non-schurian, that proves (i). By definition

of reduction VP,M (E,Mi) = addV(EK,MiK) = ka, and VP,M (E,Mj) =
kb. Statement a‖bϕ follows from the definition of VP,M .
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To prove (iii) suppose there exists F ∈ AnnKP,M
(VP,M ) such

that f = RP,M0(F ) 6∈ Iϕ, or equivalently, f(ϕ) 6= 0. Obviously,
F ∈ KP,M (Mi,Mj) for Mi,Mj defined in (ii). Since for every E ∈ Eϕ, F
annihilated VP,M (E,Mi), then RP,M1(VP,M (E,Mi))RP,M0(F ) = 0. Using
the reduction of direct summand of bimodule we obtain that the equality
is equivalent to addV(EK,MiK)f = 0. For v ∈ addV(EK,MiK) with the
unique non-zero component v(a), we have vf(b) 6= 0, that proves (iii).

Special bimodule problems. We use in this section the following class
of admitted bimodule problems. We call a faithful bimodule problem
S = (L,W) with a quasi multiplicative basis Φ special provided Φ0 =
{E1, E2;A1, . . . , Am}, Φ0

1 = {xi : E1−→Ai, yi : E2 → Ai, i = 1, . . . ,m}
and the following equivalent conditions hold:

• if 1 6= i < j 6 m, then both pairs xi, xj and yi, yj are comparable;
• if 1 6 i < j 6 m, then S|Ek,Ai,Aj

, k = 1, 2 is not a non-working
contour, and S|E1,E2,Ai,Aj

is not the cycle O4.

Note that the bimodule problem D4 belongs to the defined class.

Lemma 12. Let S be a special bimodule problem with a basis Φ. Then:

1) S is schurian;

2) the set DS ⊂ dimS of the dimensions of representations from indS
is the subset of the set DΦ = {eE1

, eE2
; eAi

, eE1
+eAi

, eE2
+eAi

, eE1
+eE2

+
eAi

, i = 1, . . . ,m; eE1
+ eE2

+ eAi
+ eAj

, 1 6 i 6= j 6 m};

3) there exists M ∈ indA, dimS M = eE1
+ eE2

+ eAi
+ eAj

if and
only if Ai and Aj are connected in Φ by an unique joint arrow.

4) For a sincere M ∈ repS and F ∈ repS(M,M) such that F 6= 0,
F (1E1

) = 0, F (1E2
) = 0, and once F (ϕ) 6= 0 for ϕ ∈ Φ1

1, then ϕ is joint.
Then M contains a trivial direct summand UAi

for some i = 1, . . . ,m
which corresponds to a simple root eAi

.

Proof. The statements 1), 2), 3) can be verified immediately. Let us

prove 4). Let M =
t
⊕
k=1

Mxk

k be a decomposition in indecomposables

in repS. For every non-trivial Mi, i = 1, . . . , t, any N ∈ add L and
G ∈ add L(MiL, N) such that G(ϕ) 6= 0 for joint ϕ ∈ Σ1

1, there holds
MiLG 6= 0. For F ∈ repS(M,M), MWF − FMW = 0. The condition
F (1Ei

) = 0 for i = 1, 2 implies that MWF = 0.

The main result. Now we are ready to prove that every minimal non-
schurian finite dimensional admitted bimodule problem is standard.
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Theorem 1. Let A = (K,V) be a minimal non-schurian finite dimensional
connected admitted bimodule problem with basic bigraph Σ having at least
3 vertices and weakly positive Tits quadratic form qA. Then qAred

∈ WP
and A is standard minimal non-schurian bimodule problem.

In fact, Theorem 1 is a special case of the main Theorem of [4] on DGC
problems formulated in the other terms. Note that Theorem from [4] is
also given in [7] using the language of box problems which are equivalent
to DGC ones. For our class of bimodule problems, we give an alternative
proof using, in addition to the basic ideals of [4], the specifics of the
bimodule language.

Proof. According to Lemma 7, bigraph Σ does not contain dotted
loops and, since q = qA is weakly positive, parallel solid arrows. Let

• B = Ared = (Kred,V), Kred = K/AnnK V, be the faithful part of A;
• Ω be the bigraph of B, Ω0 = Σ0, Ω

0
1 = Σ0

1, Ω
1
1 ⊂ Σ1

1;
• p(x) = qB(x), p(x) = q(x)−

∑

(A,B)∈Σ0×Σ0
|AnnK(V)(A,B)|kxAxB.

By Lemma 2, Ob repA = Ob repB. By assumption, for any proper
subset S ⊂ Σ0, the problem AS is schurian.

The proof of the Theorem is carried out in several steps by induction
on the lexicographically ordered pairs (|Σ−

0 |, |Σ
+
0 |).

Step 1. |Σ−
0 | = 1.

Let Σ−
0 = {O}. Then B is a bimodule problem corresponding to a

poset Q = Q(B). To show that the Tits form p of B is WP, we formulate
the following preciser statement under Theorem conditions.

Lemma 13. If p 6∈ WP, M ∈ indB is sincere, then there exists y ∈ ℜ+
p

such that 0 < y < x = dimM , and:

1) p|supp y ∈ WP and there exists N ∈ indB of dimension y;

2) AnnK V|supp y 6= 0, in particular, the indecomposable N is non-
schurian in the category repA.

Proof. Since q∈WP, p /∈WP, there are A,B∈Σ+
0 with AnnKV(A,B) 6=0.

If xO = 1, then Q = ⊔k
i=11̂ for k > 4 since B is sincere and p 6∈ WP.

Then we set y = eO + eA + eB.

Thereafter we assume xO > 2. By Lemma 4, Q contains a proper
subset C ⊂ Q such that restriction p|C is critical. To construct the vector
y, we need to consider the following three cases.

(1) If C = 1̂ ⊔ 1̂ ⊔ 1̂ ⊔ 1̂ then we set y = eO + eA + eB.
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(2) Let C = 2̂ ⊔ 2̂ ⊔ 2̂, C = 1̂ ⊔ 3̂ ⊔ 3̂, or C = 1̂ ⊔ 2̂ ⊔ 5̂. Then every
pair of vertices of C, in particular (A,B), belongs to a subposet C′ ⊂ C,
C′ = (A1, A2, A3 < A4} ≃ 1̂ ⊔ 1̂ ⊔ 2̂. We set y = 2eO +

∑4
i=1 eAi

.
(3) Assume that C = 4̂ ⊔ 2̂ տ 2̂. By Lemma 4, 4), xO > 3. Every

pair of vertices (in particular A,B) belongs to C′ ⊂ C of the form {A1 <
A2;B2 > B1 < C2 > C1} ≃ 2̂⊔ 2̂ տ 2̂. Then y = 3eO + eA1

+ eA2
+ eB1

+
eB2

+ eC1
+ eC2

.
For the constructed y, the restriction p|supp y is WP since it is a proper

subform of the critical form. Then, by Lemma 3, there exists N ∈ indB
of dimension y which is non-schurian in repA by Lemma 5.

In the case |Σ−
0 | = 1, the assumption p /∈ WP contradicts to the

minimal non-schurity of A, hence p ∈ WP. Then B is schurian by Lemma
4, and we can apply Lemma 6 to A. So the induction base is proved.

Step 2. General case |Σ−
0 | > 2.

To prove the Theorem, it is enough to verify that B is a sincere schurian
bimodule problem, and apply Lemma 6.

Substep 2.1. p ∈ WP.

Proof. Assume p 6∈ WP, then there exists S ⊂ Ω0 such that p|S is a
critical form and µ is corresponding critical vector. Since q ∈ WP, there
exist A,B ∈ S such that AnnK V(A,B) 6= 0. Then there is y ∈ ℜ+

p

such that A,B ∈ supp y, but supp y 6= S. By assumption, Asupp y and
Bsupp y are schurian and, by Lemma 3, there exists Y ∈ indB such that
dimA Y = y. By Lemma 2, Y ∈ indA is non-schurian in repA which
implies contradiction by Lemma 5.

By Lemma 8, B ∈ ∁ and possesses a quasi multiplicative basis.

Remark 1. Let (A,M) be a minimal pair with a non-schurian M ∈ indA,
let E ∈ Σ−

0 , P = Σ−
0 \{E}, RP,M : AP,M −→A be the reduction con-

structed in Lemma 11, and let AP,M = (KP,M ,VP,M ) for MP ∈ repAP,M

with repRP,M (MP ) ≃M . Then AP,M is the standard non-schurian, and
S = (AP,M )red is a poset bimodule problem.

Proof. By Lemma 11, (AP,M ,MP ) is a minimal pair. The bigraph of AP,M

has a unique minus-vertex, so the fact follows from the step 1.

To show that B is schurian, we prove that every nilpotent endomor-
phism of any M ∈ indB is equal to zero. Then, by Fitting’s lemma ([15]),
every endomorphism of any M ∈ indB is invertible, and thus scalar.
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Let F ∈ repB(M,M) be a nilpotent endomorphism of M , i. e. F k = 0
for some integer k > 1. Obviously, to show that F = 0 we need to prove
that F (ϕ) = 0 for any ϕ ∈ Σ1

1, and F (1A) = 0 for each A ∈ Σ0.

Substep 2.2. F (1E) = 0 for every E ∈ Σ−
0 .

Proof. Since |Σ−
0 | > 2, there exists E1 ∈ Σ−

0 \{E}. Then, according to
remark 1, we apply M -reduction RM,P : AM,P −→A for P = {E1}.
Then MP (E) = M(E) for a representation MP ∈ repAM,P such that
repRM,P (MP ) =M , and if FP :MP −→MP is such that repRM,P (FP ) =
F , then FP (1E) = F (1E). Applying the induction assumption and Lemma
11 to the minimal non-schurian problem AM,P and to the sincere repre-
sentation MP , we obtain FP (1E) = 0.

Substep 2.3. If ϕ ∈ Σ 1
1(A,B) is a single arrow, then F (ϕ) = 0.

Proof. We apply RP,M for P = ObK−\Eϕ where Eϕ = {E}. By step 1,
AM,P is standard minimal non-schurian bimodule problem, and by Lemma
11, FP ∈ addAnnKP,M

(VP,M ) and F (ϕ) = 0.

Substep 2.4. If ϕ : A→ B is a joint arrow, then F (ϕ) = 0.

Proof. Let Eϕ = {E1, E2}, P = ObK−\Eϕ. We apply RP,M . If FP ∈
addAnnKP,M

(VP,M ), then, as in the substep 2.3, all is proved. In opposite
case, there exist non-zero nilpotent FP ∈ indS(MP ,MP ) for S = AP,M =
(Kred,W). We choose the basis Ψ = ΣS , and extend it to the basis ΣAP,M

.
By substep 2.3, FP (ψ) = 0 for any single ψ ∈ Ψ1

1, and so F (ψ) = 0.
For any joint ψ ∈ Ψ1

1, FP (ψ) = 0. Indeed, let A1, . . . , Am ∈ Ψ0 be all
vertices incident to the joint arrows from Ψ1

1. Consider a special bimodule
problem ST with T = {E1, E2, A1 . . . , Am}. Then F ∈ addKredST

, and
F defines an endomorphism of MP . By Lemma 12, 4), we obtain that
MP ∈ repST has a trivial direct summand which is the direct summand
of M ∈ repS obviously. So FP ∈ addAnnKP,M

(VP,M ).

Substep 2.5. F = 0.

Proof. It is enough to prove that F (1A) = 0 for all A ∈ Σ+
0 . Suppose it

fails for some A ∈ Σ+
0 . We denote by aj : Ej −→A, j = 1, . . . , i, all the

solid arrows incident to A. We consider the (
i
⊕
j=1

M(Ej),M(A))-cut of M

and the matrix [M ]A =
(

[M ](a1) . . . [M ](ai)
)

. The rank of this matrix
equals dimMA, otherwise M contains a trivial direct summand UA. Since
F (ϕ) = 0 for all ϕ ∈ Σ0

1, by the substeps 2.3 and 2.4, the equation
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[M ][F ]− [F ][M ] = 0 implies [F ](
i
⊕
j=1

1Ej
)[M ]A − [M ]A[F ](1A) = 0. Since

F (1Ej
) = 0 for any j, by the substep 2.2, [M ]A[F ](1A) = 0.

Corollary 1. Let A be a finite dimensional connected admitted bimodule
problem with at least 3 objects and Tits form qA ∈ WP. If qAred

is not
WP, then A can not be a minimal non-schurian bimodule problem.

Conclusion

The paper is devoted to the study of schurity property for a class of
matrix problems called one-sided bimodule problems, and is the second
step after [3] in research of the representation finiteness problem for a
mentioned class. By means of the constructed quasi multiplicative basis, we
prove that the minimal non-schurian admitted bimodule problem having
more than two vertices is standard minimal non-schurian.
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