About the spectra of a real nonnegative matrix and its signings

K. Attas, A. Boussaïri*, and M. Zaidi

Communicated by Yu. A. Drozd

Abstract. For a complex matrix M, we denote by $\operatorname{Sp}(M)$ the spectrum of M and by $|M|$ its absolute value, that is the matrix obtained from M by replacing each entry of M by its absolute value. Let A be a nonnegative real matrix, we call a signing of A every real matrix B such that $|B|=A$. In this paper, we characterize the set of all signings of A such that $\operatorname{Sp}(B)=\alpha \operatorname{Sp}(A)$ where α is a complex unit number. Our motivation comes from some recent results about the relationship between the spectrum of a graph and the skew spectra of its orientations.

1. Introduction

Throughout this paper, all matrices are complex, unless otherwise noted. The identity matrix of order n is denoted by I_{n} and the transpose of a matrix A by A^{T}. Let Σ be a subgroup of \mathbb{C}^{*}, the group of nonzero complex numbers under multiplication. Two square matrices A and B are Σ diagonally similar if $B=\Lambda^{-1} A \Lambda$ for some diagonal matrix Λ with diagonal entries in Σ. A square matrix A is reducible if there exists a permutation matrix P, so that A can be reduced to the form $P A P^{T}=\left(\begin{array}{cc}X & Y \\ 0 & Z\end{array}\right)$ where X and Z are square matrices. A square matrix which is not reducible is

[^0]said to be irreducible. A real matrix A is nonnegative, (we write $A \geqslant 0$), if all its entries are nonnegative.

Let A be an $n \times n$ real or complex matrix. The multiset $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ of eigenvalues of A is called the spectrum of A and is denoted by $\operatorname{Sp}(A)$. We usually assume that $\left|\lambda_{1}\right| \geqslant\left|\lambda_{2}\right| \geqslant \ldots \geqslant\left|\lambda_{n}\right|$. The spectral radius of A is $\rho(A):=\left|\lambda_{1}\right|$.

The relationship between the spectrum of a graph and the skew spectra of its orientations is studied in many papers (see for example [1,2,4-6,8,10]). Our work is closely related to the result of Shader and So [8]. To state this result, we need to introduce some definitions and notations.

Let G be a finite simple graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The adjacency matrix of G is the symmetric matrix $A(G)=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}$ where $a_{i j}=a_{j i}=1$ if $\left\{v_{i}, v_{j}\right\}$ is an edge of G and $a_{i j}=a_{j i}=0$ otherwise. Since the matrix $A(G)$ is symmetric, its eigenvalues are real. The adjacency spectrum $\operatorname{Sp}(G)$ of G is defined as the spectrum of $A(G)$. Let G^{σ} be an orientation of G, which assigns to each edge a direction so that the resultant graph G^{σ} becomes an oriented graph. The skew-adjacency matrix of G^{σ} is the real skew-symmetric matrix $S\left(G^{\sigma}\right)=\left(a_{i j}^{\sigma}\right)_{1 \leqslant i, j \leqslant n}$ where $a_{i j}^{\sigma}=-a_{j i}^{\sigma}=1$ if $\left(v_{i}, v_{j}\right)$ is an arc of G^{σ} and $a_{i j}^{\sigma}=0$ otherwise. The skew-spectrum $\operatorname{Sp}\left(G^{\sigma}\right)$ of G^{σ} is defined as the spectrum of $S\left(G^{\sigma}\right)$. Note that $\operatorname{Sp}\left(G^{\sigma}\right)$ consists of only purely imaginary eigenvalues because $S\left(G^{\sigma}\right)$ is a real skew-symmetric matrix.

Let G be a bipartite graph with bipartition $[I, J]$, the orientation G^{ε} that assigns to each edge of G a direction from I to J is called the canonical orientation. Shader and So [8] showed that $\operatorname{Sp}\left(G^{\varepsilon}\right)=i \operatorname{Sp}(G)$. Moreover, they proved that a graph G is bipartite if and only if $\operatorname{Sp}\left(G^{\sigma}\right)=i \operatorname{Sp}(G)$ for some orientation G^{σ} of G.

Consider now two orientations G^{σ} and G^{τ} of G. We say that G^{σ} and G^{τ} are switching-equivalent if there exists a subset W of $V(G)$ such that G^{σ} is obtained from G^{τ} by reversing the direction of all arcs between W and $V(G) \backslash W$. Clearly, the skew-adjacency matrices of switchingequivalent orientations are $\{-1,1\}$-diagonally similar. Hence, they have the same spectrum. When G is bipartite, Anuradha et al. [1] proved that $\operatorname{Sp}\left(G^{\sigma}\right)=i \operatorname{Sp}(G)$ if and only if G^{σ} is switching-equivalent to the canonical orientation.

These results can be stated in term of matrices as follows.

Proposition 1. Let A be a $\{0,1\}$-symmetric matrix. Then the following statements are equivalent :
i) There exists a real skew-symmetric matrix B such that $|B|=A$ and $\operatorname{Sp}(B)=i \operatorname{Sp}(A)$;
ii) There exists a permutation matrix P such that

$$
P A P^{T}=\left(\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right)
$$

where the zero diagonal blocks are square.
Proposition 2. Let $A=\left(\begin{array}{cc}0 & X \\ X^{T} & 0\end{array}\right)$ be a $\{0,1\}$-symmetric matrix and let B be a skew-symmetric matrix such that $|B|=A$. Then, the following statements are equivalent:
i) $\operatorname{Sp}(B)=i \operatorname{Sp}(A)$;
ii) B is $\{-1,1\}$-diagonally similar to $\widetilde{A}=\left(\begin{array}{cc}0 & X \\ -X^{T} & 0\end{array}\right)$.

For a $\{0,1\}$-symmetric matrix A, the propositions above characterize the set of all skew-symmetric signings B of A, such that $\operatorname{Sp}(B)=i \operatorname{Sp}(A)$. In this paper, we consider the more general problem.

Problem 1. Let A be a nonnegative real matrix and let α be a complex unit number. Characterize the set of all signings B of A such that $\operatorname{Sp}(B)=$ $\alpha \operatorname{Sp}(A)$.

We solve this problem when A is an irreducible matrix. To state our main result, we need some terminology. A digraph D is a pair consisting of a finite set $V(D)$ of vertices and a subset $E(D)$ of ordered pairs of vertices called arcs. Let v, v^{\prime} be two vertices of D, a path P from v to v^{\prime} is a finite sequence $v_{0}=v, \ldots, v_{k}=v^{\prime}$ such that $\left(v_{0}, v_{1}\right), \ldots,\left(v_{k-1}, v_{k}\right)$ are arcs of D. The length of P is the number k of its arcs. If $v_{0}=v_{k}$, we say that P is a closed path. A digraph is said to be strongly connected if for any two vertices v and v^{\prime}, there is a path joining v to v^{\prime}. It is easy to see that a strongly connected digraph contains a closed path. The period of a strongly connected digraph is the greatest common divisor of the lengths of its closed paths.

With each $n \times n$ matrix $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}$, we associate a digraph D_{A} on the vertex set $[n]=\{1, \ldots, n\}$ and with arc set $\left\{(i, j): a_{i j} \neq 0\right\}$. It is easy to show that A is irreducible if and only if D_{A} is strongly connected. The period of an irreducible matrix is the period of its associate digraph. For example, if A is the adjacency matrix of a connected graph G, then
its period is either 1 or 2 . Moreover, the period of A is 2 if and only if G is bipartite.

Let A be an irreducible nonnegative real matrix of period p. For each complex unit number α, we denote by $\mathcal{M}(\alpha, A)$ the set of all signings B of A such that $\operatorname{Sp}(B)=\alpha \operatorname{Sp}(A)$.

In Corollary 2, we prove that if $\mathcal{M}(\alpha, A)$ is nonempty, then $\alpha=e^{\frac{i \pi k}{p}}$ for some $k \in\{0, \ldots, 2 p-1\}$. Moreover, we prove in Proposition 6 that $e^{\frac{i 2 \pi}{p}} s p(A)=s p(A)$. This implies that,

$$
\begin{aligned}
\mathcal{M}(1, A) & =\mathcal{M}\left(e^{\frac{2 i \pi}{p}}, A\right)=\cdots=\mathcal{M}\left(e^{\frac{2(p-1) i \pi}{p}}, A\right) \\
\mathcal{M}\left(e^{\frac{i \pi}{p}}, A\right) & =\mathcal{M}\left(e^{\frac{3 i \pi}{p}}, A\right)=\cdots=\mathcal{M}\left(e^{\frac{(2 p-1) i \pi}{p}}, A\right)
\end{aligned}
$$

Therefore, it suffices to characterize $\mathcal{M}(1, A)$ and $\mathcal{M}\left(e^{\frac{i \pi}{p}}, A\right)$.
In the proof of Corollary 1, we give an explicit construction of a matrix $B_{0} \in \mathcal{M}\left(e^{\frac{i \pi}{p}}, A\right)$ which is used in our main theorem below.

Theorem 1. Under the notation above, the following statements hold
i) $\mathcal{M}(1, A)$ is the set of matrices $\{-1,1\}$-diagonally similar to A;
ii) $\mathcal{M}\left(e^{\frac{i \pi}{p}}, A\right)$ is the set of matrices $\{-1,1\}$-diagonally similar to B_{0}.

2. Some properties of $\mathcal{M}(\alpha, A)$

Throughout, A is an $n \times n$ irreducible nonnegative matrix, p its period and α a unit complex number. We will use the following theorem due to Helmut Wielandt [9].

Theorem 2. Let B be a complex $n \times n$ matrix such that $|B| \leqslant A$. Then $\rho(B) \leqslant \rho(A)$. Moreover, if equality holds (i.e., $\rho(A) e^{i \theta} \in \operatorname{Sp}(B)$ for some real number θ) then $B=e^{i \theta} L A L^{-1}$, where L is a complex diagonal matrix such that $|L|=I_{n}$.

We will use Theorem 2 to prove the following.
Proposition 3. Let B be a signing of A such that $\rho(B)=\rho(A)$. If λ is an eigenvalue of B such that $|\lambda|=\rho(A)$, then $\lambda=\rho(A) e^{\frac{i \pi k}{p}}$ for some $k \in\{0, \ldots, 2 p-1\}$.

Proof. Let $A:=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}, B:=\left(b_{i j}\right)_{1 \leqslant i, j \leqslant n}$ and $\lambda=\rho(A) e^{i \theta}$. By Theorem 2, we have $B=e^{i \theta} L A L^{-1}$ where L is a complex diagonal matrix such that $|L|=I_{n}$. It follows that $b_{i j}=e^{i \theta} l_{i} a_{i j} l_{j}^{-1}$ for $i, j \in\{1, \ldots, n\}$,
where l_{1}, \ldots, l_{n} are the diagonal entries of L. Consider now a closed path $C=\left(i_{1}, i_{2}, \ldots, i_{r}, i_{1}\right)$ of D_{A}. By the previous equality, we have

$$
\frac{b_{i_{1} i_{2}} \ldots b_{i_{r-1} i_{r}} b_{i_{r} i_{1}}}{a_{i_{1} i_{2}} \ldots a_{i_{r-1} i_{r}} a_{i_{r} i_{1}}}=\left(e^{i \theta} l_{i_{1}} l_{i_{2}}^{-1}\right) \ldots\left(e^{i \theta} l_{i_{r-1}} l_{i_{r}}^{-1}\right)\left(e^{i \theta} l_{i_{r}} l_{i_{1}}^{-1}\right)=\left(e^{i \theta}\right)^{r}
$$

Then $\left(e^{i \theta}\right)^{r} \in\{1,-1\}$ because $|B|=A$.
Since p is the greatest common divisor of the lengths of the closed paths in D_{A}, we have $\left(e^{i \theta}\right)^{p} \in\{1,-1\}$ and then $\lambda=\rho(A) e^{\frac{i \pi k}{p}}$ for some $k \in\{0, \ldots, 2 p-1\}$.

Remark 1. Let λ be an eigenvalue of A such that $|\lambda|=\rho(A)$. By applying Proposition 3 to $B=A$, we have $\lambda=\rho(A) e^{\frac{i \pi k}{p}}$ for some $k \in$ $\{0, \ldots, 2 p-1\}$.

The following result gives a necessary condition under which $\mathcal{M}(\alpha, A)$ is nonempty.

Corollary 1. If $\mathcal{M}(\alpha, A)$ is nonempty then $\alpha=e^{\frac{i \pi k}{p}}$ for some $k \in$ $\{0, \ldots, 2 p-1\}$, or equivalently $\alpha^{p}= \pm 1$.

Proof. Let λ be an eigenvalue of A such that $|\lambda|=\rho(A)$. By Remark 1, we have $\lambda=\rho(A) e^{\frac{i \pi k}{p}}$ for some $k \in\{0, \ldots, 2 p-1\}$. Let $B \in \mathcal{M}(\alpha, A)$. Then $\alpha \rho(A) e^{\frac{i \pi k}{p}} \in \operatorname{Sp}(B)$ because $\operatorname{Sp}(B)=\alpha \operatorname{Sp}(A)$. It follows from Proposition 3 that $\alpha \rho(A) e^{\frac{i \pi k}{p}}=\rho(A) e^{\frac{i \pi h}{p}}$ for some $h \in\{0, \ldots, 2 p-1\}$ and hence $\alpha=e^{\frac{i \pi(h-k)}{p}}$.

It is easy to see that if $B \in \mathcal{M}(\alpha, A)$, then $\Lambda^{-1} B \Lambda \in \mathcal{M}(\alpha, A)$ for every $\{-1,1\}$-diagonal matrix Λ. Conversely,

Proposition 4. The matrices in the set $\mathcal{M}(\alpha, A)$ are all $\{-1,1\}$ diagonally similar.

Proof. Let $B_{1}, B_{2} \in \mathcal{M}(\alpha, A)$. Then $\operatorname{Sp}\left(B_{1}\right)=\operatorname{Sp}\left(B_{2}\right)=\alpha \operatorname{Sp}(A)$. It follows that B_{1} and B_{2} have a common eigenvalue of the form $\rho(A) e^{i \theta}$ for some real number θ. By Theorem 2, we have $B_{1}=e^{i \theta} L_{1} A L_{1}^{-1}$ and $B_{2}=e^{i \theta} L_{2} A L_{2}^{-1}$ where L_{1}, L_{2} are complex diagonal matrices such that $\left|L_{1}\right|=\left|L_{2}\right|=I_{n}$. It follows that $B_{1}=\left(L_{2} L_{1}^{-1}\right)^{-1} B_{2} L_{2} L_{1}^{-1}$. To conclude, it suffices to apply Lemma 1 below.

Lemma 1. Let B, B^{\prime} be two signings of A. If there exists a complex diagonal matrix Γ such that $B^{\prime}=\Gamma B \Gamma^{-1}$ and $|\Gamma|=I_{n}$ then B and B^{\prime} are $\{-1,1\}$-diagonally similar.

Proof. Let $A:=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}, B:=\left(b_{i j}\right)_{1 \leqslant i, j \leqslant n}$ and $B^{\prime}:=\left(b_{i j}^{\prime}\right)_{1 \leqslant i, j \leqslant n}$. We denote by $\gamma_{1}, \ldots, \gamma_{n}$ the diagonal entries of Γ. Let $\Delta:=\gamma_{1}^{-1} \Gamma$. Clearly, we have $\Delta B \Delta^{-1}=\Gamma B \Gamma^{-1}=B^{\prime}$. Hence, to prove our lemma, it suffices to check that Δ is a $\{-1,1\}$-diagonal matrix. For this, let $j \in\{2, \ldots, n\}$. As A is irreducible, the digraph D_{A} is strongly connected and then there is a path $j=i_{1}, \ldots, i_{r}=1$ of D_{A} from j to 1 . By definition of D_{A}, we have $a_{i_{1} i_{2}} \neq 0, \ldots, a_{i_{r-1} i_{r}} \neq 0$. It follows that $b_{i_{1} i_{2}} \neq 0, \ldots, b_{i_{r-1} i_{r}} \neq 0$ and $b_{i_{1} i_{2}}^{\prime} \neq 0, \ldots, b_{i_{r-1} i_{r}}^{\prime} \neq 0$ because $|B|=\left|B^{\prime}\right|=A$. Moreover, from the equality $B^{\prime}=\Gamma B \Gamma^{-1}$ we have $b_{i_{1} i_{2}}^{\prime}=\gamma_{i_{1}} b_{i_{1} i_{2}} \gamma_{i_{2}}^{-1}, b_{i_{2} i_{3}}^{\prime}=\gamma_{i_{2}} b_{i_{2} i_{3}} \gamma_{i_{3}}^{-1}, \ldots$, $b_{i_{r-1} i_{r}}^{\prime}=\gamma_{i_{r-1}} b_{i_{r-1} i_{r}} \gamma_{i_{r}}^{-1}$. Then $b_{i_{1} i_{2}}^{\prime} \ldots b_{i_{r-1} i_{r}}^{\prime}=\gamma_{i_{1}}^{\prime} \gamma_{i_{r}}^{-1} b_{i_{1} i_{2}} \ldots b_{i_{r-1} i_{r}}$. But by hypothesis, B, B^{\prime} are real matrices and $|B|=\left|B^{\prime}\right|$, then $b_{i_{1} i_{2}}^{\prime} \ldots b_{i_{r-1} i_{r}}^{\prime}=$ $\pm b_{i_{1} i_{2}} \ldots b_{i_{r-1} i_{r}}$ and hence $\gamma_{j} \gamma_{1}^{-1}=\gamma_{i_{1}} \gamma_{i_{r}}^{-1} \in\{-1,1\}$, which completes the proof of the lemma.

3. Proof of the main theorem

Assertion i. (resp. assertion $i i$. for $p=1$) follows from Proposition 4 and the fact that $A \in \mathcal{M}(1, A)$ (resp. $-A \in \mathcal{M}(-1, A))$. To prove assertion i. for $p>1$, we will use the cyclic form of irreducible matrices with period p. To define k-cyclic matrices, let n be a positive integer and let $\left\{r_{1}, \ldots, r_{k}\right\}$ be a partition of n, that is r_{1}, \ldots, r_{k} are positive integers and $r_{1}+\cdots+r_{k}=n$. For $i=1, \ldots, k-1$, let A_{i} be a $r_{i} \times r_{i+1}$ matrix and let A_{k} be a $r_{k} \times r_{1}$ matrix. The matrix

$$
\left(\begin{array}{ccccc}
0 & A_{1} & 0 & \cdots & 0 \\
0 & 0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & A_{k-1} \\
A_{k} & 0 & \cdots & 0 & 0
\end{array}\right)
$$

is denoted by $\operatorname{Cyc}\left(A_{1}, A_{2}, \ldots, A_{k}\right)$. Each matrix of this form is called k-cyclic.

The characterization of irreducible matrices with period $p>1$ is given by the following result due to Frobenius.

Proposition 5. Let A be an irreducible nonnegative real matrix with period $p>1$, then there exists a permutation matrix P such that $P A P^{T}$ is p-cyclic.

Proposition 6. Let $A=\operatorname{Cyc}\left(A_{1}, A_{2}, \ldots, A_{p}\right)$ be a nonnegative p-cyclic matrix where A_{i} is a $r_{i} \times r_{i+1}$ matrix for $i=1, \ldots, p-1$ and A_{p} is a $r_{p} \times r_{1}$ matrix. Let \widetilde{A} be the matrix obtained from A by replacing the block A_{p} by $-A_{p}$. Let $k \in\{0, \ldots, 2 p-1\}$, then
i) if k is even, $e^{\frac{i \pi k}{p}} A$ is diagonally similar to A, in particular $\operatorname{Sp}(A)=$ $e^{\frac{i \pi k}{p}} \operatorname{Sp}(A)$;
ii) if k is odd, $e^{\frac{i \pi k}{p}} A$ is diagonally similar to \widetilde{A}, in particular $\operatorname{Sp}(\widetilde{A})=$ $e^{\frac{i \pi k}{p}} \operatorname{Sp}(A)$.

Proof. Let

$$
L:=\left(\begin{array}{ccccc}
I_{r_{1}} & 0 & 0 & \cdots & 0 \\
0 & e^{\frac{i \pi k}{p}} I_{r_{2}} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & e^{\frac{i \pi k(p-1)}{p}} I_{r_{p}}
\end{array}\right)
$$

It easy to check that if k is even, $e^{\frac{i \pi k}{p}} L A L^{-1}=A$ and if k is odd, $e^{\frac{i \pi k}{p}} L A L^{-1}=\widetilde{A}$.

The next corollary is a consequence of the above proposition and Proposition 5.

Corollary 2. Let A be an irreducible nonnegative matrix with period p. Then $\mathcal{M}\left(e^{\frac{i \pi}{p}}, A\right)$ is nonempty.

Proof. As $(-A) \in \mathcal{M}(-1, A)$, we can assume that $p>1$. By Proposition 5, there exists a permutation matrix P such that $P A P^{T}$ is p-cyclic. Let $A^{\prime}:=P A P^{T}:=C y c\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{p}^{\prime}\right)$ and let $\widetilde{A^{\prime}}$ be the matrix obtained from A^{\prime} by replacing the block A_{p}^{\prime} by $-A_{p}^{\prime}$. It follows from Proposition 6 that $\operatorname{Sp}\left(\widetilde{A^{\prime}}\right)=e^{\frac{i \pi}{p}} \operatorname{Sp}\left(A^{\prime}\right)$, and hence $\operatorname{Sp}\left(P^{T} \widetilde{A^{\prime}} P\right)=e^{\frac{i \pi}{p}} \operatorname{Sp}\left(P^{T} A^{\prime} P\right)=$ $e^{\frac{i \pi}{p}} \operatorname{Sp}(A)$. Let $B_{0}:=P^{T} \widetilde{A^{\prime}} P$. Since $\left|\widetilde{A^{\prime}}\right|=A^{\prime}$, we have $\left|B_{0}\right|=P^{T} A^{\prime} P=$ A and then $B_{0} \in \mathcal{M}\left(e^{\frac{i \pi k}{p}}, A\right)$.

References

[1] A. Anuradha, R. Balakrishnan, X. Chen, X. Li, H. Lian and W. So, Skew spectra of oriented bipartite graphs, Electron. J. Combin. 20, 2013, \#P18.
[2] A. Anuradha, R. Balakrishnan and W. So, Skew spectra of graphs without even cycles, Linear Algebra and its Applications, 444, 2014, pp.67-80.
[3] N. Biggs, Algebraic Graph Theory, Second Edition, Cambridge University Press, 1993.
[4] M. Cavers, S.M. Cioaba, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M. Tsatsomeros, Skew-adjacency matrices of graphs, Linear Algebra Appl. 436, 2012, pp.4512-4529.
[5] D. Cui and Y. Hou, On the skew spectra of Cartesian products of graphs, The Electronic J. Combin. 20 (2), 2013, \#P19.
[6] Y. Hou and T. Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, The Electronic Journal of Combinatorics 18, 2011, \#P156.
[7] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, London, 1993.
[8] B. Shader and W. So, Skew spectra of oriented graphs, The electronic journal of Combinatorics 16, 2009, N 32.
[9] H. Wielandt, Unzerlegbare, nicht negative Matrizen. Mathematische Zeitschrift 52 (1), 1950, pp.642-648.
[10] G. Xu, Some inequalities on the skew-spectral radii of oriented graphs, J. Inequal. Appl. 211, 2012, pp.1-13.

Contact information

Kawtar Attas, Abderrahim Boussaïri, Mohamed Zaidi

Laboratoire de Topologie, Algèbre, Géométrie et Mathématiques Discrètes, Faculté des Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, Morocco. E-Mail(s): kawtar.attas@gmail.com, aboussairi@hotmail.com, zaidi.fsac@gmail.com

Received by the editors: 17.09.2019.

[^0]: *Corresponding author.
 2020 MSC: 05C20, 05C50.
 Key words and phrases: spectra, digraphs, nonnegative matrices, irreducible matrices.

