C Algebra and Discrete Mathematics Volume **32** (2021). Number 1, pp. 1–8 DOI:10.12958/adm1461

About the spectra of a real nonnegative matrix and its signings

K. Attas, A. Boussaïri^{*}, and M. Zaidi

Communicated by Yu. A. Drozd

ABSTRACT. For a complex matrix M, we denote by Sp(M) the spectrum of M and by |M| its absolute value, that is the matrix obtained from M by replacing each entry of M by its absolute value. Let A be a nonnegative real matrix, we call a *signing* of A every real matrix B such that |B| = A. In this paper, we characterize the set of all signings of A such that $\text{Sp}(B) = \alpha \text{Sp}(A)$ where α is a complex unit number. Our motivation comes from some recent results about the relationship between the spectrum of a graph and the skew spectra of its orientations.

1. Introduction

Throughout this paper, all matrices are complex, unless otherwise noted. The identity matrix of order n is denoted by I_n and the transpose of a matrix A by A^T . Let Σ be a subgroup of \mathbb{C}^* , the group of nonzero complex numbers under multiplication. Two square matrices A and B are Σ -diagonally similar if $B = \Lambda^{-1}A\Lambda$ for some diagonal matrix Λ with diagonal entries in Σ . A square matrix A is reducible if there exists a permutation matrix P, so that A can be reduced to the form $PAP^T = \begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix}$ where X and Z are square matrices. A square matrix which is not reducible is

^{*}Corresponding author.

²⁰²⁰ MSC: 05C20, 05C50.

Key words and phrases: spectra, digraphs, nonnegative matrices, irreducible matrices.

said to be *irreducible*. A real matrix A is nonnegative, (we write $A \ge 0$), if all its entries are nonnegative.

Let A be an $n \times n$ real or complex matrix. The multiset $\{\lambda_1, \ldots, \lambda_n\}$ of eigenvalues of A is called the *spectrum* of A and is denoted by Sp(A). We usually assume that $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. The *spectral radius* of A is $\rho(A) := |\lambda_1|$.

The relationship between the spectrum of a graph and the skew spectra of its orientations is studied in many papers (see for example [1,2,4–6,8,10]). Our work is closely related to the result of Shader and So [8]. To state this result, we need to introduce some definitions and notations.

Let G be a finite simple graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set E(G). The adjacency matrix of G is the symmetric matrix $A(G) = (a_{ij})_{1 \leq i,j \leq n}$ where $a_{ij} = a_{ji} = 1$ if $\{v_i, v_j\}$ is an edge of G and $a_{ij} = a_{ji} = 0$ otherwise. Since the matrix A(G) is symmetric, its eigenvalues are real. The adjacency spectrum Sp (G) of G is defined as the spectrum of A(G). Let G^{σ} be an orientation of G, which assigns to each edge a direction so that the resultant graph G^{σ} becomes an oriented graph. The skew-adjacency matrix of G^{σ} is the real skew-symmetric matrix $S(G^{\sigma}) = (a_{ij}^{\sigma})_{1 \leq i,j \leq n}$ where $a_{ij}^{\sigma} = -a_{ji}^{\sigma} = 1$ if (v_i, v_j) is an arc of G^{σ} and $a_{ij}^{\sigma} = 0$ otherwise. The skew-spectrum Sp (G^{σ}) of G^{σ} is defined as the spectrum of $S(G^{\sigma})$. Note that Sp (G^{σ}) consists of only purely imaginary eigenvalues because $S(G^{\sigma})$ is a real skew-symmetric matrix.

Let G be a bipartite graph with bipartition [I, J], the orientation G^{ε} that assigns to each edge of G a direction from I to J is called the *canonical orientation*. Shader and So [8] showed that Sp $(G^{\varepsilon}) = i$ Sp (G). Moreover, they proved that a graph G is bipartite if and only if Sp $(G^{\sigma}) = i$ Sp (G)for some orientation G^{σ} of G.

Consider now two orientations G^{σ} and G^{τ} of G. We say that G^{σ} and G^{τ} are *switching-equivalent* if there exists a subset W of V(G) such that G^{σ} is obtained from G^{τ} by reversing the direction of all arcs between W and $V(G) \setminus W$. Clearly, the skew-adjacency matrices of switchingequivalent orientations are $\{-1, 1\}$ -diagonally similar. Hence, they have the same spectrum. When G is bipartite, Anuradha et al. [1] proved that $\operatorname{Sp}(G^{\sigma}) = i \operatorname{Sp}(G)$ if and only if G^{σ} is switching-equivalent to the canonical orientation.

These results can be stated in term of matrices as follows.

Proposition 1. Let A be a $\{0,1\}$ -symmetric matrix. Then the following statements are equivalent :

- i) There exists a real skew-symmetric matrix B such that |B| = A and $\operatorname{Sp}(B) = i \operatorname{Sp}(A)$;
- ii) There exists a permutation matrix P such that

$$PAP^T = \begin{pmatrix} 0 & X \\ X^T & 0 \end{pmatrix}$$

where the zero diagonal blocks are square.

Proposition 2. Let $A = \begin{pmatrix} 0 & X \\ X^T & 0 \end{pmatrix}$ be a $\{0, 1\}$ -symmetric matrix and let B be a skew-symmetric matrix such that |B| = A. Then, the following statements are equivalent :

- i) $\operatorname{Sp}(B) = i \operatorname{Sp}(A);$
- ii) B is $\{-1, 1\}$ -diagonally similar to $\widetilde{A} = \begin{pmatrix} 0 & X \\ -X^T & 0 \end{pmatrix}$.

For a $\{0, 1\}$ -symmetric matrix A, the propositions above characterize the set of all skew-symmetric signings B of A, such that $\operatorname{Sp}(B) = i \operatorname{Sp}(A)$. In this paper, we consider the more general problem.

Problem 1. Let A be a nonnegative real matrix and let α be a complex unit number. Characterize the set of all signings B of A such that $\text{Sp}(B) = \alpha \text{Sp}(A)$.

We solve this problem when A is an irreducible matrix. To state our main result, we need some terminology. A digraph D is a pair consisting of a finite set V(D) of vertices and a subset E(D) of ordered pairs of vertices called arcs. Let v, v' be two vertices of D, a path P from v to v' is a finite sequence $v_0 = v, \ldots, v_k = v'$ such that $(v_0, v_1), \ldots, (v_{k-1}, v_k)$ are arcs of D. The length of P is the number k of its arcs. If $v_0 = v_k$, we say that P is a closed path. A digraph is said to be strongly connected if for any two vertices v and v', there is a path joining v to v'. It is easy to see that a strongly connected digraph contains a closed path. The period of a strongly connected digraph is the greatest common divisor of the lengths of its closed paths.

With each $n \times n$ matrix $A = (a_{ij})_{1 \leq i,j \leq n}$, we associate a digraph D_A on the vertex set $[n] = \{1, \ldots, n\}$ and with arc set $\{(i, j) : a_{ij} \neq 0\}$. It is easy to show that A is irreducible if and only if D_A is strongly connected. The *period* of an irreducible matrix is the period of its associate digraph. For example, if A is the adjacency matrix of a connected graph G, then its period is either 1 or 2. Moreover, the period of A is 2 if and only if G is bipartite.

Let A be an irreducible nonnegative real matrix of period p. For each complex unit number α , we denote by $\mathcal{M}(\alpha, A)$ the set of all signings B of A such that $\operatorname{Sp}(B) = \alpha \operatorname{Sp}(A)$.

In Corollary 2, we prove that if $\mathcal{M}(\alpha, A)$ is nonempty, then $\alpha = e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \ldots, 2p-1\}$. Moreover, we prove in Proposition 6 that $e^{\frac{i2\pi}{p}}sp(A) = sp(A)$. This implies that,

$$\mathcal{M}(1,A) = \mathcal{M}(e^{\frac{2i\pi}{p}}, A) = \dots = \mathcal{M}(e^{\frac{2(p-1)i\pi}{p}}, A)$$
$$\mathcal{M}(e^{\frac{i\pi}{p}}, A) = \mathcal{M}(e^{\frac{3i\pi}{p}}, A) = \dots = \mathcal{M}(e^{\frac{(2p-1)i\pi}{p}}, A)$$

Therefore, it suffices to characterize $\mathcal{M}(1, A)$ and $\mathcal{M}(e^{\frac{i\pi}{p}}, A)$.

In the proof of Corollary 1, we give an explicit construction of a matrix $B_0 \in \mathcal{M}(e^{\frac{i\pi}{p}}, A)$ which is used in our main theorem below.

Theorem 1. Under the notation above, the following statements hold

- i) $\mathcal{M}(1, A)$ is the set of matrices $\{-1, 1\}$ -diagonally similar to A;
- ii) $\mathcal{M}(e^{\frac{i\pi}{p}}, A)$ is the set of matrices $\{-1, 1\}$ -diagonally similar to B_0 .

2. Some properties of $\mathcal{M}(\alpha, A)$

Throughout, A is an $n \times n$ irreducible nonnegative matrix, p its period and α a unit complex number. We will use the following theorem due to Helmut Wielandt [9].

Theorem 2. Let B be a complex $n \times n$ matrix such that $|B| \leq A$. Then $\rho(B) \leq \rho(A)$. Moreover, if equality holds (i.e., $\rho(A)e^{i\theta} \in \operatorname{Sp}(B)$ for some real number θ) then $B = e^{i\theta}LAL^{-1}$, where L is a complex diagonal matrix such that $|L| = I_n$.

We will use Theorem 2 to prove the following.

Proposition 3. Let B be a signing of A such that $\rho(B) = \rho(A)$. If λ is an eigenvalue of B such that $|\lambda| = \rho(A)$, then $\lambda = \rho(A)e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \ldots, 2p-1\}$.

Proof. Let $A := (a_{ij})_{1 \leq i,j \leq n}$, $B := (b_{ij})_{1 \leq i,j \leq n}$ and $\lambda = \rho(A)e^{i\theta}$. By Theorem 2, we have $B = e^{i\theta}LAL^{-1}$ where L is a complex diagonal matrix such that $|L| = I_n$. It follows that $b_{ij} = e^{i\theta}l_ia_{ij}l_j^{-1}$ for $i, j \in \{1, \ldots, n\}$, where l_1, \ldots, l_n are the diagonal entries of L. Consider now a closed path $C = (i_1, i_2, \ldots, i_r, i_1)$ of D_A . By the previous equality, we have

$$\frac{b_{i_1i_2}\dots b_{i_{r-1}i_r}b_{i_ri_1}}{a_{i_1i_2}\dots a_{i_{r-1}i_r}a_{i_ri_1}} = (e^{i\theta}l_{i_1}l_{i_2}^{-1})\dots(e^{i\theta}l_{i_{r-1}}l_{i_r}^{-1})(e^{i\theta}l_{i_r}l_{i_1}^{-1}) = (e^{i\theta})^r$$

Then $(e^{i\theta})^r \in \{1, -1\}$ because |B| = A.

Since p is the greatest common divisor of the lengths of the closed paths in D_A , we have $(e^{i\theta})^p \in \{1, -1\}$ and then $\lambda = \rho(A)e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \ldots, 2p-1\}$.

Remark 1. Let λ be an eigenvalue of A such that $|\lambda| = \rho(A)$. By applying Proposition 3 to B = A, we have $\lambda = \rho(A)e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \ldots, 2p-1\}$.

The following result gives a necessary condition under which $\mathcal{M}(\alpha, A)$ is nonempty.

Corollary 1. If $\mathcal{M}(\alpha, A)$ is nonempty then $\alpha = e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \ldots, 2p-1\}$, or equivalently $\alpha^p = \pm 1$.

Proof. Let λ be an eigenvalue of A such that $|\lambda| = \rho(A)$. By Remark 1, we have $\lambda = \rho(A)e^{\frac{i\pi k}{p}}$ for some $k \in \{0, \dots, 2p-1\}$. Let $B \in \mathcal{M}(\alpha, A)$. Then $\alpha \rho(A)e^{\frac{i\pi k}{p}} \in \operatorname{Sp}(B)$ because $\operatorname{Sp}(B) = \alpha \operatorname{Sp}(A)$. It follows from Proposition 3 that $\alpha \rho(A)e^{\frac{i\pi k}{p}} = \rho(A)e^{\frac{i\pi h}{p}}$ for some $h \in \{0, \dots, 2p-1\}$ and hence $\alpha = e^{\frac{i\pi(h-k)}{p}}$.

It is easy to see that if $B \in \mathcal{M}(\alpha, A)$, then $\Lambda^{-1}B\Lambda \in \mathcal{M}(\alpha, A)$ for every $\{-1, 1\}$ -diagonal matrix Λ . Conversely,

Proposition 4. The matrices in the set $\mathcal{M}(\alpha, A)$ are all $\{-1, 1\}$ diagonally similar.

Proof. Let $B_1, B_2 \in \mathcal{M}(\alpha, A)$. Then $\operatorname{Sp}(B_1) = \operatorname{Sp}(B_2) = \alpha \operatorname{Sp}(A)$. It follows that B_1 and B_2 have a common eigenvalue of the form $\rho(A)e^{i\theta}$ for some real number θ . By Theorem 2, we have $B_1 = e^{i\theta}L_1AL_1^{-1}$ and $B_2 = e^{i\theta}L_2AL_2^{-1}$ where L_1, L_2 are complex diagonal matrices such that $|L_1| = |L_2| = I_n$. It follows that $B_1 = (L_2L_1^{-1})^{-1}B_2L_2L_1^{-1}$. To conclude, it suffices to apply Lemma 1 below.

Lemma 1. Let B, B' be two signings of A. If there exists a complex diagonal matrix Γ such that $B' = \Gamma B \Gamma^{-1}$ and $|\Gamma| = I_n$ then B and B' are $\{-1, 1\}$ -diagonally similar.

Proof. Let $A := (a_{ij})_{1 \le i,j \le n}$, $B := (b_{ij})_{1 \le i,j \le n}$ and $B' := (b'_{ij})_{1 \le i,j \le n}$. We denote by $\gamma_1, \ldots, \gamma_n$ the diagonal entries of Γ. Let $\Delta := \gamma_1^{-1} \Gamma$. Clearly, we have $\Delta B \Delta^{-1} = \Gamma B \Gamma^{-1} = B'$. Hence, to prove our lemma, it suffices to check that Δ is a $\{-1, 1\}$ -diagonal matrix. For this, let $j \in \{2, \ldots, n\}$. As A is irreducible, the digraph D_A is strongly connected and then there is a path $j = i_1, \ldots, i_r = 1$ of D_A from j to 1. By definition of D_A , we have $a_{i_1i_2} \neq 0, \ldots, a_{i_{r-1}i_r} \neq 0$. It follows that $b_{i_1i_2} \neq 0, \ldots, b_{i_{r-1}i_r} \neq 0$ and $b'_{i_1i_2} \neq 0, \ldots, b'_{i_{r-1}i_r} \neq 0$ because |B| = |B'| = A. Moreover, from the equality $B' = \Gamma B \Gamma^{-1}$ we have $b'_{i_1i_2} = \gamma_{i_1} b_{i_1i_2} \gamma_{i_2}^{-1}$, $b'_{i_2i_3} = \gamma_{i_2} b_{i_2i_3} \gamma_{i_3}^{-1}, \ldots, b'_{i_{r-1}i_r} = \gamma_{i_r-1} b_{i_{r-1}i_r} \gamma_{i_r}^{-1}$. Then $b'_{i_1i_2} \ldots b'_{i_{r-1}i_r} = \gamma_{i_1} \gamma_{i_r}^{-1} b_{i_1i_2} \ldots b_{i_{r-1}i_r} = \pm b_{i_1i_2} \ldots b_{i_{r-1}i_r}$ and hence $\gamma_j \gamma_1^{-1} = \gamma_{i_1} \gamma_{i_r}^{-1} \in \{-1,1\}$, which completes the proof of the lemma.

3. Proof of the main theorem

Assertion *i*. (resp. assertion *ii*. for p = 1) follows from Proposition 4 and the fact that $A \in \mathcal{M}(1, A)$ (resp. $-A \in \mathcal{M}(-1, A)$). To prove assertion *ii*. for p > 1, we will use the cyclic form of irreducible matrices with period *p*. To define *k*-cyclic matrices, let *n* be a positive integer and let $\{r_1, \ldots, r_k\}$ be a partition of *n*, that is r_1, \ldots, r_k are positive integers and $r_1 + \cdots + r_k = n$. For $i = 1, \ldots, k - 1$, let A_i be a $r_i \times r_{i+1}$ matrix and let A_k be a $r_k \times r_1$ matrix. The matrix

(0	A_1	0	• • •	0
0	0	A_2	• • •	0
÷	:	·	۰. ۲.	:
0	0	0	۰.	A_{k-1}
A_k	0		0	0 /

is denoted by $Cyc(A_1, A_2, \ldots, A_k)$. Each matrix of this form is called *k*-cyclic.

The characterization of irreducible matrices with period p > 1 is given by the following result due to Frobenius.

Proposition 5. Let A be an irreducible nonnegative real matrix with period p > 1, then there exists a permutation matrix P such that PAP^T is p-cyclic.

Proposition 6. Let $A = Cyc(A_1, A_2, ..., A_p)$ be a nonnegative p-cyclic matrix where A_i is a $r_i \times r_{i+1}$ matrix for i = 1, ..., p-1 and A_p is a $r_p \times r_1$ matrix. Let \widetilde{A} be the matrix obtained from A by replacing the block A_p by $-A_p$. Let $k \in \{0, ..., 2p-1\}$, then

- i) if k is even, $e^{\frac{i\pi k}{p}}A$ is diagonally similar to A, in particular $Sp(A) = e^{\frac{i\pi k}{p}}Sp(A)$;
- ii) if k is odd, $e^{\frac{i\pi k}{p}}A$ is diagonally similar to \widetilde{A} , in particular $\operatorname{Sp}(\widetilde{A}) = e^{\frac{i\pi k}{p}}\operatorname{Sp}(A)$.

Proof. Let

$$L := \begin{pmatrix} I_{r_1} & 0 & 0 & \cdots & 0 \\ 0 & e^{\frac{i\pi k}{p}} I_{r_2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & \cdots & 0 & e^{\frac{i\pi k(p-1)}{p}} I_{r_p} \end{pmatrix}.$$

It easy to check that if k is even, $e^{\frac{i\pi k}{p}}LAL^{-1} = A$ and if k is odd, $e^{\frac{i\pi k}{p}}LAL^{-1} = \widetilde{A}.$

The next corollary is a consequence of the above proposition and Proposition 5.

Corollary 2. Let A be an irreducible nonnegative matrix with period p. Then $\mathcal{M}(e^{\frac{i\pi}{p}}, A)$ is nonempty.

Proof. As $(-A) \in \mathcal{M}(-1, A)$, we can assume that p > 1. By Proposition 5, there exists a permutation matrix P such that PAP^T is p-cyclic. Let $A' := PAP^T := Cyc(A'_1, A'_2, \ldots, A'_p)$ and let $\widetilde{A'}$ be the matrix obtained from A' by replacing the block A'_p by $-A'_p$. It follows from Proposition 6 that $\operatorname{Sp}(\widetilde{A'}) = e^{\frac{i\pi}{p}} \operatorname{Sp}(A')$, and hence $\operatorname{Sp}(P^T \widetilde{A'}P) = e^{\frac{i\pi}{p}} \operatorname{Sp}(P^T A'P) = e^{\frac{i\pi}{p}} \operatorname{Sp}(A)$. Let $B_0 := P^T \widetilde{A'}P$. Since $\left|\widetilde{A'}\right| = A'$, we have $|B_0| = P^T A'P = A$ and then $B_0 \in \mathcal{M}(e^{\frac{i\pi k}{p}}, A)$.

References

 A. Anuradha, R. Balakrishnan, X. Chen, X. Li, H. Lian and W. So, Skew spectra of oriented bipartite graphs, Electron. J. Combin. 20, 2013, #P18.

- [2] A. Anuradha, R. Balakrishnan and W. So, Skew spectra of graphs without even cycles, Linear Algebra and its Applications, 444, 2014, pp.67–80.
- [3] N. Biggs, Algebraic Graph Theory, Second Edition, Cambridge University Press, 1993.
- [4] M. Cavers, S.M. Cioaba, S. Fallat, D.A. Gregory, W.H. Haemers, S.J. Kirkland, J.J. McDonald, M. Tsatsomeros, *Skew-adjacency matrices of graphs*, Linear Algebra Appl. **436**, 2012, pp.4512–4529.
- [5] D. Cui and Y. Hou, On the skew spectra of Cartesian products of graphs, The Electronic J. Combin. 20 (2), 2013, #P19.
- [6] Y. Hou and T. Lei, Characteristic polynomials of skew-adjacency matrices of oriented graphs, The Electronic Journal of Combinatorics 18, 2011, #P156.
- [7] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, London, 1993.
- [8] B. Shader and W. So, Skew spectra of oriented graphs, The electronic journal of Combinatorics 16, 2009, N 32.
- H. Wielandt, Unzerlegbare, nicht negative Matrizen. Mathematische Zeitschrift 52 (1), 1950, pp.642-648.
- [10] G. Xu, Some inequalities on the skew-spectral radii of oriented graphs, J. Inequal. Appl. 211, 2012, pp.1–13.

CONTACT INFORMATION

Kawtar Attas,	Laboratoire de Topologie, Algèbre, Géométrie			
Abderrahim	et Mathématiques Discrètes, Faculté des			
Boussaïri,	Sciences Aïn Chock, Hassan II University of			
Mohamed Zaidi	Casablanca, Casablanca, Morocco.			
	E-Mail(s): kawtar.attas@gmail.com,			
	aboussairi@hotmail.com,			
	zaidi.fsac@gmail.com			

Received by the editors: 17.09.2019.