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Abstract. For a complex matrix M , we denote by Sp(M)
the spectrum of M and by |M | its absolute value, that is the matrix

obtained from M by replacing each entry of M by its absolute value.

Let A be a nonnegative real matrix, we call a signing of A every

real matrix B such that |B| = A. In this paper, we characterize

the set of all signings of A such that Sp(B) = α Sp(A) where α is

a complex unit number. Our motivation comes from some recent

results about the relationship between the spectrum of a graph and

the skew spectra of its orientations.

1. Introduction

Throughout this paper, all matrices are complex, unless otherwise noted.
The identity matrix of order n is denoted by In and the transpose of a
matrix A by AT . Let Σ be a subgroup of C∗, the group of nonzero complex
numbers under multiplication. Two square matrices A and B are Σ-
diagonally similar if B = Λ−1AΛ for some diagonal matrix Λ with diagonal
entries in Σ. A square matrix A is reducible if there exists a permutation

matrix P , so that A can be reduced to the form PAP T =

(
X Y

0 Z

)
where

X and Z are square matrices. A square matrix which is not reducible is
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said to be irreducible. A real matrix A is nonnegative, (we write A > 0),
if all its entries are nonnegative.

Let A be an n× n real or complex matrix. The multiset {λ1, . . . , λn}
of eigenvalues of A is called the spectrum of A and is denoted by Sp(A).
We usually assume that |λ1| > |λ2| > . . . > |λn|. The spectral radius of A
is ρ(A) := |λ1|.

The relationship between the spectrum of a graph and the skew spectra
of its orientations is studied in many papers (see for example [1,2,4–6,8,10]).
Our work is closely related to the result of Shader and So [8]. To state
this result, we need to introduce some definitions and notations.

Let G be a finite simple graph with vertex set V (G) = {v1, . . . , vn}
and edge set E(G). The adjacency matrix of G is the symmetric matrix
A(G) = (aij)16i,j6n where aij = aji = 1 if {vi, vj} is an edge of G

and aij = aji = 0 otherwise. Since the matrix A(G) is symmetric, its
eigenvalues are real. The adjacency spectrum Sp (G) of G is defined as
the spectrum of A(G). Let Gσ be an orientation of G, which assigns to
each edge a direction so that the resultant graph Gσ becomes an oriented
graph. The skew-adjacency matrix of Gσ is the real skew-symmetric matrix
S(Gσ) = (aσij)16i,j6n where aσij = −aσji = 1 if (vi, vj) is an arc of Gσ and
aσij = 0 otherwise. The skew-spectrum Sp (Gσ) of Gσ is defined as the
spectrum of S(Gσ). Note that Sp(Gσ) consists of only purely imaginary
eigenvalues because S(Gσ) is a real skew-symmetric matrix.

Let G be a bipartite graph with bipartition [I, J ], the orientation Gε

that assigns to each edge of G a direction from I to J is called the canonical
orientation. Shader and So [8] showed that Sp (Gε) = i Sp (G). Moreover,
they proved that a graph G is bipartite if and only if Sp (Gσ) = i Sp (G)
for some orientation Gσ of G.

Consider now two orientations Gσ and Gτ of G. We say that Gσ

and Gτ are switching-equivalent if there exists a subset W of V (G) such
that Gσ is obtained from Gτ by reversing the direction of all arcs be-
tween W and V (G)\W . Clearly, the skew-adjacency matrices of switching-
equivalent orientations are {−1, 1}-diagonally similar. Hence, they have
the same spectrum. When G is bipartite, Anuradha et al. [1] proved
that Sp (Gσ) = i Sp (G) if and only if Gσ is switching-equivalent to the
canonical orientation.

These results can be stated in term of matrices as follows.

Proposition 1. Let A be a {0, 1}-symmetric matrix. Then the following
statements are equivalent :



“adm-n3” — 2021/11/8 — 20:27 — page 3 — #5

K. Attas, A. Boussaïri , M. Zaidi 3

i) There exists a real skew-symmetric matrix B such that |B| = A and
Sp(B) = i Sp(A);

ii) There exists a permutation matrix P such that

PAP T =

(
0 X

XT 0

)

where the zero diagonal blocks are square.

Proposition 2. Let A =

(
0 X

XT 0

)
be a {0, 1}-symmetric matrix and

let B be a skew-symmetric matrix such that |B| = A. Then, the following
statements are equivalent :

i) Sp(B) = i Sp(A);

ii) B is {−1, 1}-diagonally similar to Ã =

(
0 X

−XT 0

)
.

For a {0, 1}-symmetric matrix A, the propositions above characterize
the set of all skew-symmetric signings B of A, such that Sp(B) = i Sp(A).
In this paper, we consider the more general problem.

Problem 1. Let A be a nonnegative real matrix and let α be a complex
unit number. Characterize the set of all signings B of A such that Sp(B) =
α Sp(A).

We solve this problem when A is an irreducible matrix. To state our
main result, we need some terminology. A digraph D is a pair consisting
of a finite set V (D) of vertices and a subset E(D) of ordered pairs of
vertices called arcs. Let v, v′ be two vertices of D, a path P from v to v′ is
a finite sequence v0 = v, . . . , vk = v′ such that (v0, v1), . . . , (vk−1, vk) are
arcs of D. The length of P is the number k of its arcs. If v0 = vk, we say
that P is a closed path. A digraph is said to be strongly connected if for
any two vertices v and v′, there is a path joining v to v′. It is easy to see
that a strongly connected digraph contains a closed path. The period of a
strongly connected digraph is the greatest common divisor of the lengths
of its closed paths.

With each n× n matrix A = (aij)16i,j6n, we associate a digraph DA

on the vertex set [n] = {1, . . . , n} and with arc set {(i, j) : aij 6= 0}. It is
easy to show that A is irreducible if and only if DA is strongly connected.
The period of an irreducible matrix is the period of its associate digraph.
For example, if A is the adjacency matrix of a connected graph G, then
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its period is either 1 or 2. Moreover, the period of A is 2 if and only if G
is bipartite.

Let A be an irreducible nonnegative real matrix of period p. For each
complex unit number α, we denote by M(α,A) the set of all signings B

of A such that Sp(B) = α Sp(A).

In Corollary 2, we prove that if M(α,A) is nonempty, then α = e
iπk
p

for some k ∈ {0, . . . , 2p− 1}. Moreover, we prove in Proposition 6 that

e
i2π
p sp(A) = sp(A). This implies that,

M(1, A) = M(e
2iπ
p , A) = · · · = M(e

2(p−1)iπ
p , A)

M(e
iπ
p , A) = M(e

3iπ
p , A) = · · · = M(e

(2p−1)iπ
p , A)

Therefore, it suffices to characterize M(1, A) and M(e
iπ
p , A).

In the proof of Corollary 1, we give an explicit construction of a matrix

B0 ∈ M(e
iπ
p , A) which is used in our main theorem below.

Theorem 1. Under the notation above, the following statements hold

i) M(1, A) is the set of matrices {−1, 1}-diagonally similar to A;

ii) M(e
iπ
p , A) is the set of matrices {−1, 1}-diagonally similar to B0.

2. Some properties of M(α,A)

Throughout, A is an n×n irreducible nonnegative matrix, p its period
and α a unit complex number. We will use the following theorem due to
Helmut Wielandt [9].

Theorem 2. Let B be a complex n× n matrix such that |B| 6 A. Then
ρ(B) 6 ρ(A). Moreover, if equality holds (i.e., ρ(A)eiθ ∈ Sp(B) for some
real number θ) then B = eiθLAL−1, where L is a complex diagonal matrix
such that |L| = In.

We will use Theorem 2 to prove the following.

Proposition 3. Let B be a signing of A such that ρ(B) = ρ(A). If λ

is an eigenvalue of B such that |λ| = ρ(A), then λ = ρ(A)e
iπk
p for some

k ∈ {0, . . . , 2p− 1}.

Proof. Let A := (aij)16i,j6n, B := (bij)16i,j6n and λ = ρ(A)eiθ. By
Theorem 2, we have B = eiθLAL−1 where L is a complex diagonal matrix
such that |L| = In. It follows that bij = eiθliaijl

−1

j for i, j ∈ {1, . . . , n},
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where l1, . . . , ln are the diagonal entries of L. Consider now a closed path
C = (i1, i2, . . . , ir, i1) of DA. By the previous equality, we have

bi1i2 . . . bir−1irbiri1
ai1i2 . . . air−1irairi1

= (eiθli1 l
−1

i2
) . . . (eiθlir−1 l

−1

ir
)(eiθlir l

−1

i1
) = (eiθ)r

Then (eiθ)r ∈ {1,−1} because |B| = A.
Since p is the greatest common divisor of the lengths of the closed

paths in DA, we have (eiθ)p ∈ {1,−1} and then λ = ρ(A)e
iπk
p for some

k ∈ {0, . . . , 2p− 1}.

Remark 1. Let λ be an eigenvalue of A such that |λ| = ρ(A). By

applying Proposition 3 to B = A, we have λ = ρ(A)e
iπk
p for some k ∈

{0, . . . , 2p− 1}.

The following result gives a necessary condition under which M(α,A)
is nonempty.

Corollary 1. If M(α,A) is nonempty then α = e
iπk
p for some k ∈

{0, . . . , 2p− 1}, or equivalently αp = ±1.

Proof. Let λ be an eigenvalue of A such that |λ| = ρ(A). By Remark 1,

we have λ = ρ(A)e
iπk
p for some k ∈ {0, . . . , 2p− 1}. Let B ∈ M(α,A).

Then αρ(A)e
iπk
p ∈ Sp(B) because Sp(B) = α Sp(A). It follows from

Proposition 3 that αρ(A)e
iπk
p = ρ(A)e

iπh
p for some h ∈ {0, . . . , 2p− 1}

and hence α = e
iπ(h−k)

p .

It is easy to see that if B ∈ M(α,A), then Λ−1BΛ ∈ M(α,A) for
every {−1, 1}-diagonal matrix Λ. Conversely,

Proposition 4. The matrices in the set M(α,A) are all {−1, 1}diago-
nally similar.

Proof. Let B1, B2 ∈ M(α,A). Then Sp(B1) = Sp(B2) = α Sp(A). It
follows that B1 and B2 have a common eigenvalue of the form ρ(A)eiθ

for some real number θ. By Theorem 2, we have B1 = eiθL1AL
−1

1
and

B2 = eiθL2AL
−1

2
where L1, L2 are complex diagonal matrices such that

|L1| = |L2| = In. It follows that B1 = (L2L
−1

1
)−1B2L2L

−1

1
. To conclude,

it suffices to apply Lemma 1 below.

Lemma 1. Let B, B′ be two signings of A. If there exists a complex
diagonal matrix Γ such that B′ = ΓBΓ−1 and |Γ| = In then B and B′ are
{−1, 1}-diagonally similar.
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Proof. Let A := (aij)16i,j6n, B := (bij)16i,j6n and B′ := (b′ij)16i,j6n. We

denote by γ1, . . . , γn the diagonal entries of Γ. Let ∆ := γ−1

1
Γ. Clearly,

we have ∆B∆−1 = ΓBΓ−1 = B′. Hence, to prove our lemma, it suffices
to check that ∆ is a {−1, 1}-diagonal matrix. For this, let j ∈ {2, . . . , n}.
As A is irreducible, the digraph DA is strongly connected and then there
is a path j = i1, . . . , ir = 1 of DA from j to 1. By definition of DA, we
have ai1i2 6= 0, . . . , air−1ir 6= 0. It follows that bi1i2 6= 0,. . . , bir−1ir 6= 0
and b′i1i2 6= 0,. . . , b′ir−1ir

6= 0 because |B| = |B′| = A. Moreover, from the

equality B′ = ΓBΓ−1 we have b′i1i2 = γi1bi1i2γ
−1

i2
, b′i2i3 = γi2bi2i3γ

−1

i3
,. . . ,

b′ir−1ir
= γir−1bir−1irγ

−1

ir
. Then b′i1i2 . . . b

′

ir−1ir
= γi1γ

−1

ir
bi1i2 . . . bir−1ir . But

by hypothesis,B,B′ are real matrices and |B| = |B′|, then b′i1i2 . . . b
′

ir−1ir
=

±bi1i2 . . . bir−1ir and hence γjγ
−1

1
= γi1γ

−1

ir
∈ {−1, 1}, which completes

the proof of the lemma.

3. Proof of the main theorem

Assertion i. (resp. assertion ii. for p = 1) follows from Proposition 4 and
the fact that A ∈ M(1, A) (resp. −A ∈ M(−1, A)). To prove assertion
ii. for p > 1, we will use the cyclic form of irreducible matrices with
period p. To define k-cyclic matrices, let n be a positive integer and let
{r1, . . . , rk} be a partition of n, that is r1, . . . , rk are positive integers and
r1 + · · ·+ rk = n. For i = 1, . . . , k − 1, let Ai be a ri × ri+1 matrix and
let Ak be a rk × r1 matrix. The matrix




0 A1 0 · · · 0
0 0 A2 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . Ak−1

Ak 0 · · · 0 0




is denoted by Cyc(A1, A2, . . . , Ak). Each matrix of this form is called
k-cyclic.

The characterization of irreducible matrices with period p > 1 is given
by the following result due to Frobenius.

Proposition 5. Let A be an irreducible nonnegative real matrix with
period p > 1, then there exists a permutation matrix P such that PAP T

is p-cyclic.
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Proposition 6. Let A = Cyc(A1, A2, . . . , Ap) be a nonnegative p-cyclic
matrix where Ai is a ri × ri+1 matrix for i = 1, . . . , p − 1 and Ap is a

rp× r1 matrix. Let Ã be the matrix obtained from A by replacing the block
Ap by −Ap. Let k ∈ {0, . . . , 2p− 1}, then

i) if k is even, e
iπk
p A is diagonally similar to A, in particular Sp(A) =

e
iπk
p Sp(A);

ii) if k is odd, e
iπk
p A is diagonally similar to Ã, in particular Sp(Ã) =

e
iπk
p Sp(A).

Proof. Let

L :=




Ir1 0 0 · · · 0

0 e
iπk
p Ir2 0 · · · 0

...
...

. . .
. . .

...

0 0 0
. . . 0

0 0 · · · 0 e
iπk(p−1)

p Irp




.

It easy to check that if k is even, e
iπk
p LAL−1 = A and if k is odd,

e
iπk
p LAL−1 = Ã.

The next corollary is a consequence of the above proposition and
Proposition 5.

Corollary 2. Let A be an irreducible nonnegative matrix with period p.

Then M(e
iπ
p , A) is nonempty.

Proof. As (−A) ∈ M(−1, A), we can assume that p > 1. By Proposition 5,
there exists a permutation matrix P such that PAP T is p−cyclic. Let
A′ := PAP T := Cyc(A

′

1, A
′

2, . . . , A
′

p) and let Ã′ be the matrix obtained

from A′ by replacing the block A
′

p by −A
′

p. It follows from Proposition 6

that Sp(Ã′) = e
iπ
p Sp(A′), and hence Sp(P T Ã′P ) = e

iπ
p Sp(P TA′P ) =

e
iπ
p Sp(A). Let B0 := P T Ã′P . Since

∣∣∣Ã′

∣∣∣ = A′, we have |B0| = P TA′P =

A and then B0 ∈ M(e
iπk
p , A).
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