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About the spectra of a real nonnegative matrix
and its signings
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ABSTRACT. For a complex matrix M, we denote by Sp(M)
the spectrum of M and by |M]| its absolute value, that is the matrix
obtained from M by replacing each entry of M by its absolute value.
Let A be a nonnegative real matrix, we call a signing of A every
real matrix B such that |B| = A. In this paper, we characterize
the set of all signings of A such that Sp(B) = o Sp(A) where « is
a complex unit number. Our motivation comes from some recent
results about the relationship between the spectrum of a graph and
the skew spectra of its orientations.

1. Introduction

Throughout this paper, all matrices are complex, unless otherwise noted.
The identity matrix of order n is denoted by I,, and the transpose of a
matrix A by AT, Let ¥ be a subgroup of C*, the group of nonzero complex
numbers under multiplication. Two square matrices A and B are X-
diagonally similar if B = A~' AA for some diagonal matrix A with diagonal

entries in X. A square matrix A is reducible if there exists a permutation

matrix P, so that A can be reduced to the form PAPT = <)0( g) where

X and Z are square matrices. A square matrix which is not reducible is
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said to be irreducible. A real matrix A is nonnegative, (we write A > 0),
if all its entries are nonnegative.

Let A be an n x n real or complex matrix. The multiset {A1,..., Ay}
of eigenvalues of A is called the spectrum of A and is denoted by Sp(A).
We usually assume that |A1] = [A2| > ... = |\n|. The spectral radius of A
is p(A) == |A1].

The relationship between the spectrum of a graph and the skew spectra
of its orientations is studied in many papers (see for example [1,2,4-6,8,10]).
Our work is closely related to the result of Shader and So [8]. To state
this result, we need to introduce some definitions and notations.

Let G be a finite simple graph with vertex set V(G) = {v1,...,v,}
and edge set E(G). The adjacency matriz of G is the symmetric matrix
A(G) = (aij)i<ij<n Where aj; = aj; = 1 if {v;,v;} is an edge of G
and a;; = aj = 0 otherwise. Since the matrix A(G) is symmetric, its
eigenvalues are real. The adjacency spectrum Sp (G) of G is defined as
the spectrum of A(G). Let G be an orientation of G, which assigns to
each edge a direction so that the resultant graph GG° becomes an oriented
graph. The skew-adjacency matrix of G7 is the real skew-symmetric matrix
S(G7) = (af;)1<i,j<n Where af; = —af; = 1if (v;,v;) is an arc of G” and
af; = 0 otherwise. The skew-spectrum Sp (G?) of G7 is defined as the
spectrum of S(G?). Note that Sp(G?) consists of only purely imaginary
eigenvalues because S(G7) is a real skew-symmetric matrix.

Let G be a bipartite graph with bipartition [/, J], the orientation G¢
that assigns to each edge of G a direction from [ to J is called the canonical
orientation. Shader and So [8] showed that Sp (G%) =i Sp (G). Moreover,
they proved that a graph G is bipartite if and only if Sp (G?) =i Sp (G)
for some orientation G of G.

Consider now two orientations G° and G7 of G. We say that G°¢
and G7 are switching-equivalent if there exists a subset W of V(G) such
that G7 is obtained from G7 by reversing the direction of all arcs be-
tween W and V(G)\W. Clearly, the skew-adjacency matrices of switching-
equivalent orientations are {—1,1}-diagonally similar. Hence, they have
the same spectrum. When G is bipartite, Anuradha et al. [1| proved
that Sp (G?) = i Sp (G) if and only if G? is switching-equivalent to the
canonical orientation.

These results can be stated in term of matrices as follows.

Proposition 1. Let A be a {0, 1}-symmetric matriz. Then the following
statements are equivalent :
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i) There exists a real skew-symmetric matriz B such that |B| = A and
Sp(B) = iSp(A);
ii) There exists a permutation matriz P such that

r (0 X
PAP _<XT 0

where the zero diagonal blocks are square.

0 X
XT 0
let B be a skew-symmetric matriz such that |B| = A. Then, the following
statements are equivalent :

i) Sp(B) = iSp(A);
ii) B is {—1,1}-diagonally similar to A = ( 0 X> .

Proposition 2. Let A = ( be a {0, 1}-symmetric matriz and

-XT 9

For a {0, 1}-symmetric matrix A, the propositions above characterize
the set of all skew-symmetric signings B of A, such that Sp(B) = i Sp(A).
In this paper, we consider the more general problem.

Problem 1. Let A be a nonnegative real matrix and let a be a complex
unit number. Characterize the set of all signings B of A such that Sp(B) =
aSp(A).

We solve this problem when A is an irreducible matrix. To state our
main result, we need some terminology. A digraph D is a pair consisting
of a finite set V(D) of vertices and a subset E(D) of ordered pairs of
vertices called arcs. Let v,v" be two vertices of D, a path P from v to v’ is
a finite sequence vg = v, ..., v, = v’ such that (vg,v1),..., (vg_1,vE) are
arcs of D. The length of P is the number k of its arcs. If vg = v, we say
that P is a closed path. A digraph is said to be strongly connected if for
any two vertices v and v’, there is a path joining v to v’. It is easy to see
that a strongly connected digraph contains a closed path. The period of a
strongly connected digraph is the greatest common divisor of the lengths
of its closed paths.

With each n x n matrix A = (a;;)1<i j<n, We associate a digraph D4
on the vertex set [n] = {1,...,n} and with arc set {(¢, ) : a;; # 0}. It is
easy to show that A is irreducible if and only if D 4 is strongly connected.
The period of an irreducible matrix is the period of its associate digraph.
For example, if A is the adjacency matrix of a connected graph G, then
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its period is either 1 or 2. Moreover, the period of A is 2 if and only if G
is bipartite.

Let A be an irreducible nonnegative real matrix of period p. For each
complex unit number «, we denote by M(a, A) the set of all signings B
of A such that Sp(B) = aSp(A4).

ik

In Corollary 2, we prove that if M(«, A) is nonempty, then o = e »
for some k € {0,...,2p — 1}. Moreover, we prove in Proposition 6 that

127

e » sp(A) = sp(A). This implies that,

2im 2(p—1)im
ML A) = M7 A) == M(e 777 A
M(ET,A) = MET,A) == M(e 577, A4)

Therefore, it suffices to characterize M(1, A) and M(e%,A).
In the proof of Corollary 1, we give an explicit construction of a matrix

By € M(e%,A) which is used in our main theorem below.

Theorem 1. Under the notation above, the following statements hold
i) M(1, A) is the set of matrices {—1,1}-diagonally similar to A;
i) M(e%,A) is the set of matrices {—1,1}-diagonally similar to By.

2. Some properties of M(a, A)

Throughout, A is an n x n irreducible nonnegative matrix, p its period
and « a unit complex number. We will use the following theorem due to
Helmut Wielandt [9].

Theorem 2. Let B be a complex n x n matriz such that |B| < A. Then
p(B) < p(A). Moreover, if equality holds (i.c., p(A)e? € Sp(B) for some
real number 0) then B = e9LAL™Y, where L is a complezx diagonal matriz
such that |L| = I,,.

We will use Theorem 2 to prove the following.

Proposition 3. Let B be a signing of A such that p(B) = p(A). If A
ik

is an eigenvalue of B such that |\| = p(A), then A = p(A)e » for some

ke{o,...,2p—1}.

Proof. Let A := (aij)1<ij<n, B = (bij)i<ijen and A = p(A)e”. By

Theorem 2, we have B = ¢’ LAL™! where L is a complex diagonal matrix

such that |L| = I,,. It follows that b;; = ewliaijl;1 fori,5 € {1,...,n},
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where [y, ..., [, are the diagonal entries of L. Consider now a closed path
C = (i1,12,...,ir,11) of D4. By the previous equality, we have

biiy -+ bi_yi birs | | | |
Qiyiy - ..au_liral:;l N (ewlill;) o (ewliplli:l)<ewlirl;1> =
Then (e?)" € {1, —1} because |B| = A.
Since p is the greatest common divisor of the lengths of the closed
paths in D4, we have ()P € {1,—1} and then A = p(A)e% for some
kefo,...,2p—1}. 0

1102 + + + Yip_1iy

Remark 1. Let A be an eigenvalue of A such that [A[ = p(A4). By

itk
applying Proposition 3 to B = A, we have A = p(A)e » for some k €
{0,...,2p— 1}

The following result gives a necessary condition under which M(a, A)
is nonempty.

itk

Corollary 1. If M(a, A) is nonempty then o = e » for some k €
{0,...,2p — 1}, or equivalently o? = +1.

Proof. Let A be an eigenvalue of A such that |\ = p(A). By Remark 1,
we have A = p(A)e% for some k € {0,...,2p —1}. Let B € M(a, A).
Then ozp(A)e% € Sp(B) because Sp(B) = aSp(A). It follows from
Proposition 3 that ap(A)e% = p(A)e% for some h € {0,...,2p — 1}

im(h—k)
and hence o = e » . O

It is easy to see that if B € M(a, A), then A~!BA € M(a, A) for
every {—1,1}-diagonal matrix A. Conversely,

Proposition 4. The matrices in the set M(c, A) are all {—1,1}diago-
nally similar.

Proof. Let Bi,Bs € M(a, A). Then Sp(B1) = Sp(B2) = aSp(4). It
follows that B; and Bs have a common eigenvalue of the form p(A)e®
for some real number 0. By Theorem 2, we have B; = eleALfl and
By = engALQ_ 1 where Ly, Ly are complex diagonal matrices such that
|L1| = |La| = I,. Tt follows that By = (LoL;')™'BaLoL;!. To conclude,
it suffices to apply Lemma 1 below. ]

Lemma 1. Let B, B’ be two signings of A. If there exists a complex
diagonal matriz T such that B' = TBTU~! and |T'| = I,, then B and B’ are
{—1, 1}-diagonally similar.
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P?“OOf. Let A := (aij)1<¢7j<n, B = (bij)lgz‘,jgn and B’ := (b;j)léidén' We
denote by 71, ...,7v, the diagonal entries of T'. Let A := yflf‘ Clearly,
we have ABA™! = T'BI'"! = B’. Hence, to prove our lemma, it suffices
to check that A is a {—1, 1}-diagonal matrix. For this, let 7 € {2,...,n}.
As A is irreducible, the digraph D4 is strongly connected and then there
is a path j =11,...,4. =1 of Dy from j to 1. By definition of D4, we
have a;,i, # 0, .. azr i 7 0. It follows that b4, # 0,..., b;, 4, # 0

and b ;, #0,..., b, _; # 0 because |B| = |B’| = A. Moreover, from the
equality B’ = FBI‘ ! we have b] ;. = i, biyiy i, b;m Vi binisViy o - -
o viy = Yirabin_1i s, .- Then big -+ U5 _1in = Vi Vi, “biniy + - biy i, But
by hypothesis, B, B’ are real matrices and |B| = |B'|, then b} ;, ...b; ; =
£biyiy - .- bi,_,i, and hence vjvfl = %-17;1 € {—1,1}, which completes
the proof of the lemma. O

3. Proof of the main theorem

Assertion i. (resp. assertion ii. for p = 1) follows from Proposition 4 and
the fact that A € M(1,A) (resp. —A € M(—1,A)). To prove assertion
1. for p > 1, we will use the cyclic form of irreducible matrices with
period p. To define k-cyclic matrices, let n be a positive integer and let
{r1,...,7,} be a partition of n, that is 1, ..., ry are positive integers and
ri+--4+rp=nFori=1,....k—1,let A; be a r; X r;11 matrix and
let A be a rp X r1 matrix. The matrix

0 A 0 -+ 0
0 0 A, -~ 0
0 0 0 " A,
A, 0 - 0 0

is denoted by Cyc(Ai, Ag, ..., Ar). Each matrix of this form is called
k-cyclic.

The characterization of irreducible matrices with period p > 1 is given
by the following result due to Frobenius.

Proposition 5. Let A be an irreducible nonnegative real matriz with
period p > 1, then there exists a permutation matriz P such that PAPT
s p-cyclic.
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Proposition 6. Let A = Cyc(A;, Az, ..., A,) be a nonnegative p-cyclic
matriz where A; is a v; X ri41 matriz fori =1,...,p—1 and Ay is a
rp X r1 matriz. Let A be the matriz obtained from A by replacing the block
A, by —A,. Let k €{0,...,2p — 1}, then
itk
1) if k is even, e » A is diagonally similar to A, in particular Sp(A) =
ik
e » Sp(A);
imk ~ ~
i) if k is odd, e » A is diagonally similar to A, in particular Sp(A) =
itk
er Sp(A).

Proof. Let
I, 0 0 0
itk
0 erl., O 0
L .= :
0 0 0
irk(p—1)
0 0 0 e » ”

It easy to check that if k£ is even, e%LAL*1 = A and if k£ is odd,

ik
er LAL71 = A. m

The next corollary is a consequence of the above proposition and
Proposition 5.

Corollary 2. Let A be an irreducible nonnegative matriz with period p.
Then ./\/l(e%,A) is nonempty.

Proof. As (—A) € M(—1, A), we can assume that p > 1. By Proposition 5,
there exists a permutation matrix P such that PAPT is p—cyclic. Let
A= PAPT .= Cyc(All, AIQ, e ,A;,) and let A’ be the matrix obtained
from A’ by replacing the block A;, by —A;). It follows from Proposition 6
that Sp(;l/’) —er Sp(A’), and hence Sp(PT:ZlJ’P) — e Sp(PTA'P) =
e'® Sp(A). Let By := PTA'P. Since ‘E‘ — A, we have | By| = PTA'P =

A and then By € M(e'7 , A). O
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