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On the lattice of weak topologies
on the bicyclic monoid with adjoined zero

S. Bardyla® and O. Gutik

Communicated by V. Mazorchuk

ABSTRACT. A Hausdorff topology 7 on the bicyclic monoid
with adjoined zero C is called weak if it is contained in the coarsest
inverse semigroup topology on C°. We show that the lattice W of all
weak shift-continuous topologies on C° is isomorphic to the lattice
STF'xSTF"' where SIF' is the set of all shift-invariant filters on
w with an attached element 1 endowed with the following partial
order: F < G if and only if G = 1 or F C G. Also, we investigate
cardinal characteristics of the lattice WW. In particular, we prove
that W contains an antichain of cardinality 2¢ and a well-ordered
chain of cardinality ¢. Moreover, there exists a well-ordered chain
of first-countable weak topologies of order type t.

1. Introduction and preliminaries

In this paper all topological spaces are assumed to be Hausdorff. The
cardinality of a set X is denoted by |X|. Further we shall follow the
terminology of [22,27,28]. By w we denote the first infinite ordinal. The
set of integers is denoted by Z. By ¢ we denote the cardinality of the
family of all subsets of w.

A semigroup S is called inverse if for every x € S there exists a unique
y € S such that zyr = r and yry = y. Such an element y is denoted by
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2~ ! and called the inverse of x. The map which associates every element
of an inverse semigroup to its inverse is called an inversion.

Given a semigroup S, we shall denote the set of all idempotents of S
by E(S). A semigroup S with an adjoined zero will be denoted by S°.

A poset is a set endowed with a partial order which is usually denoted
by <. A poset X is called upper (lower, resp.) semilattice if each finite non-
empty subset of X has a supremum (infimum, resp.). An upper (lower,
resp.) semilattice X is called complete if each non-empty subset of X
has a supremum (infimum, resp.). Elements x, y of a poset X are called
incomparable if neither x < y nor y < x. For any poset X and € X put

le={yeX|y<a}, tr={ye X |z <y},
Pz =la\ {z}, 12 =tz \ {z}.

A poset X is called a lattice if each finite non-empty subset of X has
infimum and supremum. A lattice X is called complete if any non-empty
subset of X has infimum and supremum. A poset X is called a chain
if for any distinct a,b € X either a < b or b < a. A chain X is called
well-ordered if any non-empty subset A of X contains the smallest element.

If Y is a subset of a topological space X, then by Y we denote the
closure of Y in X.

A family F of subsets of a set X is called a filter if it satisfies the
following conditions:

(1) @ & F;

(2) If A€ Fand A C B then B € F;

(3) If A,B € F then ANB € F.
A family B is called a base of a filter F if for each element A € F there
exists an element B € B such that B C A. A filter F is called free if
Nrer = 3.

A semitopological (topological, resp.) semigroup is a topological space
together with a separately (jointly, resp.) continuous semigroup operation.
An inverse semigroup with continuous semigroup operation and inversion
is called a topological inverse semigroup.

A topology 7 on a semigroup S is called:

e shift-continuous, if (S, T) is a semitopological semigroup;

e semigroup, if (S,7) is a topological semigroup;

e inverse semigroup, if (S,7) is a topological inverse semigroup.

The bicyclic monoid C is a semigroup with the identity 1 generated
by two elements p and ¢ subject to the relation pg = 1.
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The bicyclic monoid is isomorphic to the set wxw endowed with the
following semigroup operation:

‘ _f (a+c—=0b,d), if b<c
(a,0) (C’d>_{ (a,d+b—c), if b>c

The bicyclic monoid plays an important role in the algebraic theory
of semigroups as well as in the theory of topological semigroups. For
example, the well-known Andersen’s result 1] states that a (0-)simple
semigroup with an idempotent is completely (0-)simple if and only if it
does not contain an isomorphic copy of the bicyclic semigroup. The bicyclic
semigroup admits only the discrete semigroup topology [21]. In [14] this
result was extended to the case of semitopological semigroups. Compact
topological semigroups cannot contain an isomorphic copy of the bicyclic
monoid [2]. The problem of an embedding of the bicyclic monoid into
compact-like topological semigroups was discussed in [4,5, 12,25, 26].
However, it is natural to consider the bicyclic monoid with an adjoined
zero CY. It is well-known that the bicyclic monoid with an adjoined zero is
isomorphic to the polycyclic monoid P; which is isomorphic to the graph
inverse semigroup G(E) over the graph E which consists of one vertex
and one loop. The monoid C° is a building block of a-bicyclic monoids,
polycyclic monoids and some graph inverse semigroups. For example:

Theorem 1.1 ([10, Theorem 6]). Let a graph inverse semigroup G(F) be
a dense subsemigroup of a CLP-compact topological semigroup S. Then
the following statements hold:

(1) there exists a cardinal k such that F = (UaexFEo) U F where the
graph [ is acyclic and for each o € k the graph F, consists of one
vertex and one loop;

(2) if the graph F' is non-empty, then the semigroup G(F') is a compact
subset of G(E);

(3) each open neighborhood of 0 contains all but finitely many subsets
G(E.) CG(E), a € k.

In [7] it was proved the following:

Theorem 1.2 (|7, Theorem 1]). Each graph inverse semigroup G(E) is
a subsemigroup of the polycyclic monoid Pig(g))-

This result leads us to the following problem:

Problem 1.3 (|7, Question 1]). Is it true that each semitopological
(topological, topological inverse, resp.) graph inverse semigroup G(F) is a
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subsemigroup of a semitopological (topological, topological inverse, resp.)
polycyclic monoid Pig(gy)-

So, to solve this problem we need to know more about a topologization
of polycyclic monoids and their subsemigroups. Locally compact shift-
continuous and semigroup topologies on polycyclic monoids and graph
inverse semigroups have been actively investigated in recent years. For
instance, in [23] it was proved that a Hausdorff locally compact semitopo-
logical bicyclic semigroup with an adjoined zero C° is either compact or
discrete. In [6] and [8] this result was extended to polycyclic monoids
and graph inverse semigroups over strongly connected graphs with finitely
many vertices, respectively. Similar dichotomy also holds for other gener-
alizations of the bicyclic monoid (see [9,24,30]).

There exists the coarsest inverse semigroup topology Tmi, on C° which
is defined as follows: elements of C are isolated and the family B, (0) =
{Cy: n € w}, where C,, = {0} U {(k,m) | k,m > n)}, forms an open
neighborhood base at 0 of the topology Tmin (see |7, Theorem 3.6]).

Let X be any semigroup. By SCT (X) we denote the set of all Hausdorff
shift-continuous topologies on X endowed with the following natural partial
order: 71 < 7o if and only if 71 C 7. For any topologies 71, 79 on X by
71V1o we denote a topology on X whose subbase is 71 U 7o.

Lemma 1.4. For any semigroup X, the poset SCT (X) is a complete upper
semilattice. Moreover, if the poset SCT(X) contains the least element
then SCT(X) is a complete lattice.

Proof. Let T = {74 }aca be an arbitrary subset of SCT (X). Obviously, the
topology T which is generated by the subbase B, = UT is the supremum of
T in the lattice 7 of all topologies on X . Since SCT (X) is a subposet of T,
it is sufficient to show that 7 € SCT (X). Fix arbitrary z, y € X and a basic
open neighborhood U of xy in the topology 7. Then there exist a finite
subset {a1,...,a,} C A and open neighborhoods Uy, € 74,,...,Uq, €
Ta, Of xy such that NI, U,, C U. Since for every i < n the topology 7,
is shift-continuous there exists an open neighborhood V,,, € 7, of y such
that x -V, C Uy,;. Then V=17, V,, € 7 and -V C U. Analogously it
can be shown that there exists an open neighborhood W € 7 of x such
that W -y C U. Hence 7 € SCT (X).

Assume that the poset SCT(X) contains the least element v and
T = {7a}acA is an arbitrary subset of SCT (X). The set S = Npealy is
non-empty, because it contains v. The above arguments imply that there
exists a topology 7 such that 7 = sup.S. The topology 7 is generated by
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the subbase US. Fix any o € A and a basic open set U = N}, V; € 7
where V; € 7; € S, i < n. Then V; € 7, for each ¢ < n witnessing that
U € 1,. Hence 7 C 7, for each o € A which implies that 7 =inf 7. [

By SCT we denote the poset SCT(C?).

Let 7, be a topology on CY such that each non-zero point is isolated
in (C° 7.) and an open neighborhood base at 0 of the topology 7. consists
of cofinite subsets of C° which contain 0. We remark that 7, is the unique
compact shift-continuous topology on C° which implies that 7. = inf SCT
(see |23, Theorem 1] and |8, Lemma 3| for a more general case). Hence
Lemma 1.4 implies the following:

Corollary 1.5. The poset SCT is a complete lattice.

A topology 7 on C is called weak if it is contained in the coarsest
inverse semigroup topology Tmin on C°. By W we denote the sublattice
1 Tmin € SCT of all weak shift-continuous topologies on C°.

In this paper we investigate properties of the lattice WW. More precisely,
we show that W is isomorphic to the lattice STF!xSTF' where STF!
is the set of all shift-invariant filters on w with an attached element 1
endowed with the following partial order: 7 < G if and only if G =1 or
F C G. Also, we investigate cardinal characteristics of the lattice W. In
particular, we prove that ¥V contains an antichain of cardinality 2° and a
well-ordered chain of cardinality ¢. Moreover, there exists a well-ordered
chain of first-countable weak topologies of order type t.

Cardinal characteristics of chains and antichains, and other properties
of a poset of group topologies were investigated in [3,13,15-19].

First we define two frequently used weak topologies 77, and 7r on the
semigroup C°. All non-zero elements are isolated in both of the above
topologies and

e the family Bz (0) = {4, | n € w}, where 4, = {0} U{(k,m) | k >

n,m € w}, is an open neighborhood base at 0 of the topology 71;

e the family Br(0) = {B,, | n € w}, where B, = {0} U {(k,m) | m >

n,k € w}, is an open neighborhood base at 0 of the topology 7g.

Observe that 7in = 7,VTR.

A semigroup topology 7 on C? is called minimal if there exists no
semigroup topology on C° which is strictly contained in 7.

Lemma 1.6. 77, and 7 are minimal semigroup topologies on C°.

Proof. We shall prove the minimality of 77,. In the case of 7r the proof is
similar.
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It is easy to check that that (i,7) - Apyj C Ay, Ay - (4,7) € Ay, and
A, - A, C A, forall i, §,n € w. Hence (C°, 1) is a topological semigroup.

Suppose to the contrary that there exists a Hausdorff semigroup
topology 7 on C° which is strictly contained in 7. Then there exists
Ay, € Br(0) such that the set U\ 4,, is infinite for any open neighbourhood
U of zero in (CY,7). The pigeonhole principle implies that there exists
a non-negative integer ig < n such that the set U N {(ig,j) | j € w} is
infinite for each open neighborhood U € 7 of 0. The continuity of the
semigroup operation in (C°,7) yields an open neighborhood V € 7 of 0
such that V-V C C%\ {(ig,40)}. Since V contains some A,, and the set
V N {(ig,j) | j € w} is infinite, there exists a positive integer j > m such
that (ig,j) € V and (j,i9) € V. Hence (ig,i0) = (i0,7) - (j,i0) € V-V C
C%\ {(i0,40)} which provides a contradiction. O

Problem 1.7. Do there exist other minimal semigroup topologies on C°?

Lemma 1.8. If 7 is a semigroup topology on C” such that 7 € |°7in
then either 7 = 77, or 7 = 75.

Proof. Let T be a semigroup topology on C° such that 7 € |°7imin. Then
there exists C), € Bpin such that the set U \ C, is infinite for each open
neighborhood U € 7 of 0. The pigeonhole principle implies that there
exists a non-negative integer 7g < n such that at least one of the following
two cases holds:
(1) the set U N {(ip,7) | j € w} is infinite for each open neighborhood
U of 0;
(2) the set UN{(j,70) | j € w} is infinite for each open neighborhood
U of 0.
Consider case (1). Fix an arbitrary n € w and an open neighborhood
U € 71 of 0. Since (n,ip) - 0 = 0 the continuity of the semigroup operation
in (C% 7) yields an open neighborhood V of 0 such that (n,ig) -V C U.
Since the set V N {(ig,J) | j € w} is infinite and (n,ig) - (i0,j) = (n,j) for
each n,j € w, the set U N {(n,j) | j € w} is infinite as well. Hence 0 is
an accumulation point of the set {(n,j) | j € w} for each n € w. Using
one more time the continuity of the semigroup operation in (C%,7) we
can find an open neighborhood W € 7 of 0 such that W -W C U. Since
T C Tmin We obtain that there exists m € w such that C,, C W. Recall
that 0 is an accumulation point of the set {(n,j) | j € w} for each n € w.
Hence for each n € w we can find a positive integer j,, > m such that
(n, jn) € W. Observe that for each n € w the set {(jn, k) | & >m} C W.
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Then for each n € w the following inclusion holds:
{(n,k) | k>m} = (n,jn) - {(n, k) | E>m} C W -W C U.

Hence for each open neighborhood U € 7 of 0 there exists m € w such that
By, C U which implies that U € g and 7 C 7. By lemma 1.6, 7 = 7R.
Similar arguments imply that 7 = 77, provided that case (2) holds. [J

Now we are going to describe the sublattices |77, and |75 of W. Let 7 be
an arbitrary shift-continuous topology on C? such that 7 € |°77. For each
open neighborhood U € 7 of 0 and i € w put FY = {n € w| (i,n) € U}.

Lemma 1.9. Let 7 € [°77,. Then for each i € w the set F; = {FiU |0 €
U € 1} is a filter on w. Moreover, F; = F; for each i,j € w.

Proof. Since 7 € [°7p there exists n € w such that the set U \ A, is
infinite for each open neighborhood U € 7 of 0. Similar arguments as in
the proof of Lemma 1.8 imply that 0 is an accumulation point of the set
{(k,n) | n € w} foreach k € w. Fix any i € w. Since the intersection of two
neighborhoods of 0 is a neighborhood of 0, the family F; is closed under
finite intersections. Fix an arbitrary subset A C w such that FV C A
for some U € 7. Since each non-zero point is isolated in (C°,7) the set
V =UU/{(i,n) | n € A} is an open neighborhood of 0 such that F}” = A.
Hence the family F; is a filter for each ¢ € w.

Fix arbitrary 7,7 € w. Without loss of generality we can assume
that 7 < j. To prove that F; = F; it is sufficient to prove the following
statements:

(1) for each FV € F; there exists Fjv € Fj such that FjV c FY;
(2) for each F]-U € F; there exists Fiv € F; such that FiV C F]-U.

Consider statement (1). Fix an arbitrary element FV € F;. The
separate continuity of the semigroup operation in (CY,7) yields an open
neighborhood V' of 0 such that (0,j —¢) -V C U. Observe that (0,7 — i) -
(j,m) = (i,n) for each n € w which implies that FjV c FY.

Consider statement (2). Fix an arbitrary element FjU € Fj. The
separate continuity of the semigroup operation in (CY,7) yields an open
neighborhood V' of 0 such that (5 —4,0) -V C U. Observe that (j —,0) -
(i,n) = (j,n) for each n € w which implies that F) C FjU.

Hence F; = F;, for each ¢,j € w. O

By Lemma 1.9, each shift-continuous topology 7 € |°7, generates a
unique filter on w which we denote by F-.
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For each n € Z and A C w the set {n+z | x € A} Nw is denoted by
n+ A. A filter F on the set w is called shift-invariant if it satisfies the
following conditions:

e cach cofinite subset of w belongs to F;

e for each F' € F and n € Z there exists H € F such that n+ H C F.

For each filter F on w and n € Z the filter generated by the family
{n+ F | F € F} is denoted by n + F.

Lemma 1.10. A free filter F on the set w is shift-invariant if and only if
F =n—+ F for each n € Z.

Proof. Let F be a shift-invariant filter on w and n € Z. Fix any I’ € F.
There exists an element H € F such that n+ H C F. Hence F C n+ F.
Fix any set n + F' € n 4+ F. Since F is shift-invariant there exists H € F
such that —n + H C F and k > n for each k € H. Then H C n + F
witnessing that n + F C F. Hence F = n + F for each n € Z.

Let F be a free filter on w such that 7 = n + F for each n € Z. Since
F is free every cofinite subset of w belongs to F. Fix any n € Z and
F € F. Since F =n + F there exists H € F such that n+ H C F. [J

By SZF we denote the set of all shift-invariant filters on w endowed
with the following partial order: F; < F2 if and only if F; C Fo, for each
.7:1, Jo € STF.

Lemma 1.11. Each 7 € [°7;, generates a shift-invariant filter F, on w.
Moreover, Fr, # F;, for any distinct shift-continuous topologies 71 and
75 on C° which belong to |°7r.

Proof. Observe that each open neighborhood U € 7 of 0 is of the form
U= U y{(i,n) | n € F'}U A, where FV € F, for each i < n and
n € w. By Lemma 1.9, the set F' =N FY belongs to F,. Then the set
Urn ={(i,k) | i <nand k € F}UA, is an open neighborhood of 0 which
is contained in U. Hence the family B(0) = {Up,, | F € F; and n € w}
forms an open neighborhood base at 0 of the topology 7.

The Hausdorffness of (C°,7) implies that each cofinite subset of w
belongs to F.

Fix an arbitrary n € Z and a basic open neighborhood Ur of 0.

If n > 0, then the separate continuity of the semigroup operation in
(CY, 1) yields a basic open neighborhood Uy, of 0 such that (0,7)-Upy,, C
Ury. Observe that {(0,k) | k € H} C Ug, and

(0,n)-{(0,k) |ke H} ={(0,k+n) | k€ H}
= {(0,k) | k € H +n} C Urp.
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Hence H +n C F.

Assume that n < 0. Since (C°,7) is a Hausdorff semitopological
semigroup there exists a basic open neighborhood Uy, of 0 such that
HnN{0,...,n} =@ and Uy, - (|n],0) C Upg. Observe that {(0,k) | k €
H} C Uy, and

{(0,k) | ke H} - (|n|,0) = {(0,k —|n|) | k € H}
= {(0,k) | k € H +n} C Upy.

Hence H +n C F.
Observe that the second part of the lemma follows from the description
of topologies 71,72 € |°7, and from the definition of filters F, Fr,. O

Let F be a shift-invariant filter on w. By TJ@ we denote the topology on
CY which is defined as follows: each non-zero element is isolated in (CY, 7£)
and the family B = {Up,, | F € F and n € w} where U, = {(i,k) | i <
n and k € F} U A, forms an open neighborhood base of 0 in (C°, 7).

Lemma 1.12. For each shift-invariant filter F on w the topology T}_ is
shift-continuous and belongs to |°7;,. Moreover, if 7 and F» are distinct
shift-invariant filters on w then TJ,% #* 7‘}2.

Proof. Observe that the second part of the statement of the lemma follows
from the definition of topologies Tﬁl and 7'][_12.

The definition of the topology 7'_% implies that T]’?- e l°rp.

Let F be a shift-invariant filter on w. Since the filter F contains all
cofinite subsets of w the definition of the topology TJIE implies that the
space (CY, 7'%) is Hausdorff. Recall that the bicyclic monoid C is generated
by two elements (0,1) and (1,0) and C is the discrete subset of (C%, 7£).
Hence to prove the separate continuity of the semigroup operation in
(C% 7L) it is sufficient to check it in the following four cases:

(1) (0,1)-0=0;
(2) (1,0)-0=0;
(3) 0-(0,1) =0;
(4) 0-(1,0) =0.

Fix an arbitrary basic open neighborhood U, of 0.

(1) Since the filter F is shift-invariant there exists H € F such that
H C Fand H+1 C F. It is easy to check that (0,1) - Ug 41 C Upp.

(2) It is easy to check that (1,0) - Upy, C Upp,.

(3) Since the filter F is shift-invariant there exists H € F such that
H C F and H+1 C F. It is easy to check that Ug,, - (0,1) C Upp,.
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(4) Since the filter F is shift-invariant there exists H € F such that
H C Fand H—1C F. It is easy to check that Ug,, - (1,0) C Upy,.
Hence the topology Tﬁ is shift-continuous. [

Put SIF! = STF U {1} and extend the partial order < to STF' as
follows: F < 1 for each F € STF.

Theorem 1.13. The posets |77, and STF' are order isomorphic.

Proof. By Lemma 1.11, for each topology 7 € [°7;, there exists a shift-
invariant filter & € SZF such that 7 = T]’—j-. We define the map f: |7 —
STF! as follows:

o f(tk) = F for each topology & € |°7p;

[ ] f(TL) =1.
Let /1 € SIF and Fy € SZF. Observe that 71 < Fo if and only if
T][_il < TJ,%. Lemmas 1.11 and 1.12 imply that the map f is an order

isomorphism between posets |7, and STF!. [
Corollary 1.14. The poset STF' is a complete lattice.

Let 7 be an arbitrary shift-continuous topology on C° such that 7 €
1°7Rr. For each open neighborhood U € 7 of 0 and ¢ € w put GZU ={ne¢c
w | (n,i)eU}.

The proof of the following lemma is similar to that of Lemma 1.9.

Lemma 1.15. Let 7 € |°7g. Then for each i € w the set G; = {GY |0 €
U € 7} is a filter on w. Moreover, G; = G; for each 7,j € w.

Let G be a shift-invariant filter on w. By Tg we denote the topology on
C° which is defined as follows: each non-zero element is isolated in (C°, Té%)
and the family B = {Ug,, | G € G and n € w} where Ug,, = {(k,7) | i <
n and k € G} U B, forms an open neighborhood base of 0 in (C%, 7£).

Analogues of Lemmas 1.11 and 1.12 hold for the topology 7 € |°7xg.
Hence we obtain the following:

Theorem 1.16. The posets |7z and STF! are order isomorphic.

Proposition 1.17. For each topology 7 € W there exists a unique pair
of topologies (11, 72) € |77, X} 7R such that 7 = 71 V7y.

Proof. Let 7 € |°Timin. Then there exists n € w such that for each open
neighborhood U € 7 of 0 the set U \ C), is infinite.
It is easy to see that 7 satisfies one of the following three conditions.
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(1) For every ¢ < n the set {(i,m) | m € w}NU is infinite for each open
neighborhood U € 7 of 0 and there exists an open neighborhood
Uy € 7 of 0 such that {(m,j) | m € w}NUy = & for any j < n.
(2) For every j < n theset {(m,j) | m € w}NU is infinite for each open
neighborhood U € 7 of 0 and there exists an open neighborhood
Up € 7 of 0 such that {(i,m) | m € w} NV = & for any i < n.
(3) For every i,j < n the sets {(i,m) | m € w}NU and {(m,j) | m €
w} NU are infinite for each open neighborhood U € 7 of 0.
Assume that 7 satisfies condition (1). Fix a non-negative integer k and
an arbitrary open neighborhood U € 7 of 0. Similar arguments as in the
proofs of Lemmas 1.9, 1.11 imply that there exists a unique shift-invariant
filter F on w such that the family B(0) = {Cp, | F € F,n € w}, where
Crn =CpU{(i,k) | i < nand k € F}, is an open neighborhood base
at 0 of the topology 7.

It is easy to check that 7 = T][_i\/TR. We denote such a topology 7
by 7£1.

Assume that 7 satisfies condition (2). Similar arguments imply that
there exists a unique shift stable filter G on w such that the family B(0) =
{Cen| Ged,new}, where Cg,, = Cp, U{(k,7) | i <nand k € G}, is
an open neighborhood base at 0 of the topology .

Then 7 = TL\/TgR. We denote such a topology 7 by 71 g.

If the topology 7 satisfies condition (3), then there exist unique shift-
invariant filters F,G on w such that 7 = T]I_i\/Té{. We denote such a
topology 7 by 7 g.

Recall that min = 71 V7R. For convenience we denote 7yin by 711. [

Theorem 1.18. The poset W is order isomorphic to the poset
STF'xSTF.

Proof. By Proposition 1.17, each topology 7 € W is of the form 7.,
where z,y € STF'. The routine verifications show that the map f: W —
STF'XSTF, f(74,y) = (v,y) is an order isomorphism. O

An inverse semigroup S is called quasitopological if it is semitopological
and the inversion is continuous in S. A topology 7 on an inverse semigroup
S is called quasisemigroup if (S, T) is a quasitopological semigroup.

By W, we denote the set of all weak quasisemigroup topologies on
CY. Obviously, W, is a sublattice of W. Fix the weak topology 7 = Try
where z,y € STF' (see the proof of Proposition 1.17). Observe that
(n,m)~1 = (m,n) for each element (n,m) € C. At this point it is easy to
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see that the topology 7., is quasisemigroup if and only if x = y. Hence
we obtain the following.

Proposition 1.19. The lattice W, is isomorphic to the lattice STF L

At the end of this section we prove a nice complete-like property of
weak topologies on C°.

A semitopological semigroup X is called absolutely H-closed if for any
continuous homomorphism A from X into a Hausdorff semitopological
semigroup Y the image h(X) is closed in Y.

The next proposition complements results about complete polycyclic
monoids Py, k > 1 obtained in [11].

Proposition 1.20. Let (C°, 7) be a semitopological semigroup such that
0 is an accumulation point of the set F(C). Then (C°, 7) is absolutely
H-closed.

Proof. By o we denote the least group congruence on C. According to
Theorem 3.4.5 from [28|, (a,b)o(c,d) if and only if @ — b = ¢ — d for
any a,b,c,d € w, every congruence on the bicyclic monoid is a group
congruence and C/o is isomorphic to the additive group of integers. For
each k € Z put [k] = {(a,b) €C|a—b=k}.

Fix any k € Z and an open neighborhood U of 0. If £ > 0, then the
separate continuity of the semigroup operation in (CO, 7) yields an open
neighborhood V' of 0 such that (k,0) -V C U. Since 0 is an accumulation
point of the set E(C) there exists an infinite subset A C w such that
{(n,n) | n € A} C V. Then (k,0)-{(n,n) |n€ A} = {(k+n,n) | n €
A} C U. Hence 0 is an accumulation point of the set [k] for each & > 0.

If kK < 0 then the separate continuity of the semigroup operation in
(CY, 1) yields an open neighborhood V of 0 such that (0,k) -V C U.
Similarly it can be shown that 0 is an accumulation point of the set [k]
for each k < 0.

Assume that h is a continuous homomorphism from C° into a Haus-
dorff semitopological semigroup X. If there exists (n,m) € C such that
h(n,m) = h(0) then

h((0,0)) = h((0,n) - (n,m) - (m,0)) = h(0,n) - h(0) - h(m,0)
= h((0,n)-0-(m,0)) = h(0).
In this case the map h is annihilating.

Otherwise, by Theorem 3.4.5 from [28], there are three cases to consider:
(1) the image h(C°) is finite;
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(2) the image h(C°) is isomorphic to the additive group of integers with
an adjoint zero;
(3) h is injective, i.e., h(C?) is isomorphic to C°.

(1) The Hausdorffness of X implies that (C") is a closed subset of X.

(2) Observe that 0 is an accumulation point of each equivalence class
[k] of the least group congruence o. Hence each open neighborhood U of
h(0) in X contains the set h(C) which contradicts the Hausdorffness of X.
Hence this case is not possible.

(3) To obtain a contradiction, assume that h(C?) is not closed in X.
Hence there exists an element x € h(C°) \ h(C?). Each open neighbor-
hood of z contains infinitely many elements from C. Hence for each open
neighborhood V' of x at least one of the following two subcases holds:
(3.1) the set Ly = {n | there exists m such that (n,m) € V} is infinite;
(3.2) the set Ry = {m | there exists n such that (n,m) € V} is infinite.

(3.1) We claim that (k, k) 2 = z for each k € w. Indeed, fix any k € w
and observe that (k,k) - (n,m) = (n,m) for each n > k. Hence the set
((k,k) - V)NV is infinite for each open neighborhood V' of x witnessing
that (k, k) -z = x.

Fix any open neighborhood U of 0 which does not contain z. The
separate continuity of the semigroup operation in X implies that 0 -z =
x -0 = 0. Hence there exists an open neighborhood W C U of 0 such that
W -z C U. Fix any idempotent (k,k) € W (it is possible since 0 is an
accumulation point of the set E(C) = {(k,k) | k € w}). The above claim
implies that © = (k,k) -« € W -2 C U which contradicts the choice of
the set U.

(3.2) Analogously it can be showed that x - (k, k) = z for each k € w.
At this point the contradiction can be obtained similarly as in (3.1). O

Proposition 1.20 provides the following.

Corollary 1.21. For each weak topology 7 the semitopological semigroup
(C°,7) is absolutely H-closed.

2. Cardinal characteristics of the lattice YW

By [w]“ we denote the family of all infinite subsets of w. We write
A C* Bif |A\ B| < w. Let F be a filter on w. The cardinal x(F) =
min{|B| : B is a base of the filter F} is called the character of the filter F.
A filter F is called first-countable if x(F) = w.

For each a,b € w by [a,b] we denote the set {n € w | a < n < b}.
Observe that [a,b] = @ if a > b. Let A be an infinite subset of w. For
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each k € w put Faj = Upea[n! —n+k,n!+n—k]. Since Fap N Fan =
FA max{k,ny the family {Fa [ k € w} is closed under finite intersections.
By Fa we denote the filter on w whose base consists of the sets F,
ke w.

Lemma 2.1. Let A, B € [w]|*. Then the following statements hold:
(1) the filter F4 is shift-invariant;
(2) if A and B are almost disjoint, then the filters F4 and Fp are
incomparable in the lattice ST.F.
(3) if A C* B then Fp < Fa;
(4) if |A\ B| = w then F4 # Fp
(5) (C°, T]I_iA) and (C°, T]@A) are first-countable topological spaces.

Proof. (1). Fix any Fa, € Fa, m € Z and k € w. It is easy to check
that m + Fy pqjm| C Fan and Fagr Cw )\ [0, k]. Hence the filter Fga is
shift-invariant.

(2). There exists n € w such that AN B C [0,n]. It is easy to check
that Fan41 N FByy1 = @ which implies that the filters F4 and Fp are
incomparable in the poset SZF.

(3). There exists n € w such that A\ B C [0,n]. It is easy to check
that F4 ), C Fy for each k > n + 1 which implies that Fp < F4.

Statement (4) follows from the definition of the filters F4 and Fp.

Observe that the filter Fj4 is first-countable. At this point statement
(5) follows from the definition of the topologies T]%A and T]{?A. O

By SCT., (W, resp.) we denote the set of all (weak, resp.) Hausdorff
shift-continuous first-countable topologies on C°. It is easy to check that
SCT,, is a sublattice of SCT. A subset A of a poset X is called an antichain
if each two distinct elements of A are incomparable in X.

A set A is called a pseudo-intersection of a family F C [w]“ if A C* F
for each F' € F. A toweris a set T C [w]¥ which is well-ordered with
respect to the relation defined by x < y if and only if y C* 2. It is called
mazximal if it cannot be further extended, i.e. it has no pseudointersection.

Denote t = min{|7| : T is a maximal tower}. By [20, Theorem 3.1],
w1 < t< e Put t=sup{|7]|: 7 is a maximal tower}. Obviously, t < t < .

Theorem 2.2. The poset W, has the following properties:
(1) W, contains an antichain of cardinality c;
(2) For each ordinal s € t the poset W, contains a well-ordered chain
of order type k;
(3) Wl =I|SCT | =c.
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Proof. (1) Fix any almost disjoint family A C [w]“ such that |A] = c.
By [27, Theorem 1.3], such a family exists. Statement (2) of Lemma 2.1
implies that the set {F4 | A € A} forms an antichain in the poset SZF. By
Theorem 1.13 (resp., 1.16), the set {7%, | A € A} (resp., {75, | A€ A})
is an antichain in the lattice YW. By statement (5) of Lemma 2.1, the sets
{T_%A | Ae A} and {T}{A | A € A} are contained in W,

(2) Fix any ordinal s € t. By the definition of t there exists a tower
T = {Ta}taex of length A > k. Observe that |T;, \ 7| = w for each
a < B < A. Statements (3), (4) and (5) of Lemma 2.1 imply that the sets
{T]l_iTa | @ € K} and {TﬁTQ | @ € k} are well-ordered chains in W, of order
type k.

(3) Observe that the cardinality of the set of all first countable filters
on w is equal to ¢. Statement (1) implies that |[SCT | = [W,| = c. O

Now we are going to show that each free filter on w generates a
shift-invariant filter on w. Fix an arbitrary free filter G on w. For each
G € G and k € wput Fg = Upeg[n! — n + k,n! +n — k|. Observe
that Fx N Frn = Fungmax{k.n} for each G, H € G and k,n € w. Since
H NG € G we obtain that the family {F; | G € G,k € w} is closed
under finite intersections. By Fg we denote the filter on w whose base
consists of the sets Fig 1, G € G and k € w. A filter F on w is called an
ultrafilter if for each subset A C w either A € F or there exists I' € F
such that AN F = @.

Lemma 2.3. Let G, H be free filters on w. Then the following statements
hold:
(1) the filter Fg is shift-invariant;
(2) if G and H are ultrafilters, then the filters Fg and Fp are incompa-
rable in the lattice STF.
(3) if G C H then Fg C Fy;
(4) if G # H then Fg # Fyy;
(5) The character of the spaces (CY, T]I_’-g) and (CY, Tﬁg) is equal to the
character of the filter Fg.

Proof. (1) Fix any element Fg ,, € Fg, m € Z and k € w. It is easy to
check that m + Fg .t m| C Fan and Fg 41y C w \ [0, k]. Hence the filter
Fg is shift-invariant.

(2) Assume that G and H are ultrafilters on w. Then there exist A € G
and B € H such that AN B = @. It is easy to see that the sets Fia o € Fg
and Fpo € Fy are disjoint which implies that the filters Fg and Fy; are
incomparable in the poset SZF.
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Statement (3) follows from the definition of the filters Fg and Fy.
The proof of statement (4) is straightforward.
Statement (5) follows from the definition of the topologies T]l_ig and TJI?Q.

By FF we denote the set of all free filters on w endowed with the
natural partial order: F < G if and only if F C G.

Lemma 2.4. The poset FF contains a well-ordered chain of cardinality c.

Proof. By Theorem 4.4.2 from [29], there exists a free ultrafilter F on w
such that x(F) = c¢. Fix any base B = {F, }aec of F.

Now we are going to construct a well-ordered chain £ = {G, }qec in
FF. Let Gy be a filter which consists of cofinite subsets of w. Since the
filter F is free, Gy C F. Assume that for all ordinals 8 < a < ¢ the filters
Gp are already constructed. There are two cases to consider:

(1) « is a limit ordinal;
(2) « is a successor ordinal.
In case (1) put Go = UgeaGgs-

In case (2) a = 6 + 1 for some ordinal . Let 5 be the smallest ordinal
such that F, ¢ Gs. Let G, be a filter generated by the smallest family X
of subsets of w such that Gs C X, F,; € X and X is closed under finite
intersections.

Observe that |Gs| < max{w, ||} < c¢. Hence for each § € ¢ the ordinal
~s exists. Otherwise the family Gs is a base of the filter F of cardinality
less then ¢ which contradicts our assumption.

It is easy to see that the family £ = {G,}aec is a well-ordered chain
in FF. O

Theorem 2.5. The poset VW has the following properties:
(1) W contains an antichain of cardinality 2°;
(2) W contains a well-ordered chain of cardinality c;

(3) W] =|SCT]| = 2.

Proof. 1t is well-known that there are 2° ultrafilters on w. Hence statement
(1) follows from statements (1) and (2) of Lemma 2.3 and Theorem 1.13.

Consider statement (2). By Lemma 2.4, there exists a well-ordered
chain £ C FF of cardinality ¢. Statements (3) and (4) of Lemma 2.3 imply
that the family Z = {Fg | G € L} is a well-ordered chain in SZF. By
Theorem 1.13, the poset W contains a well-ordered chain of cardinality c.

Consider statement (3). Obviously, |W| < |[SCT| < 2°. Then statement
(1) yields the desired equality. O
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