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Abstract. The (proper) power graph of a group is a graph
whose vertex set is the set of all (nontrivial) elements of the group
and two distinct vertices are adjacent if one is a power of the other.
Various kinds of planarity of (proper) power graphs of groups are
discussed.

1. Introduction

Recently, there have been an increasing interest in associating graphs
to algebraic structures and studying how the properties of the associated
graphs influence the structure of the given algebraic structures. If G is a
group (or a semigroup), then the power graph of G, denoted by P(G), is
an undirected graph whose vertex set is G in which two distinct vertices
x and y are adjacent if one is a power of the other, in other words, x and
y are adjacent if x ∈ 〈y〉 or y ∈ 〈x〉.

Chakrabarty, Ghosh and Sen [6] investigated the power graph of
semigroups and characterized all semigroups with connected or complete
power graphs. In the case of groups, Cameron and Ghosh [5] showed
that two finite abelian groups are isomorphic if and only if they have
isomorphic power graphs. As a generalization, Cameron [4] proves that
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finite groups with isomorphic power graphs, have the same number of
elements of each order. Further properties of power graphs including
planarity, perfectness, chromatic number and clique number are discussed
by Doostabadi, Erfanian and Jafarzadeh in [9].

Since the identity element in a group G is adjacent to all other vertices
in the power graph P(G), we may always remove the identity element and
study the resulting graph called the proper power graph of G. The proper
power graph of G is denoted by P∗(G). For further results concerning
power graphs and proper power graphs, we may refer the interested reader
to [10] and [11].

The aim of this paper is to study various kinds of planarity of (proper)
power graphs. Indeed, we shall classify all groups whose (proper) power
graphs are planar, outerplanar, ring graph, 1-planar, almost planar, max-
imal planar, toroidal and projective. We note that the planarity of power
graphs is already discussed in [8] for special groups and the complete
classification is obtained in [9,22]. In what follows, ω(G) stands for the
set of orders of elements of a given group G, i.e., ω(G) = {|x| : x ∈ G}.
By H ⋊ K we mean a nontrivial semi-direct product of H by K. Also,
a Frobenius group with kernel K and a complement H is denoted by
K ⋊F H. Even though H ⋊K or H ⋊F K correspond to various groups in
general, in this paper they always determine unique groups according to
the given groups H and K. Recall that Cn, Dn, Qn and SDn denote the
cyclic group, dihedral group, quaternion group and semidihedral group of
order n, respectively (see [27]). All other notations related to groups are
standard and follow from [27]. The dot product of two vertex transitive
graphs Γ1 and Γ2, is the graph obtained from the identification of a vertex
of Γ1 with a vertex of Γ2 and it is denoted by Γ1 ·Γ2. Remind that Kn and
Km,n denote the complete graph on n vertices and the complete bipartite
graph with parts of sizes m and n, respectively. Also, a friendship graph
is a collection of triangles with a common vertex. Throughout this paper,
all groups (and hence their (proper) power graphs) are assumed to be
finite.

2. Planarity of (proper) power graphs

We begin with the common notion of planarity. A graph Γ is called
planar if there is an embedding of Γ in the plane in which the edges inter-
sect only in the terminals. A famous theorem of Kuratowski states that a
graph is planar if and only if it has no subgraph as a subdivision of the
graphs K5 or K3,3 (see [18]). The following results give a characterization
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of all planar (proper) power graphs and have central roles in the proofs
of our subsequent results. We note that a graph is said to be Γ-free if it
has no induced subgraphs isomorphic to Γ.

Theorem 2.1 ([9, 22]). Let G be a group. Then P(G) is planar if and
only if ω(G) ⊆ {1, 2, 3, 4}.

Theorem 2.2. Let G be a group. Then the following conditions are
equivalent:

(1) P∗(G) is planar;
(2) P∗(G) is K5-free;
(3) P∗(G) is K6-free;
(4) P∗(G) is K3,3-free;
(5) ω(G) ⊆ {1, 2, 3, 4, 5, 6}.

Proof. We just prove the equivalence of (1) and (5). The other equivalences
can be establish similarly.

First assume that P∗(G) is a planar graph. If G has an element of
infinite order, then clearly P∗(G) has a subgraph isomorphic to K5, which
is a contradiction. Thus G is a torsion group. Now let x ∈ G be an
arbitrary element. If |x| = pm is a prime power, then pm − 1 6 4 and
hence |x| 6 5 for 〈x〉 \ {1} induces a complete subgraph of P∗(G). Also, if
|x| is not prime power and pmqn divides |x|, then the elements of 〈x〉 \{1}
whose orders divide pm together with elements whose orders equal pmqn

induce a complete subgraph of P∗(G) of size pm − 1 + ϕ(pmqn), where ϕ
is the Euler totient function. Since P∗(G) is K5-free, this is possible only
if |x| 6 6, as required.

Conversely, assume that G is a torsion group with ω(G)⊆{1,2,3,4,5,6}.
A simple verification shows that P∗(G) is a union (not necessary disjoint)
of some K1, K2, K4, friendship graphs and families of complete graphs
on 4 vertices sharing an edge in such a way that any two such graphs
have at most one edge in common and any three such graphs have no
vertex in common. Hence, the resulting graph is planar, which completes
the proof.

An n-coloring of a graph Γ is an assignment of n different colors to
the vertices of Γ such that adjacent vertices have different colors. The
chromatic number χ(Γ) is the minimal number n such that Γ has an
n-coloring. An n-star coloring of Γ is an n-coloring of Γ such that no
path on four vertices in Γ is 2-colored. The star chromatic number χs(Γ)
is the minimal number n such that Γ has an n-star coloring. Utilizing the
above theorems we have:
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Corollary 2.3. If G is a group with planar (proper) power graph, then
χ(P∗(G)) = χs(P∗(G)).

A chord in a graph Γ is an edge joining two non-adjacent vertices in a
cycle of Γ and a cycle with no chord is called a primitive cycle. A graph
Γ in which any two primitive cycles intersect in at most one edge is said
to admit the primitive cycle property (PCP). The free rank of Γ, denoted
by frank(Γ), is the number of primitive cycles of Γ. Also, the cycle rank
of Γ, denoted by rank(Γ), is the number e − v + c, where v, e, c are the
number of vertices, the number of edges and the number of connected
components of Γ, respectively. Clearly, the cycle rank of Γ is the same
as the dimension of the cycle space of Γ. By [15, Proposition 2.2], we
have rank(Γ) 6 frank(Γ). A graph Γ is called a ring graph if one of the
following equivalent conditions holds (see [15]).

• rank(Γ) = frank(Γ),
• Γ satisfies the PCP and Γ does not contain a subdivision of K4 as

a subgraph.
Also, a graph is outerplanar if it has a planar embedding all its vertices

lie on a simple closed curve, say a circle. A well-known result states that
a graph is outerplanar if and only if it does not contain any subgraph as
a subdivision of K4 or K2,3 (see [7]). Clearly, every outerplanar graph is
a ring graph and every ring graph is a planar graph.

Theorem 2.4. Let G be a group. Then P(G) (resp. P∗(G)) is ring graph
if and only if ω(G) ⊆ {1, 2, 3} (resp. ω(G) ⊆ {1, 2, 3, 4}).

Proof. If P∗(G) is a ring graph, then ω(G) ⊆ {1, 2, 3, 4, 5, 6} by Theorem
2.1. If G has an element of order 5 or 6, then 〈x〉 contains a subgraph
isomorphic to K4, which is impossible. Thus ω(G) ⊆ {1, 2, 3, 4}. Clearly,
w(G) ⊆ {1, 2, 3} when P(G) is a ring graph. The converse is obvious.

Corollary 2.5. Let G be a group. Then P(G) (resp. P∗(G)) is outerpla-
nar if and only if it is a ring graph.

A graph is called 1-planar if it can be drawn in the plane such that
its edges each of which is crossed by at most one other edge.

Theorem 2.6 (Fabrici and Madaras [12]). If Γ is a 1-planar graph on v
vertices and e edges, then e 6 4v − 8.

Corollary 2.7. The complete graph K7 is not 1-planar.

Proof. Suppose on the contrary that K7 is 1-planar. Then, by Theorem
2.6, we should have 21 = e 6 4v − 8 = 20, which is a contradiction.
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To deal with the case of 1-planar power graphs, we need to decide on
the 1-planarity of a particular graph, which is provided by the following
lemma.

Lemma 2.8. Let Γ be the graph obtained from K9 \ K6 by adding three
new disjoint edges. Then Γ is not 1-planar.

Proof. Let u1, u2, u3 be the vertices adjacent to all other vertices, and
{v1, v2}, {v3, v4} and {v5, v6} be the three disjoint edges whose end vertices
are different from u1, u2, u3. Suppose on the contrary that Γ is 1-planar
and consider a 1-planar embedding E of Γ with minimum number of
crosses. If E has an edge crossing itself or two crossing incident edges,
then one can easily unknot the cross and reach to a 1-planar embedding
of Γ with smaller number of crosses contradicting the choice of E . Hence,
E has neither an edge crossing itself nor two crossing incident edges. This
implies that the subgraph ∆ induced by {u1, u2, u3} is simply a triangle.
Using a direct computation, one can show, step-by-step, that

• the edges incident to each of the vertices v1, . . . , v6 cross no more
than one edges of ∆,

• at most one edge of ∆ is crossed by an edge of Γ different from
{v1, v2}, {v3, v4} and {v5, v6},

• the only edges of Γ that can cross ∆ are {v1, v2}, {v3, v4} and
{v5, v6}.

According to the above observations, we reach to the following 1-planar
drawing of Γ in the interior (bounded) region of ∆ with maximum number
of vertices (see Figure 1).

Clearly, there must exists a vertex vi outside ∆ adjacent to some
vertex vj inside ∆ where 1 6 i, j 6 6. Hence, by Figure 1, we must have
an edge in the interior region of ∆ crossed more than once, leading to a
contradiction.

Utilizing the same method as in the proof of Lemma 2.8, we obtain a
new minimal non-1-planar graph, which is of independent interest.

Proposition 2.9. Let Γ be the graph obtained from K9 \ K6 by adding
two new disjoint edges. Then Γ is a minimal non-1-planar graph.

Theorem 2.10. Let G be a group. Then P(G) is 1-planar if and only if
ω(G) ⊆ {1, 2, 3, 4, 5, 6} and any two cyclic subgroups of G of order 6 have
at most two elements in common.
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Figure 1.

Proof. The same as in the proof of Theorem 2.1, we can show that
ω(G) ⊆ {1, 2, 3, 4, 5, 6}. If ω(G) ⊆ {1, 2, 4, 5}, then we are done. Thus
we may assume that 3 ∈ ω(G). Let g ∈ G be an element of order 3. If
CG(g) has two distinct involutions x, y, then it must have yet another
involution, say z, for 〈x, y〉 is a dihedral group. But then, by Lemma 2.8,
the subgraph induced by elements of orders 1, 3, 6 in 〈xg〉 ∪ 〈yg〉 ∪ 〈zg〉
is not 1-planar giving us a contradiction. Thus no two distinct cyclic
subgroups of G of order 6 have three elements in common.

Conversely, if all the conditions are satisfied, then P(G) is a combina-
tion of induced subgraphs as drawn in Figure 2 in such a way that any
two of these subgraphs have pairwise disjoint edges except possibly of a
common edge whose end vertices are the trivial element and an involution.
Therefore P(G) is 1-planar, as required. Note that in Figure 2, a, b, c, d, e
denote elements of orders 2, 3, 4, 5, 6, respectively.

Theorem 2.11. Let G be a group. Then P∗(G) is 1-planar if and only
if ω(G) ⊆ {1, 2, 3, 4, 5, 6, 7}.

Proof. The same as in the proof of Theorem 2.2, we can show that
ω(G) ⊆ {1, 2, 3, 4, 5, 6, 7}. The converse is obvious since every element of
order 7 of G along with its nontrivial powers gives a complete connected
component of P∗(G) isomorphic to K6 and the remaindered elements of
G induce a planar graph by Theorem 2.2.

An almost-planar graph Γ is a graph with an edge e whose removal is
a planar graph.

Theorem 2.12. Let G be a group. Then P(G) is almost-planar if and
only if w(G) ⊆ {1, 2, 3, 4} or G is isomorphic to one of the groups C5, C6,
D10, D12, C3 ⋊ C4 or C5 ⋊F C4.
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Proof. Clearly, w(G) ⊆ {1, 2, 3, 4, 5, 6}. If w(G) ⊆ {1, 2, 3, 4}, then P(G)
is planar and we are done. Thus we may assume that 5 ∈ w(G) or
6 ∈ w(G). First suppose that 5 ∈ w(G). If G has two distinct cycles 〈x〉
and 〈y〉 of order 5, then the subgraph induced by 〈x〉 ∪ 〈y〉 is isomorphic
to K5 · K5, which is not almost-planar. Hence G has a unique cyclic
subgroup 〈x〉 of order 5. Thus 〈x〉 E G and G/CG(x) is a cyclic group of
order dividing 4. On the other hand, CG(x) = 〈x〉 from which it follows
that |G| divides 20 and hence G ∼= C5, D10 or C5 ⋊F C4. Now suppose
that 5 /∈ w(G) but 6 ∈ w(G). If G has two distinct cyclic subgroups
〈x〉 and 〈y〉 of order 6, then a simple verification shows that 〈x〉 ∪ 〈y〉 is
never almost-planar in either of cases that 〈x〉 ∩ 〈y〉 has one, two or three
elements. Thus G has a unique cyclic subgroup 〈x〉 of order 6. Clearly,
〈x〉 E G and CG(x) = 〈x〉, which implies that |G| divides 12. Therefore,
G ∼= C6, D12 or C3 ⋊ C4. The converse is straightforward.

Theorem 2.13. Let G be a group. Then P∗(G) is almost planar if and
only if ω(G) ⊆ {1, 2, 3, 4, 5, 6}.

Proof. If P∗(G) is almost planar, then ω(G) ⊆ {1, 2, 3, 4, 5, 6} for K6 is
not almost planar by Theorem 2.2. The converse is obvious by Theorem
2.2.

A simple graph is called maximal planar if it is planar but the graph
obtained by adding any new edge is not planar.
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Theorem 2.14. Let G be a group. Then P(G) is maximal planar if and
only if G is a cyclic group of order at most four.

Proof. Suppose that P(G) is maximal planar. Since P(G) is planar, by
Theorem 2.1, ω(G) ⊆ {1, 2, 3, 4}. If G has two different maximal cycles
〈x〉 and 〈y〉 of order 2, 3 or 4, then the addition of the edge {x, y} results
in a planar graph, which is a contradiction. Therefore the maximal cycles
in G give rise to a partition for G. Since P(G) is connected, it follows
that G is cyclic, from which the result follows. The converse is clear.

Theorem 2.15. Let G be a group. Then P∗(G) is maximal planar if and
only if G is a cyclic group of order at most five.

Proof. Suppose that P∗(G) is maximal planar. Since P∗(G) is planar, by
Theorem 2.2, ω(G) ⊆ {1, 2, 3, 4, 5, 6}. If G has two different cycles 〈x〉
and 〈y〉 of order 4 or 6 whose intersection is nontrivial, then by Theorem
2.2, the addition of the edge {x, y} results in a planar graph, which is a
contradiction. Therefore the maximal cycles in G give rise to a partition
of G. Since P∗(G) is connected, it follows that G is cyclic, from which
the result follows. The converse is obvious.

It is worth noting that the structure of groups with elements of orders
at most six is known and we refer the interested reader to [3,16,17,19–
21,24,28–31] for details.

3. Toroidal (proper) power graphs

Let Sk be the sphere with k handles (or a connected sum of k tori),
where k is a non-negative integer, that is, Sk is an oriented surface of
genus k. The genus of a graph Γ, denoted by γ(Γ), is the minimum integer
k such that the graph can be embedded in Sk whose edges intersect only
in the endpoints. Clearly, A graph with genus 0 is a planar graph. A graph
with genus 1 is called a toroidal graph. We note that if Γ′ is a subgraph of
a graph Γ, then γ(Γ′) 6 γ(Γ). For a complete graph Kn and a complete
bipartite graph Km,n, it is well-known that

γ(Kn) =

⌈

(n − 3)(n − 4)

12

⌉

if n > 3 and

γ(Km,n) =

⌈

(m − 2)(n − 2)

4

⌉

if m, n > 2 (see [26] and [25], respectively). Thus
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• γ(Kn) = 0 for n = 1, 2, 3, 4;
• γ(Kn) = 1 for n = 5, 6, 7;
• γ(Kn) > 2 for n > 8;
• γ(Km,n) = 0 for m = 0, 1 or n = 0, 1;
• γ(Km,n) = 1 for {m, n} = {3}, {3, 4}, {3, 5}, {3, 6}, {4};
• γ(Km,n) > 2 for {m, n} = {4, 5}, or m, n > 3 and m + n > 10.

Given a connected graph Γ, we say that a vertex v of Γ is a cut-vertex
if Γ − v is disconnected. A block is a maximal connected subgraph of Γ
having no cut-vertices. The following result of Battle, Harary, Kodama
and Youngs gives a powerful tool for computing the genus of various
graphs.

Theorem 3.1 (Battle, Harary, Kodama, and Youngs, [2]). Let Γ be a
graph and Γ1, . . . , Γn be blocks of Γ. Then

γ(Γ) = γ(Γ1) + · · · + γ(Γn).

Theorem 3.2. Let G be a group. Then P(G) is a toroidal graph if and
only if G ∼= C5, C6, C7, D10, D12, D14, C3 ⋊ C4, C5 ⋊F C4 or C7 ⋊F C3.

Proof. First assume that P(G) is a toroidal graph. The same as in the
proof of Theorem 2.2, we can show that ω(G) ⊆ {1, 2, 3, 4, 5, 6, 7}. If
ω(G) ⊆ {1, 2, 3, 4}, then by Theorem 2.1, P(G) is planar, which is a
contradiction. Thus ω(G) ∩ {5, 6, 7} 6= ∅. Since 〈x〉 is a block of P(G)
when |x| = 5, 7, and 〈x〉 is a subgraph of a block of P(G) when |x| = 6,
Theorem 3.1 shows that ω(G) ⊆ {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6} or {1, 2, 3, 4, 7}.
Moreover, G has at most one subgroup of order 5 and 7.

If 7 ∈ ω(G), then G has a unique cyclic subgroup 〈x〉 of order 7.
Clearly, 〈x〉 E G and CG(x) = 〈x〉. Since G/CG(x) is isomorphic to a
subgroup of Aut(〈x〉) and 6 /∈ ω(G), G/CG(x) is a cyclic group of order
at most 3, from which it follows that G ∼= C7, D14 or C7 ⋊F C3. Similarly,
if 5 ∈ ω(G) then we can show that G ∼= C5, D10 or C5 ⋊F C4.

Finally, suppose that 6 ∈ ω(G). If G has a unique cyclic subgroup
of order 6, say 〈x〉, then 〈x〉 E G and a simple verification shows that
CG(x) = 〈x〉. Since G/〈x〉 is isomorphic to a subgroup of Aut(〈x〉), it
follows that G ∼= C6, D12 or C3⋊C4. Now suppose that G has at least two
distinct cyclic subgroups of order 6. If G has two distinct cyclic subgroups
〈x〉 and 〈y〉 of order 6 such that 〈x〉 ∩ 〈y〉 = 〈a〉 ∼= C2, then the subgraph
induced 〈x〉∪〈y〉\{a} is isomorphic to K5 ·K5 and P(G) is not toroidal by
Theorem 3.1, which is a contradiction. Since the cycles of order 6 sharing
an element of order 3 are blocks, by Theorem 3.1, all cyclic subgroups
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of order 6 have the same subgroup of order 3 in common. Clearly, G
has at most three cyclic subgroups of order 6 for otherwise G has four
cyclic subgroups 〈x〉, 〈y〉, 〈z〉 and 〈w〉 of order 6 and the subgraph induced
by 〈x〉 ∪ 〈y〉 ∪ 〈z〉 ∪ 〈w〉 has a subgraph isomorphic to K3,8, which is a
contradiction. If G has three distinct cyclic subgroups 〈x〉, 〈y〉 and 〈z〉
of order 6, then, by using [23], the subgraph induced by 〈x〉 ∪ 〈y〉 ∪ 〈z〉
has genus 2, which is a contradiction. Hence G has exactly two distinct
subgroups of order 6, say 〈x〉 and 〈y〉. Let H = NG(〈x〉). Then [G : H] 6 2.
Since G has two cyclic subgroups of order 6, a simple verification shows
that CH(x) = 〈x〉. On the other hand, H/〈x〉 is isomorphic to a subgroup
of Aut(〈x〉) ∼= C2. Thus |H| divides 12 and consequently |G| divides 24.
However, one can easily see that there are no such groups. The converse
is straightforward.

Theorem 3.3. Let G be a group. Then P∗(G) is a toroidal graph if and
only if G ∼= C7, C8, D14, D16, Q16, SD16 or C7 ⋊F C3.

Proof. Suppose P∗(G) is toroidal. The same as in the proof of Theorem 2.2,
we can show that ω(G) ⊆ {1, 2, 3, 4, 5, 6, 7, 8}. If ω(G) ⊆ {1, 2, 3, 4, 5, 6},
then by Theorem 2.2, P∗(G) is planar, which is a contradiction. Thus
ω(G) ∩ {7, 8} 6= ∅. On the other hand, by Theorem 3.1, {7, 8} 6⊆ ω(G).
Therefore either ω(G) ⊆ {1, 2, 3, 4, 5, 6, 7} or ω(G) ⊆ {1, 2, 3, 4, 5, 6, 8}. If
7 ∈ ω(G), then as before G has a unique cyclic subgroup 〈x〉 of order
7. Clearly, 〈x〉 E G and CG(x) = 〈x〉. Since G/〈x〉 is isomorphic to a
subgroup of Aut(〈x〉) ∼= C6, it follows that G ∼= C7, D14, C7 ⋊F C3 or
C7 ⋊F C6. Now suppose that 8 ∈ ω(G). If G has two distinct cyclic
subgroups 〈x〉 and 〈y〉 of order 8, then the subgraph induced by 〈x〉 ∪ 〈y〉
has a subgraph isomorphic to K5 · K5 or 2K5, which is a contradiction
by Theorem 3.1. Therefore G has a unique cyclic subgroup 〈x〉 of order 8.
Then 〈x〉 E G and CG(x) = 〈x〉. Since G/〈x〉 is isomorphic to a subgroup
of Aut(〈x〉) ∼= C2 × C2, by using GAP [13], we obtain G ∼= C8, D16, Q16

or SD16. The converse is obvious.

4. Projective (proper) power graphs

The real projective plane is a non-orientable surface, which can be
represented on the plane by a circle with diametrically opposed points
identified.

Let Nk be the connected sum of k projective planes, where k is a
non-negative integer. The crosscap number of a graph Γ, denoted by
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γ(Γ), is the minimum integer k such that Γ can be embedded in Nk with
edges intersecting only in the endpoints. Clearly, a graph with crosscap
number 0 is a planar graph. A graph with crosscap number 1 is called
a projective graph. Note that for a subgraph Γ′ of a graph Γ, we always
have γ(Γ′) 6 γ(Γ). For complete graph Kn and complete bipartite graph
Km,n, it is well-known that

γ(Kn) =







⌈

(n−3)(n−4)
6

⌉

, n > 3 and n 6= 7,

3, n = 7,

and

γ(Km,n) =

⌈

(m − 2)(n − 2)

2

⌉

if m, n > 2 (see [26] and [25], respectively). Thus

• γ(Kn) = 0 for n = 1, 2, 3, 4;
• γ(Kn) = 1 for n = 5, 6;
• γ(Kn) > 2 for n > 7;
• γ(Km,n) = 0 for m = 0, 1 or n = 0, 1;
• γ(Km,n) = 1 for {m, n} = {3}, {3, 4};
• γ(Km,n) > 2 for m, n > 3 and m + n > 8.

A graph Γ is irreducible for a surface S if Γ does not embed in S but
any proper subgraph of Γ embeds in S. Kuratowski’s theorem states any
graph which is irreducible for the plane is homomorphic to either K5 or
K3,3. Glover, Huneke and Wang [14] constructed a list of 103 pairwise
non-homomorphic graphs which are irreducible for the real projective
plane. Also, Archdeacon in [1] proved this list is complete in the sense that
a graph can be embedded on the real projective plane if and only if it has
no subgraph homomorphic to any of the 103 given graphs. For example,
the graphs K5 · K5, 2K5, K3,3 · K3,3, 2K3,3, K3,3 · K5 and K3,3 ∪ K5 are
irreducible for the real projective plane. Furthermore, the irreducible
graphs in [14] show that the graph K7 is not projective.

Theorem 4.1. Let G be a finite group. Then P(G) is projective if and
only if G ∼= C5, C6, D10, D12, C3 ⋊ C4 or C5 ⋊F C4.

Proof. Suppose P(G) is projective. The same as in the proof of Theorem
2.2, it can be easily seen that ω(G) ⊆ {1, 2, 3, 4, 5, 6}. If ω(G) ⊆ {1, 2, 3, 4},
then P(G) is planar by Theorem 2.1, which is a contradiction. If 5, 6 ∈
ω(G), then the subgraph induced by 〈x〉 ∪ 〈y〉, in which 〈x〉 and 〈y〉 are
distinct subgroups of orders 5 and 5, or 5 and 6, respectively, contains a
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subgraph isomorphic to K5·K5, a contradiction. Thus ω(G) ⊆ {1, 2, 3, 4, 5}
or {1, 2, 3, 4, 6}. If 5 ∈ ω(G), then G has a unique normal cyclic subgroup
〈x〉 of order 5. Clearly, CG(x) = 〈x〉. Hence G/〈x〉 is isomorphic to a
subgroup of Aut(〈x〉) ∼= C4, which implies that |G| divides 20. Therefore
G ∼= C5, D10 or C5 ⋊F C4. Finally, suppose that 6 ∈ ω(G). If 〈x〉 and 〈y〉
are two distinct subgroups of order 6, then 〈x〉 ∩ 〈y〉 ∼= C3 for otherwise
the subgraph induced by 〈x〉 ∪ 〈y〉 has a subgraph isomorphic to K5 · K5,
which is a contradiction. Since G has no subgraphs isomorphic to K3,6, it
follows that G has at most two cyclic subgroups of order 6. If G has two
distinct cyclic subgroups 〈x〉 and 〈y〉 of order 6, then since NG(〈x〉)/CG(x)
is isomorphic to a subgroup of Aut(〈x〉) ∼= C2 and CG(x) = 〈x〉, it
follows that |NG(〈x〉)| divides 12. On the other hand, 〈x〉 has at most
two conjugates, namely 〈x〉 and 〈y〉, which implies that [G : NG(〈x〉)] 6 2.
Thus |G| divides 24. A simple verification, say by using GAP [13], shows
that there are no groups of order dividing 24 having exactly two cyclic
subgroups of order 6, which contradicts our assumption. Therefore G has a
unique cyclic subgroup of order 6, say 〈x〉. Then 〈x〉 E G and CG(x) = 〈x〉.
Hence G/〈x〉 is isomorphic to a subgroup of Aut(〈x〉) ∼= C2, which implies
that G ∼= C6, D12 or C3 ⋊ C4. The converse is straightforward.

Theorem 4.2. Let G be a finite group. Then P∗(G) is projective if and
only if G ∼= C7, D14, C7 ⋊F C3 or C7 ⋊F C6.

Proof. Suppose P∗(G) is projective. The same as in the proof of Theo-
rem 2.2, it can be easily seen that ω(G) ⊆ {1, 2, 3, 4, 5, 6, 7}. If ω(G) ⊆
{1, 2, 3, 4, 5, 6}, then P(G) is planar by Theorem 2.2, which is a contra-
diction. Thus 7 ∈ ω(G). If G has two distinct cyclic subgroups of order
7, then P∗(G) has a subgraph isomorphic to 2K6, which is impossible.
This shows that G has a unique cyclic subgroup 〈x〉 of order 7. Then
〈x〉 E G and G/CG(x) is isomorphic to a subgroup of Aut(〈x〉) ∼= C6. On
the other hand, CG(x) = 〈x〉, which implies that |G| divides 42. Therefore
G ∼= C7, D14, C7 ⋊F C3 or C7 ⋊F C6. The converse is obvious.
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