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ABSTRACT. Let R be acommutative ring with identity and let
M be an R-module. The main purpose of this paper is to introduce
and study the notion of S-second submodules of an R-module M
as a generalization of second submodules of M.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity
and Z will denote the ring of integers.

Consider a nonempty subset S of R. We call S a multiplicatively closed
subset (briefly, m.c.s.) of Rif (i) 0 ¢ S, (ii) 1 € S, and (iii) s§ € S for all
s,$ € S [15]. Note that S = R — P is a m.c.s. of R for every prime ideal
P of R. Let M be an R-module. A proper submodule P of M is said to
be prime if for any r € R and m € M with rm € P, we have m € P or
r € (P:r M) [9]. A non-zero submodule N of M is said to be second if for
each a € R, the homomorphism N % N is either surjective or zero [16].

Let S be a m.c.s. of R and P a submodule of an R-module M with
(P :r M)NS = @. Then the submodule P is said to be an S-prime
submodule of M if there exists an s € S, and whenever am € P, then
sa € (P :g M) or sm € P for each a € R, m € M [14]. Particularly, an
ideal I of R is said to be an S-prime ideal if I is an S-prime submodule

of the R-module R.
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Let S be a m.c.s. of R and M be an R-module. The main purpose
of this paper is to introduce the notion of S-second submodules of an
R-module M as a generalization of second (dual notion of S-prime) sub-
modules of M and provide some useful information concerning this class of
modules. Moreover, we obtain some results analogous to those for S-prime
submodules considered in [14].

2. Main results

Let M be an R-module. A proper submodule IV of M is said to be com-
pletely irreducible if N = (";c; Ni, where {N; }ie; is a family of submodules
of M, implies that N = N; for some i € I. It is easy to see that every
submodule of M is an intersection of completely irreducible submodules
of M [11].

Remark 2.1. Let N and K be two submodules of an R-module M. To
prove N C K, it is enough to show that if L is a completely irreducible
submodule of M such that K C L, then N C L [4].

Theorem 2.2. Let S be a m.c.s. of R. For a submodule N of an R-module
M with Anng(N) NS = & the following statements are equivalent:
(a) There exists an s € S such that srN = sN or srN = 0 for each
r e R;
(b) There exists an s € S and whenever rN C K, where r € R and K
1s a submodule of M, implies either that rsN =0 or sN C K;
(c) There exists an s € S and whenever TN C L, where r € R and
L is a completely irreducible submodule of M, implies either that
rsN =0 or sN C L.
(d) There exists an s € S, and JN C K implies sJ C Anng(N) or
sN C K for each ideal J of R and submodule K of M.

Proof. (a) = (b) and (b) = (c) are clear.

(¢) = (a) By part (c), there exists an s € S. Assume that srN # 0 for
some r € R. Then s?rN # 0. If rsN C L for some completely irreducible
submodule L of M, then by assumption, sN C L. Hence, by Remark 2.1,
sN C rsN, as required.

(b) = (d) Suppose that JN C K for some ideal J of R and submodule
K of M. By part (b), there is an s € S so that N C K implies sr €
Anng(N) or sN C K for each r € R. Assume that sN ¢ K. Then by
Remark 2.1, there exists a completely irreducible submodule L of M such
that K C L but sV & L. Then note that for each a € J, we have aN C L.
By part (b), we can conclude that sa € Anng(N) and so sJ C Anng(V).
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(d) = (b) Take a € R and K a submodule of M with aN C K. Now,
put J = Ra. Then we have JN C K. By assumption, there is an s € .§
such that sJ = Ras C Anng(N) or sN C K and so either sa € Anng(V)
or sIN C K as needed. O

Definition 2.3. Let S be a m.c.s. of R and N be a submodule of an
R-module M such that Anng(N)NS = &. We say that N is an S-second
submodule of M if satisfies the equivalent conditions of Theorem 2.2. By
an S-second module, we mean a module which is an S-second submodule
of itself.

The following lemma is known, but we write it here for the sake of
reference.

Lemma 2.4. Let M be an R-module, S a m.c.s. of R, and N be a finitely
generated submodule of M. If SN C S~'K for a submodule K of M,
then there exists an s € S such that sN C K.

Proof. This is straightforward. O

Let S be a m.c.s. of R. Recall that the saturation S* of S is defined
as S* = {zx € R:x/1is a unit of STLR}. It is obvious that S* is a m.c.s.
of R containing S [12].

Proposition 2.5. Let S be a m.c.s. of R and M be an R-module. Then
we have the following.

(a) If N is a second submodule of M such that SN Anng(N) = &, then
N is an S-second submodule of M. In fact if S C u(R) and N is an
S-second submodule of M, then IV is a second submodule of M.

(b) If 1 € Sy are m.c.s.s of R and N is an Sp-second submodule of M,
then N is an Sa-second submodule of M in case Anng(N)N Sy = @.

(c) N is an S-second submodule of M if and only if NV is an S*-second
submodule of M

(d) If N is a finitely generated S-second submodule of M, then S™!N
is a second submodule of S~ M

Proof. (a) and (b) These are clear.

(c) Assume that N is an S-second submodule of M. We claim that
Anng(N)NS* = @. To see this assume that there exists an z € Anng(N)N
S* As x € S*, z/1is a unit of ST R and so (z/1)(a/s) = 1 for some a € R
and s € S. This yields that us = uza for some u € S. Now we have that
us = uza € Anng(N)NS, a contradiction. Thus, Anng(N)NS* = &. Now
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as S C S*, by part (b), N is an S*-second submodule of M. Conversely,
assume that NV is an S*-second submodule of M. Let rN C K. As N is an
S*-second submodule of M, there is an x € S* such that xr € Anng(N)
or tN C K. As 2/1 is a unit of ST R, there exist u, s € S and a € R such
that us = uza. Then note that (us)r = uazr € Anng(N) or us(zN) C K.
Therefore, N is an S-second submodule of M.

(d) If STIN = 0, then as N is finitely generated, there is an s € S such
that s € Anng(N) by Lemma 2.4. This implies that Anng(N) NS # @,
a contradiction. Thus ST!N # 0. Now let r/t € ST'!R. As N is an
S-second submodule of M, there is an s € S such that rsN = sN or
rsN = 0. If rsN = sN, then (r/s)S™!N = S™IN. If rsN = 0, then
(r/s)S7IN = 0, as needed. O

Corollary 2.6. Let M be an R-module and set S = {1}. Then every
second submodule of M is an S-second submodule of M.

Proof. Let N be a second submodule of M. Then as N # 0, we have
1 ¢ Anng(N). Hence S N Anng(N) = @ and the result follows from
Proposition 2.5 (a). O

The following examples show that the converses of Proposition 2.5 (a)
and (d) are not true in general.

Example 2.7. Take the Z-module M = Zpe & Zs for a prime number p.
Then 2(Zpe ©Zs2) = ZLp-®0 implies that M is not a second Z-module. Now,
take the m.c.s. S =7\ {0} and put s = 2. Then 2rM = Zy~ &0 = 2M
for all r € Z and so M is an S-second Z-module.

Example 2.8. Consider the Z-module M = Q ® Q, where Q is the
field of rational numbers. Take the submodule N = Z & 0 and the m.c.s.
S = 7Z\ {0}. Then one can see that N is not an S-second submodule
of M. Since S7'1Z = Q is a field, S~1(Q ® Q) is a vector space so that
a non-zero submodule ST is a second submodule of S™1(Q @ Q).

An R-module M is said to be a comultiplication module if for every sub-
module N of M there exists an ideal I of R such that N = (0 :ps ), equiv-
alently, for each submodule N of M, we have N = (0 :py Anng(N)) [2].

Proposition 2.9. Let M be an R-module and S be a m.c.s. of R. Then
the following statements hold.
(a) If N is an S-second submodule of M, then Anng(N) is an S-prime
ideal of R.
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(b) If M is a comultiplication R-module and Anng(N) is an S-prime
ideal of R, then N is an S-second submodule of M.

Proof. (a) Let ab € Anng(N) for some a,b € R. As N is an S-second
submodule of M, there exists an s € S such that asN = sN or asN =0
and bsN = sN or bsN = 0. If asN = 0 or bsN = 0 we are done. If
asN = sN, then 0 = basN = bsN, a contradiction. If bsN = s, then
0 = absN = asN, a contradiction. Thus in any case, asN = 0 or bs[N = 0,
as needed.

(b) Assume that M is a comultiplication R-module and Anng(N)
is an S-prime ideal of R. Let » € R and K be a submodule of M with
rN C K. Then Anng(K)rN = 0. As Anng(N) is an S-prime ideal of R, by
[14, Corollary 2.6], there is an s € S such that sAnng(K) C Anng(N) or
sr € Anng(N). If sr € Anng(NN), we are done. If sAnng(K) C Anng(N),
then Anng(K) C Anng(sN). Now as M is a comultiplication R-module,
we have sV C K, as desired. O

An R-module M satisfies the double annihilator conditions (DAC for
short) if for each ideal I of R we have I = Anng(0 :ps I) [10]. An R-module
M is said to be a strong comultiplication module if M is a comultiplication
R-module and satisfies the DAC conditions [6].

Theorem 2.10. Let M be a strong comultiplication R-module and N be
a submodule of M such that Anng(N)NS = &, where S is a m.c.s. of R.
Then the following are equivalent:

(a) N is an S-second submodule of M ;

(b) Anng(N) is an S-prime ideal of R;

(¢) N =1(0:pI) for some S-prime ideal I of R with Anng(N) C I.

Proof. (a) = (b) This follows from Proposition 2.9.

(b) = (¢) As M is a comultiplication R-module, N = (0 :py Anng(N)).
Now the result is clear.

(¢c) = (a) As M satisfies the DAC conditions, Anng((0 :ps I)) = 1.
Now the result follows from Proposition 2.9. [

Let R; be a commutative ring with identity, M; be an R;-module
for each ¢ = 1,2,...,n, and n € N. Assume that M = M; x Ms X
- X My, and R= Ry X Ry X --- X R,,. Then M is clearly an R-module
with componentwise addition and scalar multiplication. Also, if 5; is
a multiplicatively closed subset of R; for each i = 1,2,...,n, then S =
S1 X Sy x -+ x S, is a multiplicatively closed subset of R. Furthermore,
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each submodule N of M is of the form N = Ny x Ny X --- X N,,, where
N; is a submodule of M;.

Theorem 2.11. Let M = My x My be an R = R; X Rg-module and
S =51 xS be am.c.s. of R, where M; is an R;-module and S; is a m.c.s.
of R; for each i =1,2. Let N = N1 X Na be a submodule of M. Then the
following are equivalent:
(a) N is an S-second submodule of M;
(b) Ny is an Si-second submodule of My and Anng,(N2) NSy # & or
Ny is an Sy-second submodule of My and Anng, (N1) NS] # .

Proof. (a) = (b) Let N = Ni x Ny be an S-second submodule of M.
Then Anng(N) = Anng, (N1) x Anng,(N2) is an S-prime ideal of R
by Proposition 2.9. By [14, Lemma 2.13|, either Anng(N7) NS] # & or
Anng(N3) N Sy # @. We may assume that Anng(N1) N.S; # &. We show
that No is an Ss-second submodule of Ms. To see this, let 79Ny C Ko
for some ry € Ry and a submodule Ky of Ms. Then (1,r2)(Ny x Na) C
M x Ks. As N is an S-second submodule of M, there exists an(sy, s2) € S
such that (81,82><N1 X NQ) - M1 X K2 or (81,82)(1,7’2)(]\71 X NQ) = 0.
It follows that ss Ny C K5 or ssraNo = 0 and so Ns is an Ss-second
submodule of Ms. Similarly, if Anng,(N2) N Se # @, one can see that Ny
is an Sp-second submodule of M;.

(b) = (a) Assume that Nj is an Si-second submodule of M; and
Annpg,(N2) NSy # &. Then there exists an sy € Anng,(Na) N Sa. Let
(r1,72)(N1 X No) C K x Ky for some r; € R; and submodule K; of M;,
where 7 = 1,2. Then r1 N7 € Ky. As Ny is an Si-second submodule of
M7, there exists an s € S7 such that s; /N7 C K7 or s;r1 N7 = 0. Now we
set s = (s1,82). Then s(Ny x Na) C Ky x Kg or s(r1,7r2)(Ny X Na) = 0.
Therefore, N is an S-second submodule of M. Similarly one can show
that if Ny is an Sp-second submodule of My and Anng, (N1) N S; # @,
then NNV is an S-second submodule of M. ]

Theorem 2.12. Let M = My xXMox---XxXM, be an R = RixRoX---XR,,-
module and S = S1 X So X -+ x S, be a m.c.s. of R, where M; is an
R;-module and S; is a m.c.s. of R; for each i = 1,2,...,n. Let N =
Ny x Nogx---xN, be asubmodule of M. Then the following are equivalent:
(a) N is an S-second submodule of M ;
(b) N; is an S;-second submodule of M; for some i € {1,2,...,n} and
Anng (N;)NS; # @ forall j € {1,2,...,n} — {i}.

Proof. We apply induction on n. For n = 1, the result is true. If n = 2,
then the result follows from Theorem 2.11. Now assume that parts (a)
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and (b) are equal when k < n. We shall prove (b) < (a) when k = n.
Let N = Ny X Ny x -+ x Np. Put N = Ny x Ny x --- x N,_1 and
S =8, xSy x - xS,_1. Then by Theorem 2.11, the necessary and
sufficient condition for N is an S-second submodule of M is that N is an
S-second submodule of M and Anng, (N,)NS, # @ or N, is an S,,-second
submodule of M,, and AnnR(N)ﬂS #+ &, where R=RyxRyx - XRy_1.
Now the result follows from the induction hypothesis. O

Lemma 2.13. Let S be a m.c.s. of R and N be an S-second submodule
of an R-module M. Then the following statements hold for some s € S.
(a) sN C$N forall s € S.
(b) (Anng(N) :r $) C (Anng(N) :g s) for all § € S.

Proof. (a) Let N be an S-second submodule of M. Then there is an s € S
such that rN C K for each r € R and a submodule K of M implies that
sN C K or srN = 0. Let L be a completely irreducible submodule of M
such that SN C L. Then sN C L or $sN = 0. As Anng(N)N S = @, we
get that sN C L. Thus sN C §N by Remark 2.1.

(b) This follows from Proposition 2.9 (a) and |14, Lemma 2.16 (ii)]. O

Proposition 2.14. Let S be a m.c.s. of R and N be a finitely generated
submodule of M such that Anng(N) NS = @. Then the following are
equivalent:
(a) N is an S-second submodule of M;
(b) STIN is a second submodule of S~'M and there is an s € S
satisfying sN C $N for all § € S.

Proof. (a) = (b) This follows from Proposition 2.5 (d) and Lemma 2.13.

(b) = (a) Let aN C K for some ¢ € R and a submodule K of
M. Then (a/1)(S7IN) € S7'K. Thus by part (b), ST!N C S7'K or
(a/1)(S7IN) = 0. Hence by Lemma 2.4, sy N C K or ssaN = 0 for some
s1,82 € S. By part (b), there is an s € S such that sN C s;N and
sN C s9N C (0 :ps a). Therefore, sN C K or asN = 0, as desired. O

Theorem 2.15. Let S be a m.c.s. of R and N be a submodule of an R-
module M such that Anng(N)NS = &. Then N is an S-second submodule
of M if and only if sN is a second submodule of M for some s € S.

Proof. Let sN be a second submodule of M for some s € S. Let aN C K
for some a € R and a submodule K of M. As asN C K and sN is a second
submodule of M, we get that sN C K or aslN = 0, as needed. Conversely,
assume that N is an S-second submodule of M. Then there is an s € S
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such that if aN C K for some a € R and a submodule K of M, then
sN C K or salN = 0. Now we show that sV is a second submodule of M.
Let a € R. As asN C asN, by assumption, sN C asN or as’N = 0. If
sN C asN, then there is nothing to show. Assume that sN € asN. Then
as’N =0andso a € (Anng(N) :g s?) C (Anng(N) :g s) by Lemma 2.13.
Thus, we can conclude that asN = 0, as desired. ]

The set of all maximal ideals of R is denoted by Maz(R).

Theorem 2.16. Let S be a m.c.s. of R and N be a submodule of an
R-module M such that Anng(N) C Jac(R), where Jac(R) is the Jacobson
radical of R. Then the following statements are equivalent:
(a) N is a second submodule of M ;
(b) Anng(N) is a prime ideal of R and N is an (R \ 9M)-second sub-
module of M for each M € Max(R).

Proof. (a) = (b) Let N be a second submodule of M. Clearly, Anng(N)
is a prime ideal of R. Since Anng(N) C Jac(R), Anng(N) C 9t for each
M € Mazx(R) and so Anng(N) N (R\ M) = @. Now the result follows
from Proposition 2.5 (a).

(b) = (a) Let Anng(N) be a prime ideal of R and N be an (R \ 9)-
second submodule of M for each MM € Max(R). Let a« € R and a ¢
Anng(N). We show that aN = N. Let M € Maxz(R). Then as aN C aN,
there exists an sgp € R\ 9 such that s;g N C aN or ssgnaN = 0. As
Anng(N) is a prime ideal of R and sgn ¢ Anng(N), we have asoqy ¢
Anng(N) and so ssp N C aN. Now consider the set

Q= {sgm:IM e Max(R), ssmm ¢ Mand s;mN C aN}.

Then we claim that Q@ = R. To see this, take any maximal ideal m
containing 2. Then the definition of ) requires that there exists an
s € Q and sy ¢ M. As Q C 95?, we have sy € 2 C ?JjT, a contradiction.
Thus, 2 = R and this yields

1 =risom, +rasom, + -+ rpsom,

for some r; € R and sgp, € R\ M with sogp, N C aN, where M; € Max(R)
for each ¢ = 1,2,...,n. This yields that

N = (risom, +rasom, + -+ s, )N C alN.

Therefore, N C aN as needed. O
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Now we determine all second submodules of a module over a quasilocal
ring in terms of S-second submodules.

Corollary 2.17. Let S be a m.c.s. of a quasilocal ring (R, ) and N
be a submodule of an R-module M. Then the following statements are
equivalent:
(a) N is a second submodule of M;
(b) Anng(N) is a prime ideal of R and NN is an (R\91)-second submodule
of M.

Proof. This follows from Theorem 2.16. 0J

Proposition 2.18. Let S be am.c.s. of Rand f : M — M be a monomor-
phism of R-modules. Then we have the following.
(a) If N is an S-second submodule of M, then f(V) is an S-second
submodule of M.
(b) If N is an S-second submodule of M and N C f(M), then f~'(N)
is an S-second submodule of M.

Proof. (a) As Anng(N)N S = @ and f is a monomorphism, we have
Anng(f(N))NS = @. Let r € R. Since N is an S-second submodule
of M, there exists an s € S such that srIN = sN or srN = 0. Thus
srf(N)=sf(N) or srf(N) =0, as needed.

(b) Anng(N) NS = @ implies that Anng(f~'(N)) NS = @. Now
let r € R. As N is an S-second submodule of M, there exists an s € S
such that srN = sN or srN = 0. Therefore srf~'(N) = sf~'(N) or
srfH(N) =0, as requested. O

Proposition 2.19. Let S be am.c.s. of R, M a comultiplication R-module,
and let N be an S-second submodule of M. Suppose that N C K + H for
some submodules K, H of M. Then sN C K or sN C H for some s € S.

Proof. As N C K + H, we have Anng(K) Anng(H) C Anng(N). This
implies that there exists an s € S such that sAnng(K) C Anng(N) or
sAnngr(H) C Anng(N) since by Proposition 2.9, Anng(N) is an S-prime
ideal of R. Therefore, Anng(K) C Anng(sN) or Anng(H) C Anng(sN).
Now as M is a comultiplication R-module, we have sN C K or sN C H
as needed. O

Let M be an R-module. The idealization R(+)M = {(a,m) : a €
R,m € M} of M is a commutative ring whose addition is componentwise
and whose multiplication is defined as (a,m)(b, ) = (ab, ari + bm) for
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each a,b € R, m,m € M [13]. If S is a m.c.s. of R and N is a submodule
of M, then S(+)N = {(s,n):s € S,n € N} is am.c.s. of R(+)M [1].

Proposition 2.20. Let M be an R-module and let I be an ideal of R
such that I C Anng(M). Then the following are equivalent:

(a) I is a second ideal of R;

(b) I(+)0 is a second ideal of R(+)M.

Proof. This is straightforward. O

Theorem 2.21. Let S be a m.c.s. of R, M be an R-module, and I be an
ideal of R such that I C Anng(M) and INS = &. Then the following are
equivalent:

(a) I is an S-second ideal of R;

(b) I(4)0 is an S(+)0-second ideal of R(+)M;

(¢) I(+)0 is an S(+)M-second ideal of R(+)M.
Proof. (a) = (b) Let (r,m) € R(+)M. As I is an S-second ideal
of R, there exists an s € S such that rsl = sl or rsl = 0. If
rsI = 0, then (r,m)(s,0)(I(4)0) = 0. If rsI = sI, then we claim that
(r,m)(s,0)(I(4+)0) = (s,0)(I(+)0). To see this let (sa,0) = (s,0)(a,0) €
(s,0)(I(+)0). As rsI = sI, we have sa = rsb for some b € I. Thus as
bel C Anng(M),

(sa,0) = (srb,0) = (srb,smb) = (sr,sm)(b,0) = (s,0)(r,m)(b,0).

Hence (s,0)(a,0) € (r,m)(s,0)(I(+)0), and so
(5,0)(1(+)0) € (r,m)(s,0)(1(+)0).
Since the inverse inclusion is clear we reach the claim.

(b) = (c) Since S(+)0 C S(+)M, the result follows from Proposi-
tion 2.5(b).

(¢c) = (a) Let m € R. As I(+)0 is an S(+)M-second ideal of
R(+)M, there exists an (s,m) € S(+)M such that (r,0)(s,m)(I(+)0) =
(s,m)(I(+)0) or (r,0)(s,m)(I(+)0) = 0. If (r,0)(s, m)(I(+)0) = 0, then

0= (r,0)(s,m)(a,0) = (rs,rm)(a,0) = (rsa,rma) = (rsa,0)
far each a € I. Thus rsI = 0. If (r,0)(s,m)(I(+)0) = (s,m)(I(+)0), then
we claim that rsI = sI. To see this let sa € sI. Then for some b € I, we
have

(sa,0) = (sa,am) = (s,m)(a,0) = (s,m)(r,0)(b,0)
= (srb,rmb) = (srb,0).

Hence, sa € rsl and so sI C srl, as needed. O
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Let P be a prime ideal of R and N be a submodule of an R-module M.
The P-interior of N relative to M is defined (see [3, 2.7]) as the set

IM(N) = ﬂ{L | L is a completely irreducible submodule of M
and rN C L for some r € R — P}.

Let R be an integral domain. A submodule N of an R-module M is
said to be a cotorsion-free submodule of M (the dual of torsion-free) if
IM(N) = N and is a cotorsion submodule of M (the dual of torsion) if
IM(N) = 0. Also, M said to be cotorsion (resp. cotorsion-free) if M is
a cotorsion (resp. cotorsion-free) submodule of M [5].

One can see that if M is a cotorsion-free R-module, then R is an
integral domain and M is a faithful R-module. In [5, Proposition 2.9 (e)],
it is shown that if M is a comultiplication R-module the reverse is true.
The following example shows that sometimes the reverse of this statement
may not be true.

Example 2.22. Consider the Z-module M = [];2, Zyi, where p is a prime
number. Then it is easy to see that M is a faithful Z-module. But the
Z-module M is not second since (1,0,0,...) ¢ pM and so M # pM.
Therefore, by [5, Theorem 2.10], I} (M) # M and so the Z-module M is
not a cotorsion-free module.

Definition 2.23. Let M be an R-module and S be a m.c.s. of R with
Anng(M) NS = @. We say that M is an S-cotorsion-free module in the
case that we can find s € S such that if rM C L, where r € R and L is
a completely irreducible submodule of M, then sM C L or rs = 0.

Proposition 2.24. Let M be an R-module and S be a m.c.s. of R. Then
the following statements are equivalent.
(a) M is an S-second R-module.
(¢) P=Anng(M) is an S-prime ideal of R and the R/P-module M is
an S-cotorsion-free module.

Proof. (a) = (b). We can assume that P = 0. By Proposition 2.9 (a),
Anng (M) is an S-prime ideal of R. Now let L be a completely irreducible
submodule of M and r» € R such that rM C L. Then there exists an
s € S such that sM C L or srM = 0 because M is S-second. Therefore,
sM C Lorrse€ Anng(M) =0, as needed.

(b) = (a). As Anng(M) is an S-prime ideal of R, Anng(M)NS = @.
Suppose that there exist r € R and completely irreducible submodule L of
M such that rM C L. By assumption, there is an s € S such that sM C L
or rs = 0p/p. Thus sM C L or rs € P = Anng(M), as desired. O
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Theorem 2.25. Let M be a module over an integral domain R. Then the
following are equivalent:

(a) M is a cotorsion-free R-module;

(b) M is an (R \ P)-cotorsion-free for each prime ideal P of R;

(¢) M is an (R \ 9M)-cotorsion-free for each mazimal ideal MM of R.

Proof. (a) = (b) This is clear.

(b) = (c¢) This is obvious.

(¢) = (a) Let M be (R \ 9)-cotorsion-free for each maximal ideal I
of R. Let aM C L for some a € R and a completely irreducible submodule
L of M. Assume that a # 0. Take a maximal ideal 9 of R. As M is
(R \ 9M)-cotorsion-free, there exists an soy € R\ 9 such that s;pM C L
or asspy = 0. As R is an integral domain, asgy # 0 and so ssgnM C L. Now

set
Q= {sop: IM € Max(R), s;m ¢ M and s;gM C L}.

A similar argument as in the proof of Theorem 2.16 shows that 2 = R.
Thus we have (son,) + (sam,) + -+ + (son,) = R for some sgy, € 2. This
implies that M = ((son,) + (som,) + - -+ (sm,))M C L and hence M = L.
This means that M is a cotorsion-free R-module. O

Let M be an R-module. The dual notion of Zr(M), the set of zero
divisors of M, is denoted by Wx(M) and defined by

W(M)={acR:aM # M}.

Theorem 2.26. Let S be a m.c.s. of R and M be a finitely generated
comultiplication R-module with Anng(M) NS = &. Then the following
statements are equivalent:

(a) Each non-zero submodule of M is S-second;

(b) M is a simple R-module.

Proof. (a) = (b) Assume that every non-zero submodule of M is an
S-second submodule of M. First we show that Wr(M) = Anng(M).
Let a € Wr(M). Then aM # M. Since M is S-second, there exists
an s € S such that saM = sM or saM = 0. If saM = sM, then
s € (saM :p M). Now put N = (0 :ps (saM :p M)) and note that
s € SN Anng(N) # @. Thus, N is not S-second and so by part (a),
we have N = (0 :ps (saM :g M)) = 0. Now as M is a comultiplication
R-module, one can see that M (saM :gp M) = M. By |7, Corollary 2.5],
1 —2 € Anng(M) C (saM :gr M) for some = € (saM :p M) since M
is a finitely generated R-module. This implies that (saM :p M) = R
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and so saM = M. It follows that aM = M, which is a contradiction.
Therefore, saM = 0. Then s € Anng(aM) and so S N Anng(aM) # @.
Hence by assumption, aM = 0. Thus, we get Wgr(M) = Anng(M). Let
a ¢ Wg(M). Now we will show that (0 :ps a) = 0. If (0 15y @) = 0, then
(0 :pr @) = 0. Suppose (0 :py a?) # 0. Since (0 :p; a?) is an S-second
submodule of M and a(0 :p; a?) € (0 :p a), there is an s € S such
that sa(0 :p; a?) = 0. This implies that (0 :3; a?) C (0 :ps as). Let
m1 € (0 :p7 a). Then amy = 0. We have my = amy since aM = M. Thus
ami = a®?my = 0. Hence mo € (0 :37 a?) C (0 :p7 as). This implies that
0 = samg = smy and so my € (0 :pr s). Therefore, (0 :37 a) C (0 :ps s)
and so s € Anng((0 :ps a)). Hence S N Anng((0 :ar a)) # @. So by
assumption, we have (0 :p; a) = 0. Now take a submodule H of M.
If Anng(H) = Anng(M), then H = M since M is a comultiplication
R-module. Take an element a € Anng(H) \ Anng(M). As Wr(M) =
Anng(M), a ¢ Wr(M) and so (0 :pr a) = 0. Then we get

H = (0:p Anng(H)) € (0 :p7 a) = 0.

Therefore, M is a simple R-module.

(b) = (a) Note that every simple R-module M is a second submodule
of M. Since Anng(M)NS = &, by Proposition 2.5 (a), M is an S-second
submodule of M. O

An R-module M is said to be a multiplication module if for every
submodule N of M there exists an ideal I of R such that N = I'M [8].

Corollary 2.27. Let S be a m.c.s. of R. If M is a finitely generated
multiplication and comultiplication R-module with Anng(M) NS = @,
then the following statements are equivalent:

(a) Each non-zero submodule of M is S-second;

(b) M is a simple R-module;

(c) Each proper submodule of M is an S-prime submodule of M.

Proof. This follows from Theorem 2.26 and [14, Theorem 2.26]. O

Example 2.28. Consider the Z-module Z,,. Take S = Z—0. We know that
Zy, is a finitely generated multiplication and comultiplication Z-module.
Then by Corollary 2.27, if n is not a prime number, the Z-module Z,
has a non-zero submodule which is not S-second and a proper submodule
which is not S-prime.
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