© Algebra and Discrete Mathematics Volume **32** (2021). Number 2, pp. 197–210 DOI:10.12958/adm1437

S-second submodules of a module

F. Farshadifar

Communicated by V. A. Artamonov

ABSTRACT. Let R be a commutative ring with identity and let M be an R-module. The main purpose of this paper is to introduce and study the notion of S-second submodules of an R-module M as a generalization of second submodules of M.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Consider a nonempty subset S of R. We call S a multiplicatively closed subset (briefly, m.c.s.) of R if (i) $0 \notin S$, (ii) $1 \in S$, and (iii) $ss \in S$ for all $s, s \in S$ [15]. Note that S = R - P is a m.c.s. of R for every prime ideal P of R. Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_R M)$ [9]. A non-zero submodule N of M is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [16].

Let S be a m.c.s. of R and P a submodule of an R-module M with $(P:_R M) \cap S = \emptyset$. Then the submodule P is said to be an S-prime submodule of M if there exists an $s \in S$, and whenever $am \in P$, then $sa \in (P:_R M)$ or $sm \in P$ for each $a \in R, m \in M$ [14]. Particularly, an ideal I of R is said to be an S-prime ideal if I is an S-prime submodule of the R-module R.

²⁰²⁰ MSC: 13C13, 13C05, 13A15, 16D60, 13H15.

Key words and phrases: second submodule, S-second submodule, S-cotorsion-free module, simple module.

Let S be a m.c.s. of R and M be an R-module. The main purpose of this paper is to introduce the notion of S-second submodules of an R-module M as a generalization of second (dual notion of S-prime) submodules of M and provide some useful information concerning this class of modules. Moreover, we obtain some results analogous to those for S-prime submodules considered in [14].

2. Main results

Let M be an R-module. A proper submodule N of M is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [11].

Remark 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$ [4].

Theorem 2.2. Let S be a m.c.s. of R. For a submodule N of an R-module M with $\operatorname{Ann}_R(N) \cap S = \emptyset$ the following statements are equivalent:

- (a) There exists an $s \in S$ such that srN = sN or srN = 0 for each $r \in R$;
- (b) There exists an s ∈ S and whenever rN ⊆ K, where r ∈ R and K is a submodule of M, implies either that rsN = 0 or sN ⊆ K;
- (c) There exists an $s \in S$ and whenever $rN \subseteq L$, where $r \in R$ and L is a completely irreducible submodule of M, implies either that rsN = 0 or $sN \subseteq L$.
- (d) There exists an $s \in S$, and $JN \subseteq K$ implies $sJ \subseteq Ann_R(N)$ or $sN \subseteq K$ for each ideal J of R and submodule K of M.

Proof. $(a) \Rightarrow (b)$ and $(b) \Rightarrow (c)$ are clear.

 $(c) \Rightarrow (a)$ By part (c), there exists an $s \in S$. Assume that $srN \neq 0$ for some $r \in R$. Then $s^2rN \neq 0$. If $rsN \subseteq L$ for some completely irreducible submodule L of M, then by assumption, $sN \subseteq L$. Hence, by Remark 2.1, $sN \subseteq rsN$, as required.

 $(b) \Rightarrow (d)$ Suppose that $JN \subseteq K$ for some ideal J of R and submodule K of M. By part (b), there is an $s \in S$ so that $rN \subseteq K$ implies $sr \in Ann_R(N)$ or $sN \subseteq K$ for each $r \in R$. Assume that $sN \not\subseteq K$. Then by Remark 2.1, there exists a completely irreducible submodule L of M such that $K \subseteq L$ but $sN \not\subseteq L$. Then note that for each $a \in J$, we have $aN \subseteq L$. By part (b), we can conclude that $sa \in Ann_R(N)$ and so $sJ \subseteq Ann_R(N)$.

 $(d) \Rightarrow (b)$ Take $a \in R$ and K a submodule of M with $aN \subseteq K$. Now, put J = Ra. Then we have $JN \subseteq K$. By assumption, there is an $s \in S$ such that $sJ = Ras \subseteq \operatorname{Ann}_R(N)$ or $sN \subseteq K$ and so either $sa \in \operatorname{Ann}_R(N)$ or $sN \subseteq K$ as needed.

Definition 2.3. Let S be a m.c.s. of R and N be a submodule of an *R*-module M such that $\operatorname{Ann}_R(N) \cap S = \emptyset$. We say that N is an S-second submodule of M if satisfies the equivalent conditions of Theorem 2.2. By an S-second module, we mean a module which is an S-second submodule of itself.

The following lemma is known, but we write it here for the sake of reference.

Lemma 2.4. Let M be an R-module, S a m.c.s. of R, and N be a finitely generated submodule of M. If $S^{-1}N \subseteq S^{-1}K$ for a submodule K of M, then there exists an $s \in S$ such that $sN \subseteq K$.

Proof. This is straightforward.

Let S be a m.c.s. of R. Recall that the saturation S^* of S is defined as $S^* = \{x \in R : x/1 \text{ is a unit of } S^{-1}R\}$. It is obvious that S^* is a m.c.s. of R containing S [12].

Proposition 2.5. Let S be a m.c.s. of R and M be an R-module. Then we have the following.

- (a) If N is a second submodule of M such that $S \cap \operatorname{Ann}_R(N) = \emptyset$, then N is an S-second submodule of M. In fact if $S \subseteq u(R)$ and N is an S-second submodule of M, then N is a second submodule of M.
- (b) If $S_1 \subseteq S_2$ are m.c.s.s of R and N is an S_1 -second submodule of M, then N is an S_2 -second submodule of M in case $\operatorname{Ann}_R(N) \cap S_2 = \emptyset$.
- (c) N is an $S\operatorname{-second}$ submodule of M if and only if N is an $S^*\operatorname{-second}$ submodule of M
- (d) If N is a finitely generated S-second submodule of M, then $S^{-1}N$ is a second submodule of $S^{-1}M$

Proof. (a) and (b) These are clear.

(c) Assume that N is an S-second submodule of M. We claim that $\operatorname{Ann}_R(N) \cap S^* = \emptyset$. To see this assume that there exists an $x \in \operatorname{Ann}_R(N) \cap S^*$ As $x \in S^*$, x/1 is a unit of $S^{-1}R$ and so (x/1)(a/s) = 1 for some $a \in R$ and $s \in S$. This yields that us = uxa for some $u \in S$. Now we have that $us = uxa \in \operatorname{Ann}_R(N) \cap S$, a contradiction. Thus, $\operatorname{Ann}_R(N) \cap S^* = \emptyset$. Now

as $S \subseteq S^*$, by part (b), N is an S^* -second submodule of M. Conversely, assume that N is an S^* -second submodule of M. Let $rN \subseteq K$. As N is an S^* -second submodule of M, there is an $x \in S^*$ such that $xr \in \operatorname{Ann}_R(N)$ or $xN \subseteq K$. As x/1 is a unit of $S^{-1}R$, there exist $u, s \in S$ and $a \in R$ such that us = uxa. Then note that $(us)r = uaxr \in \operatorname{Ann}_R(N)$ or $us(xN) \subseteq K$. Therefore, N is an S-second submodule of M.

(d) If $S^{-1}N = 0$, then as N is finitely generated, there is an $s \in S$ such that $s \in \operatorname{Ann}_R(N)$ by Lemma 2.4. This implies that $\operatorname{Ann}_R(N) \cap S \neq \emptyset$, a contradiction. Thus $S^{-1}N \neq 0$. Now let $r/t \in S^{-1}R$. As N is an S-second submodule of M, there is an $s \in S$ such that rsN = sN or rsN = 0. If rsN = sN, then $(r/s)S^{-1}N = S^{-1}N$. If rsN = 0, then $(r/s)S^{-1}N = 0$, as needed.

Corollary 2.6. Let M be an R-module and set $S = \{1\}$. Then every second submodule of M is an S-second submodule of M.

Proof. Let N be a second submodule of M. Then as $N \neq 0$, we have $1 \notin \operatorname{Ann}_R(N)$. Hence $S \cap \operatorname{Ann}_R(N) = \emptyset$ and the result follows from Proposition 2.5 (a).

The following examples show that the converses of Proposition 2.5 (a) and (d) are not true in general.

Example 2.7. Take the \mathbb{Z} -module $M = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_2$ for a prime number p. Then $2(\mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_2) = \mathbb{Z}_{p^{\infty}} \oplus 0$ implies that M is not a second \mathbb{Z} -module. Now, take the m.c.s. $S = \mathbb{Z} \setminus \{0\}$ and put s = 2. Then $2rM = \mathbb{Z}_{p^{\infty}} \oplus 0 = 2M$ for all $r \in \mathbb{Z}$ and so M is an S-second \mathbb{Z} -module.

Example 2.8. Consider the \mathbb{Z} -module $M = \mathbb{Q} \oplus \mathbb{Q}$, where \mathbb{Q} is the field of rational numbers. Take the submodule $N = \mathbb{Z} \oplus 0$ and the m.c.s. $S = \mathbb{Z} \setminus \{0\}$. Then one can see that N is not an S-second submodule of M. Since $S^{-1}\mathbb{Z} = \mathbb{Q}$ is a field, $S^{-1}(\mathbb{Q} \oplus \mathbb{Q})$ is a vector space so that a non-zero submodule $S^{-1}N$ is a second submodule of $S^{-1}(\mathbb{Q} \oplus \mathbb{Q})$.

An *R*-module *M* is said to be a *comultiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0:_M I)$, equivalently, for each submodule *N* of *M*, we have $N = (0:_M Ann_R(N))$ [2].

Proposition 2.9. Let M be an R-module and S be a m.c.s. of R. Then the following statements hold.

(a) If N is an S-second submodule of M, then $\operatorname{Ann}_R(N)$ is an S-prime ideal of R.

(b) If M is a comultiplication R-module and $\operatorname{Ann}_R(N)$ is an S-prime ideal of R, then N is an S-second submodule of M.

Proof. (a) Let $ab \in \operatorname{Ann}_R(N)$ for some $a, b \in R$. As N is an S-second submodule of M, there exists an $s \in S$ such that asN = sN or asN = 0 and bsN = sN or bsN = 0. If asN = 0 or bsN = 0 we are done. If asN = sN, then 0 = basN = bsN, a contradiction. If bsN = sN, then 0 = absN = asN, a contradiction. Thus in any case, asN = 0 or bsN = 0, as needed.

(b) Assume that M is a comultiplication R-module and $\operatorname{Ann}_R(N)$ is an S-prime ideal of R. Let $r \in R$ and K be a submodule of M with $rN \subseteq K$. Then $\operatorname{Ann}_R(K)rN = 0$. As $\operatorname{Ann}_R(N)$ is an S-prime ideal of R, by [14, Corollary 2.6], there is an $s \in S$ such that $sAnn_R(K) \subseteq \operatorname{Ann}_R(N)$ or $sr \in \operatorname{Ann}_R(N)$. If $sr \in \operatorname{Ann}_R(N)$, we are done. If $sAnn_R(K) \subseteq \operatorname{Ann}_R(N)$, then $\operatorname{Ann}_R(K) \subseteq \operatorname{Ann}_R(sN)$. Now as M is a comultiplication R-module, we have $sN \subseteq K$, as desired.

An *R*-module *M* satisfies the double annihilator conditions (DAC for short) if for each ideal *I* of *R* we have $I = \text{Ann}_R(0:_M I)$ [10]. An *R*-module *M* is said to be a *strong comultiplication module* if *M* is a comultiplication *R*-module and satisfies the DAC conditions [6].

Theorem 2.10. Let M be a strong comultiplication R-module and N be a submodule of M such that $\operatorname{Ann}_R(N) \cap S = \emptyset$, where S is a m.c.s. of R. Then the following are equivalent:

(a) N is an S-second submodule of M;

- (b) $\operatorname{Ann}_R(N)$ is an S-prime ideal of R;
- (c) $N = (0:_M I)$ for some S-prime ideal I of R with $\operatorname{Ann}_R(N) \subseteq I$.

Proof. $(a) \Rightarrow (b)$ This follows from Proposition 2.9.

 $(b) \Rightarrow (c)$ As M is a comultiplication R-module, $N = (0 :_M Ann_R(N))$. Now the result is clear.

 $(c) \Rightarrow (a)$ As M satisfies the DAC conditions, $\operatorname{Ann}_R((0:_M I)) = I$. Now the result follows from Proposition 2.9.

Let R_i be a commutative ring with identity, M_i be an R_i -module for each i = 1, 2, ..., n, and $n \in \mathbb{N}$. Assume that $M = M_1 \times M_2 \times$ $\cdots \times M_n$ and $R = R_1 \times R_2 \times \cdots \times R_n$. Then M is clearly an R-module with componentwise addition and scalar multiplication. Also, if S_i is a multiplicatively closed subset of R_i for each i = 1, 2, ..., n, then S = $S_1 \times S_2 \times \cdots \times S_n$ is a multiplicatively closed subset of R. Furthermore, each submodule N of M is of the form $N = N_1 \times N_2 \times \cdots \times N_n$, where N_i is a submodule of M_i .

Theorem 2.11. Let $M = M_1 \times M_2$ be an $R = R_1 \times R_2$ -module and $S = S_1 \times S_2$ be a m.c.s. of R, where M_i is an R_i -module and S_i is a m.c.s. of R_i for each i = 1, 2. Let $N = N_1 \times N_2$ be a submodule of M. Then the following are equivalent:

- (a) N is an S-second submodule of M;
- (b) N₁ is an S₁-second submodule of M₁ and Ann_{R₂}(N₂) ∩ S₂ ≠ Ø or N₂ is an S₂-second submodule of M₂ and Ann_{R₁}(N₁) ∩ S₁ ≠ Ø.

Proof. (a) \Rightarrow (b) Let $N = N_1 \times N_2$ be an S-second submodule of M. Then $\operatorname{Ann}_R(N) = \operatorname{Ann}_{R_1}(N_1) \times \operatorname{Ann}_{R_2}(N_2)$ is an S-prime ideal of R by Proposition 2.9. By [14, Lemma 2.13], either $\operatorname{Ann}_R(N_1) \cap S_1 \neq \emptyset$ or $\operatorname{Ann}_R(N_2) \cap S_2 \neq \emptyset$. We may assume that $\operatorname{Ann}_R(N_1) \cap S_1 \neq \emptyset$. We show that N_2 is an S_2 -second submodule of M_2 . To see this, let $r_2N_2 \subseteq K_2$ for some $r_2 \in R_2$ and a submodule K_2 of M_2 . Then $(1, r_2)(N_1 \times N_2) \subseteq M_1 \times K_2$. As N is an S-second submodule of M, there exists $\operatorname{an}(s_1, s_2) \in S$ such that $(s_1, s_2)(N_1 \times N_2) \subseteq M_1 \times K_2$ or $(s_1, s_2)(1, r_2)(N_1 \times N_2) = 0$. It follows that $s_2N_2 \subseteq K_2$ or $s_2r_2N_2 = 0$ and so N_2 is an S_2 -second submodule of M_1 .

 $(b) \Rightarrow (a)$ Assume that N_1 is an S_1 -second submodule of M_1 and $\operatorname{Ann}_{R_2}(N_2) \cap S_2 \neq \emptyset$. Then there exists an $s_2 \in \operatorname{Ann}_{R_2}(N_2) \cap S_2$. Let $(r_1, r_2)(N_1 \times N_2) \subseteq K_1 \times K_2$ for some $r_i \in R_i$ and submodule K_i of M_i , where i = 1, 2. Then $r_1N_1 \subseteq K_1$. As N_1 is an S_1 -second submodule of M_1 , there exists an $s_1 \in S_1$ such that $s_1N_1 \subseteq K_1$ or $s_1r_1N_1 = 0$. Now we set $s = (s_1, s_2)$. Then $s(N_1 \times N_2) \subseteq K_1 \times K_2$ or $s(r_1, r_2)(N_1 \times N_2) = 0$. Therefore, N is an S-second submodule of M. Similarly one can show that if N_2 is an S_2 -second submodule of M_2 and $\operatorname{Ann}_{R_1}(N_1) \cap S_1 \neq \emptyset$, then N is an S-second submodule of M.

Theorem 2.12. Let $M = M_1 \times M_2 \times \cdots \times M_n$ be an $R = R_1 \times R_2 \times \cdots \times R_n$ module and $S = S_1 \times S_2 \times \cdots \times S_n$ be a m.c.s. of R, where M_i is an R_i -module and S_i is a m.c.s. of R_i for each $i = 1, 2, \ldots, n$. Let $N = N_1 \times N_2 \times \cdots \times N_n$ be a submodule of M. Then the following are equivalent:

- (a) N is an S-second submodule of M;
- (b) N_i is an S_i -second submodule of M_i for some $i \in \{1, 2, ..., n\}$ and $\operatorname{Ann}_{R_i}(N_j) \cap S_j \neq \emptyset$ for all $j \in \{1, 2, ..., n\} - \{i\}$.

Proof. We apply induction on n. For n = 1, the result is true. If n = 2, then the result follows from Theorem 2.11. Now assume that parts (a)

and (b) are equal when k < n. We shall prove (b) \Leftrightarrow (a) when k = n. Let $N = N_1 \times N_2 \times \cdots \times N_n$. Put $\hat{N} = N_1 \times N_2 \times \cdots \times N_{n-1}$ and $\hat{S} = S_1 \times S_2 \times \cdots \times S_{n-1}$. Then by Theorem 2.11, the necessary and sufficient condition for N is an S-second submodule of M is that \hat{N} is an \hat{S} -second submodule of \hat{M} and $\operatorname{Ann}_{R_n}(N_n) \cap S_n \neq \emptyset$ or N_n is an S_n -second submodule of M_n and $\operatorname{Ann}_{\hat{K}}(\hat{N}) \cap \hat{S} \neq \emptyset$, where $\hat{K} = R_1 \times R_2 \times \cdots \times R_{n-1}$. Now the result follows from the induction hypothesis. \Box

Lemma 2.13. Let S be a m.c.s. of R and N be an S-second submodule of an R-module M. Then the following statements hold for some $s \in S$.

- (a) $sN \subseteq \dot{s}N$ for all $\dot{s} \in S$.
- (b) $(\operatorname{Ann}_R(N) :_R \acute{s}) \subseteq (\operatorname{Ann}_R(N) :_R s)$ for all $\acute{s} \in S$.

Proof. (a) Let N be an S-second submodule of M. Then there is an $s \in S$ such that $rN \subseteq K$ for each $r \in R$ and a submodule K of M implies that $sN \subseteq K$ or srN = 0. Let L be a completely irreducible submodule of M such that $sN \subseteq L$. Then $sN \subseteq L$ or sN = 0. As $\operatorname{Ann}_R(N) \cap S = \emptyset$, we get that $sN \subseteq L$. Thus $sN \subseteq sN$ by Remark 2.1.

(b) This follows from Proposition 2.9 (a) and [14, Lemma 2.16 (ii)].

Proposition 2.14. Let S be a m.c.s. of R and N be a finitely generated submodule of M such that $\operatorname{Ann}_R(N) \cap S = \emptyset$. Then the following are equivalent:

- (a) N is an S-second submodule of M;
- (b) $S^{-1}N$ is a second submodule of $S^{-1}M$ and there is an $s \in S$ satisfying $sN \subseteq sin$ for all $s \in S$.

Proof. (a) ⇒ (b) This follows from Proposition 2.5 (d) and Lemma 2.13. (b) ⇒ (a) Let $aN \subseteq K$ for some $a \in R$ and a submodule K of M. Then $(a/1)(S^{-1}N) \subseteq S^{-1}K$. Thus by part (b), $S^{-1}N \subseteq S^{-1}K$ or $(a/1)(S^{-1}N) = 0$. Hence by Lemma 2.4, $s_1N \subseteq K$ or $s_2aN = 0$ for some $s_1, s_2 \in S$. By part (b), there is an $s \in S$ such that $sN \subseteq s_1N$ and $sN \subseteq s_2N \subseteq (0:_M a)$. Therefore, $sN \subseteq K$ or asN = 0, as desired. \Box

Theorem 2.15. Let S be a m.c.s. of R and N be a submodule of an Rmodule M such that $\operatorname{Ann}_R(N) \cap S = \emptyset$. Then N is an S-second submodule of M if and only if sN is a second submodule of M for some $s \in S$.

Proof. Let sN be a second submodule of M for some $s \in S$. Let $aN \subseteq K$ for some $a \in R$ and a submodule K of M. As $asN \subseteq K$ and sN is a second submodule of M, we get that $sN \subseteq K$ or asN = 0, as needed. Conversely, assume that N is an S-second submodule of M. Then there is an $s \in S$

such that if $aN \subseteq K$ for some $a \in R$ and a submodule K of M, then $sN \subseteq K$ or saN = 0. Now we show that sN is a second submodule of M. Let $a \in R$. As $asN \subseteq asN$, by assumption, $sN \subseteq asN$ or $as^2N = 0$. If $sN \subseteq asN$, then there is nothing to show. Assume that $sN \not\subseteq asN$. Then $as^2N = 0$ and so $a \in (\operatorname{Ann}_R(N) :_R s^2) \subseteq (\operatorname{Ann}_R(N) :_R s)$ by Lemma 2.13. Thus, we can conclude that asN = 0, as desired. \Box

The set of all maximal ideals of R is denoted by Max(R).

Theorem 2.16. Let S be a m.c.s. of R and N be a submodule of an R-module M such that $\operatorname{Ann}_R(N) \subseteq \operatorname{Jac}(R)$, where $\operatorname{Jac}(R)$ is the Jacobson radical of R. Then the following statements are equivalent:

- (a) N is a second submodule of M;
- (b) $\operatorname{Ann}_R(N)$ is a prime ideal of R and N is an $(R \setminus \mathfrak{M})$ -second submodule of M for each $\mathfrak{M} \in Max(R)$.

Proof. $(a) \Rightarrow (b)$ Let N be a second submodule of M. Clearly, $\operatorname{Ann}_R(N)$ is a prime ideal of R. Since $\operatorname{Ann}_R(N) \subseteq Jac(R)$, $\operatorname{Ann}_R(N) \subseteq \mathfrak{M}$ for each $\mathfrak{M} \in Max(R)$ and so $\operatorname{Ann}_R(N) \cap (R \setminus \mathfrak{M}) = \emptyset$. Now the result follows from Proposition 2.5 (a).

 $(b) \Rightarrow (a)$ Let $\operatorname{Ann}_R(N)$ be a prime ideal of R and N be an $(R \setminus \mathfrak{M})$ second submodule of M for each $\mathfrak{M} \in Max(R)$. Let $a \in R$ and $a \notin \operatorname{Ann}_R(N)$. We show that aN = N. Let $\mathfrak{M} \in Max(R)$. Then as $aN \subseteq aN$, there exists an $s_{\mathfrak{M}} \in R \setminus \mathfrak{M}$ such that $s_{\mathfrak{M}}N \subseteq aN$ or $s_{\mathfrak{M}}aN = 0$. As $\operatorname{Ann}_R(N)$ is a prime ideal of R and $s_{\mathfrak{M}} \notin \operatorname{Ann}_R(N)$, we have $as_{\mathfrak{M}} \notin \operatorname{Ann}_R(N)$ and so $s_{\mathfrak{M}}N \subseteq aN$. Now consider the set

$$\Omega = \{s_{\mathfrak{M}} : \exists \mathfrak{M} \in Max(R), s_{\mathfrak{M}} \notin \mathfrak{M} and s_{\mathfrak{M}}N \subseteq aN \}.$$

Then we claim that $\Omega = R$. To see this, take any maximal ideal \mathfrak{M} containing Ω . Then the definition of Ω requires that there exists an $s_{\mathfrak{M}} \in \Omega$ and $s_{\mathfrak{M}} \notin \mathfrak{M}$. As $\Omega \subseteq \mathfrak{M}$, we have $s_{\mathfrak{M}} \in \Omega \subseteq \mathfrak{M}$, a contradiction. Thus, $\Omega = R$ and this yields

$$1 = r_1 s_{\mathfrak{M}_1} + r_2 s_{\mathfrak{M}_2} + \dots + r_n s_{\mathfrak{M}_n}$$

for some $r_i \in R$ and $s_{\mathfrak{M}_i} \in R \setminus \mathfrak{M}_i$ with $s_{\mathfrak{M}_i} N \subseteq aN$, where $\mathfrak{M}_i \in Max(R)$ for each i = 1, 2, ..., n. This yields that

$$N = (r_1 s_{\mathfrak{M}_1} + r_2 s_{\mathfrak{M}_2} + \dots + r_n s_{\mathfrak{M}_n}) N \subseteq aN.$$

Therefore, $N \subseteq aN$ as needed.

Now we determine all second submodules of a module over a quasilocal ring in terms of S-second submodules.

Corollary 2.17. Let S be a m.c.s. of a quasilocal ring (R, \mathfrak{M}) and N be a submodule of an *R*-module M. Then the following statements are equivalent:

- (a) N is a second submodule of M;
- (b) $\operatorname{Ann}_R(N)$ is a prime ideal of R and N is an $(R \setminus \mathfrak{M})$ -second submodule of M.

Proof. This follows from Theorem 2.16.

Proposition 2.18. Let S be a m.c.s. of R and $f: M \to M$ be a monomorphism of R-modules. Then we have the following.

- (a) If N is an S-second submodule of M, then f(N) is an S-second submodule of M.
- (b) If \hat{N} is an S-second submodule of \hat{M} and $\hat{N} \subseteq f(M)$, then $f^{-1}(\hat{N})$ is an S-second submodule of M.

Proof. (a) As $\operatorname{Ann}_R(N) \cap S = \emptyset$ and f is a monomorphism, we have $\operatorname{Ann}_R(f(N)) \cap S = \emptyset$. Let $r \in R$. Since N is an S-second submodule of M, there exists an $s \in S$ such that srN = sN or srN = 0. Thus srf(N) = sf(N) or srf(N) = 0, as needed.

(b) $\operatorname{Ann}_R(\acute{N}) \cap S = \emptyset$ implies that $\operatorname{Ann}_R(f^{-1}(\acute{N})) \cap S = \emptyset$. Now let $r \in R$. As \acute{N} is an S-second submodule of M, there exists an $s \in S$ such that $sr\acute{N} = s\acute{N}$ or $sr\acute{N} = 0$. Therefore $srf^{-1}(\acute{N}) = sf^{-1}(\acute{N})$ or $srf^{-1}(\acute{N}) = 0$, as requested.

Proposition 2.19. Let S be a m.c.s. of R, M a comultiplication R-module, and let N be an S-second submodule of M. Suppose that $N \subseteq K + H$ for some submodules K, H of M. Then $sN \subseteq K$ or $sN \subseteq H$ for some $s \in S$.

Proof. As $N \subseteq K + H$, we have $\operatorname{Ann}_R(K) \operatorname{Ann}_R(H) \subseteq \operatorname{Ann}_R(N)$. This implies that there exists an $s \in S$ such that $s\operatorname{Ann}_R(K) \subseteq \operatorname{Ann}_R(N)$ or $s\operatorname{Ann}_R(H) \subseteq \operatorname{Ann}_R(N)$ since by Proposition 2.9, $\operatorname{Ann}_R(N)$ is an S-prime ideal of R. Therefore, $\operatorname{Ann}_R(K) \subseteq \operatorname{Ann}_R(sN)$ or $\operatorname{Ann}_R(H) \subseteq \operatorname{Ann}_R(sN)$. Now as M is a comultiplication R-module, we have $sN \subseteq K$ or $sN \subseteq H$ as needed. \Box

Let M be an R-module. The idealization $R(+)M = \{(a, m) : a \in R, m \in M\}$ of M is a commutative ring whose addition is componentwise and whose multiplication is defined as (a, m)(b, m) = (ab, am + bm) for

each $a, b \in R$, $m, m \in M$ [13]. If S is a m.c.s. of R and N is a submodule of M, then $S(+)N = \{(s, n) : s \in S, n \in N\}$ is a m.c.s. of R(+)M [1].

Proposition 2.20. Let M be an R-module and let I be an ideal of R such that $I \subseteq \operatorname{Ann}_R(M)$. Then the following are equivalent:

- (a) I is a second ideal of R;
- (b) I(+)0 is a second ideal of R(+)M.

Proof. This is straightforward.

Theorem 2.21. Let S be a m.c.s. of R, M be an R-module, and I be an ideal of R such that $I \subseteq \operatorname{Ann}_R(M)$ and $I \cap S = \emptyset$. Then the following are equivalent:

- (a) I is an S-second ideal of R;
- (b) I(+)0 is an S(+)0-second ideal of R(+)M;
- (c) I(+)0 is an S(+)M-second ideal of R(+)M.

Proof. $(a) \Rightarrow (b)$ Let $(r,m) \in R(+)M$. As I is an S-second ideal of R, there exists an $s \in S$ such that rsI = sI or rsI = 0. If rsI = 0, then (r,m)(s,0)(I(+)0) = 0. If rsI = sI, then we claim that (r,m)(s,0)(I(+)0) = (s,0)(I(+)0). To see this let $(sa,0) = (s,0)(a,0) \in$ (s,0)(I(+)0). As rsI = sI, we have sa = rsb for some $b \in I$. Thus as $b \in I \subseteq \operatorname{Ann}_R(M)$,

$$(sa, 0) = (srb, 0) = (srb, smb) = (sr, sm)(b, 0) = (s, 0)(r, m)(b, 0).$$

Hence $(s, 0)(a, 0) \in (r, m)(s, 0)(I(+)0)$, and so

$$(s,0)(I(+)0) \subseteq (r,m)(s,0)(I(+)0).$$

Since the inverse inclusion is clear we reach the claim.

 $(b) \Rightarrow (c)$ Since $S(+)0 \subseteq S(+)M$, the result follows from Proposition 2.5(b).

 $(c) \Rightarrow (a)$ Let $r \in R$. As I(+)0 is an S(+)M-second ideal of R(+)M, there exists an $(s,m) \in S(+)M$ such that (r,0)(s,m)(I(+)0) = (s,m)(I(+)0) or (r,0)(s,m)(I(+)0) = 0. If (r,0)(s,m)(I(+)0) = 0, then

$$0 = (r,0)(s,m)(a,0) = (rs,rm)(a,0) = (rsa,rma) = (rsa,0)$$

far each $a \in I$. Thus rsI = 0. If (r, 0)(s, m)(I(+)0) = (s, m)(I(+)0), then we claim that rsI = sI. To see this let $sa \in sI$. Then for some $b \in I$, we have

$$(sa, 0) = (sa, am) = (s, m)(a, 0) = (s, m)(r, 0)(b, 0)$$

= $(srb, rmb) = (srb, 0).$

Hence, $sa \in rsI$ and so $sI \subseteq srI$, as needed.

Let P be a prime ideal of R and N be a submodule of an R-module M. The P-interior of N relative to M is defined (see [3, 2.7]) as the set

 $I_P^M(N) = \bigcap \{L \mid L \text{ is a completely irreducible submodule of } M$ and $rN \subseteq L$ for some $r \in R - P\}.$

Let R be an integral domain. A submodule N of an R-module M is said to be a *cotorsion-free submodule of* M (the dual of torsion-free) if $I_0^M(N) = N$ and is a *cotorsion submodule of* M (the dual of torsion) if $I_0^M(N) = 0$. Also, M said to be *cotorsion* (resp. *cotorsion-free*) if M is a cotorsion (resp. cotorsion-free) submodule of M [5].

One can see that if M is a cotorsion-free R-module, then R is an integral domain and M is a faithful R-module. In [5, Proposition 2.9 (e)], it is shown that if M is a comultiplication R-module the reverse is true. The following example shows that sometimes the reverse of this statement may not be true.

Example 2.22. Consider the \mathbb{Z} -module $M = \prod_{i=1}^{\infty} \mathbb{Z}_{p^i}$, where p is a prime number. Then it is easy to see that M is a faithful \mathbb{Z} -module. But the \mathbb{Z} -module M is not second since $(\overline{1}, \overline{0}, \overline{0}, \dots) \notin pM$ and so $M \neq pM$. Therefore, by [5, Theorem 2.10], $I_0^M(M) \neq M$ and so the \mathbb{Z} -module M is not a cotorsion-free module.

Definition 2.23. Let M be an R-module and S be a m.c.s. of R with $\operatorname{Ann}_R(M) \cap S = \emptyset$. We say that M is an S-cotorsion-free module in the case that we can find $s \in S$ such that if $rM \subseteq L$, where $r \in R$ and L is a completely irreducible submodule of M, then $sM \subseteq L$ or rs = 0.

Proposition 2.24. Let M be an R-module and S be a m.c.s. of R. Then the following statements are equivalent.

- (a) M is an S-second R-module.
- (c) $P = \operatorname{Ann}_R(M)$ is an S-prime ideal of R and the R/P-module M is an S-cotorsion-free module.

Proof. $(a) \Rightarrow (b)$. We can assume that P = 0. By Proposition 2.9 (a), Ann_R(M) is an S-prime ideal of R. Now let L be a completely irreducible submodule of M and $r \in R$ such that $rM \subseteq L$. Then there exists an $s \in S$ such that $sM \subseteq L$ or srM = 0 because M is S-second. Therefore, $sM \subseteq L$ or $rs \in Ann_R(M) = 0$, as needed.

 $(b) \Rightarrow (a)$. As $\operatorname{Ann}_R(M)$ is an S-prime ideal of R, $\operatorname{Ann}_R(M) \cap S = \emptyset$. Suppose that there exist $r \in R$ and completely irreducible submodule L of M such that $rM \subseteq L$. By assumption, there is an $s \in S$ such that $sM \subseteq L$ or $rs = 0_{R/P}$. Thus $sM \subseteq L$ or $rs \in P = \operatorname{Ann}_R(M)$, as desired. \Box **Theorem 2.25.** Let M be a module over an integral domain R. Then the following are equivalent:

- (a) *M* is a cotorsion-free *R*-module;
- (b) M is an $(R \setminus P)$ -cotorsion-free for each prime ideal P of R;
- (c) M is an $(R \setminus \mathfrak{M})$ -cotorsion-free for each maximal ideal \mathfrak{M} of R.

Proof. $(a) \Rightarrow (b)$ This is clear.

 $(b) \Rightarrow (c)$ This is obvious.

 $(c) \Rightarrow (a)$ Let M be $(R \setminus \mathfrak{M})$ -cotorsion-free for each maximal ideal \mathfrak{M} of R. Let $aM \subseteq L$ for some $a \in R$ and a completely irreducible submodule L of M. Assume that $a \neq 0$. Take a maximal ideal \mathfrak{M} of R. As M is $(R \setminus \mathfrak{M})$ -cotorsion-free, there exists an $s_{\mathfrak{M}} \in R \setminus \mathfrak{M}$ such that $s_{\mathfrak{M}}M \subseteq L$ or $as_{\mathfrak{M}} = 0$. As R is an integral domain, $as_{\mathfrak{M}} \neq 0$ and so $s_{\mathfrak{M}}M \subseteq L$. Now set

$$\Omega = \{s_{\mathfrak{M}} : \exists \mathfrak{M} \in Max(R), s_{\mathfrak{M}} \notin \mathfrak{M} and s_{\mathfrak{M}}M \subseteq L\}.$$

A similar argument as in the proof of Theorem 2.16 shows that $\Omega = R$. Thus we have $\langle s_{\mathfrak{M}_1} \rangle + \langle s_{\mathfrak{M}_2} \rangle + \cdots + \langle s_{\mathfrak{M}_n} \rangle = R$ for some $s_{\mathfrak{M}_i} \in \Omega$. This implies that $M = (\langle s_{\mathfrak{M}_1} \rangle + \langle s_{\mathfrak{M}_2} \rangle + \cdots + \langle s_{\mathfrak{M}_n} \rangle) M \subseteq L$ and hence M = L. This means that M is a cotorsion-free R-module.

Let M be an R-module. The dual notion of $Z_R(M)$, the set of zero divisors of M, is denoted by $W_R(M)$ and defined by

$$W(M) = \{a \in R : aM \neq M\}.$$

Theorem 2.26. Let S be a m.c.s. of R and M be a finitely generated comultiplication R-module with $\operatorname{Ann}_R(M) \cap S = \emptyset$. Then the following statements are equivalent:

- (a) Each non-zero submodule of M is S-second;
- (b) M is a simple R-module.

Proof. (a) \Rightarrow (b) Assume that every non-zero submodule of M is an S-second submodule of M. First we show that $W_R(M) = \operatorname{Ann}_R(M)$. Let $a \in W_R(M)$. Then $aM \neq M$. Since M is S-second, there exists an $s \in S$ such that saM = sM or saM = 0. If saM = sM, then $s \in (saM :_R M)$. Now put $N = (0 :_M (saM :_R M))$ and note that $s \in S \cap \operatorname{Ann}_R(N) \neq \emptyset$. Thus, N is not S-second and so by part (a), we have $N = (0 :_M (saM :_R M)) = 0$. Now as M is a comultiplication R-module, one can see that $M(saM :_R M) = M$. By [7, Corollary 2.5], $1 - x \in \operatorname{Ann}_R(M) \subseteq (saM :_R M)$ for some $x \in (saM :_R M)$ since M is a finitely generated R-module. This implies that $(saM :_R M) = R$. and so saM = M. It follows that aM = M, which is a contradiction. Therefore, saM = 0. Then $s \in \operatorname{Ann}_R(aM)$ and so $S \cap \operatorname{Ann}_R(aM) \neq \emptyset$. Hence by assumption, aM = 0. Thus, we get $W_R(M) = \operatorname{Ann}_R(M)$. Let $a \notin W_R(M)$. Now we will show that $(0:_M a) = 0$. If $(0:_M a^2) = 0$, then $(0:_M a) = 0$. Suppose $(0:_M a^2) \neq 0$. Since $(0:_M a^2)$ is an S-second submodule of M and $a(0:_M a^2) \subseteq (0:_M a)$, there is an $s \in S$ such that $sa(0:_M a^2) = 0$. This implies that $(0:_M a^2) \subseteq (0:_M as)$. Let $m_1 \in (0:_M a)$. Then $am_1 = 0$. We have $m_1 = am_2$ since aM = M. Thus $am_1 = a^2m_2 = 0$. Hence $m_2 \in (0:_M a^2) \subseteq (0:_M as)$. This implies that $0 = sam_2 = sm_1$ and so $m_1 \in (0:_M s)$. Therefore, $(0:_M a) \subseteq (0:_M s)$ and so $s \in \operatorname{Ann}_R((0:_M a))$. Hence $S \cap \operatorname{Ann}_R((0:_M a)) \neq \emptyset$. So by assumption, we have $(0:_M a) = 0$. Now take a submodule H of M. If $\operatorname{Ann}_R(H) = \operatorname{Ann}_R(M)$, then H = M since M is a comultiplication R-module. Take an element $a \in \operatorname{Ann}_R(H) \setminus \operatorname{Ann}_R(M)$. As $W_R(M) = \operatorname{Ann}_R(M)$, $a \notin W_R(M)$ and so $(0:_M a) = 0$. Then we get

$$H = (0:_M \operatorname{Ann}_R(H)) \subseteq (0:_M a) = 0.$$

Therefore, M is a simple R-module.

 $(b) \Rightarrow (a)$ Note that every simple *R*-module *M* is a second submodule of *M*. Since $\operatorname{Ann}_R(M) \cap S = \emptyset$, by Proposition 2.5 (a), *M* is an *S*-second submodule of *M*.

An *R*-module *M* is said to be a *multiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM [8].

Corollary 2.27. Let S be a m.c.s. of R. If M is a finitely generated multiplication and comultiplication R-module with $\operatorname{Ann}_R(M) \cap S = \emptyset$, then the following statements are equivalent:

- (a) Each non-zero submodule of M is S-second;
- (b) M is a simple R-module;
- (c) Each proper submodule of M is an S-prime submodule of M.

Proof. This follows from Theorem 2.26 and [14, Theorem 2.26].

Example 2.28. Consider the \mathbb{Z} -module \mathbb{Z}_n . Take $S = \mathbb{Z} - 0$. We know that \mathbb{Z}_n is a finitely generated multiplication and comultiplication \mathbb{Z} -module. Then by Corollary 2.27, if n is not a prime number, the \mathbb{Z} -module \mathbb{Z}_n has a non-zero submodule which is not S-second and a proper submodule which is not S-prime.

References

- Anderson D.D., Winders M., *Idealization of a module*, Journal of Commutative Algebra 1 (1) 2009, 3-56.
- [2] Ansari-Toroghy H., Farshadifar F., The dual notion of multiplication modules, Taiwanese J. Math., 11 (4), (2007), 1189–1201.
- [3] Ansari-Toroghy H., Farshadifar F., On the dual notion of prime submodules, Algebra Colloq., 19 (Spec 1), (2012), 1109-1116.
- [4] Ansari-Toroghy H., Farshadifar F., The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
- [5] Ansari-Toroghy H., Farshadifar F., On the dual notion of prime submodules (II), Mediterr. J. Math., 9 (2) (2012), 329-338.
- [6] Ansari-Toroghy H., Farshadifar F., Strong comultiplication modules, CMU. J. Nat. Sci. 8 (1) (2009), 105–113.
- [7] Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley, 1969.
- [8] A. Barnard, *Multiplication modules*, J. Algebra, **71** (1981), 174–178.
- [9] Dauns J., Prime submodules, J. Reine Angew. Math., 298, (1978), 156–181.
- [10] Faith C., Rings whose modules have maximal submodules, Publ. Mat. 39 (1995), 201-214.
- [11] Fuchs L., Heinzer W., Olberding B., Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, (2006), 121–145.
- [12] Gilmer R., Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 90. Kingston, Canada: Queen's University, 1992.
- [13] Nagata M., Local Rings, New York, NY, USA: Interscience, 1962.
- [14] Sevim E.S., Arabaci T., Tekir Ü., Koc S., On S-prime submodules, Turkish Journal of Mathematics, 43 (2) (2019), 1036-1046.
- [15] Wang F., Kim H., Foundations of Commutative Rings and Their Modules, Singapore: Springer, 2016.
- [16] Yassemi S., The dual notion of prime submodules, Arch. Math. (Brno), 37, (2001), 273–278.

CONTACT INFORMATION

FaranakAssistant Professor, Department of Mathematics,FarshadifarFarhangian University, Tehran, Iran.E-Mail(s): f.farshadifar@cfu.ac.ir

Received by the editors: 15.08.2019 and in final form 25.01.2020.