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ABSTRACT. This article introduces the notions quasi-co-
n-absorbing preradicals and semi-co-n-absorbing preradicals, gen-
eralizing the concept of semicoprime preradicals. We study the
concepts quasi-co-n-absorbing submodules and semi-co-n-absorbing
submodules and their relations with quasi-co-n-absorbing preradi-
cals and semi-co-n-absorbing preradicals using the lattice structure
of preradicals.

1. Introduction

The notion of 2-absorbing ideals of commutative rings was introduced
by Badawi in [2], where a proper ideal I of a commutative ring R is called
a 2-absorbing ideal of R if whenever a,b,c € R and abc € I, then ab € [
or ac € I or be € I. Anderson and Badawi [1] generalized the concept of
2-absorbing ideals to n-absorbing ideals. According to their definition, a
proper ideal I of R is called an n-absorbing (resp. strongly n-absorbing)
ideal if whenever 1 - - - 41 € I foray, ..., xp41 € R (vesp. Iy -+ I C 1
for ideals Iy, ..., I,4+1 of R), then there are n of the z;’s (resp. n of the
I;’s) whose product is in I. In [24], the concept of 2-absorbing ideals
was generalized to submodules of a module over a commutative ring.
A proper submodule N of an R-module M is said to be a 2-absorbing
submodule of M if whenever a,b € R and m € M with abm € N, then
ab € (N :g M) or am € N or bm € N. For more studies concerning
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2-absorbing (submodules) ideals we refer to [3],[9],[24],[25]. In [13], Raggi
et al. introduced the concepts of prime preradicals and prime submodules
over noncommutative rings, and Raggi, Rios and Wisbauer [18], studied
the dual notions of these, coprime preradicals and coprime submodules. A
generalization of prime preradicals and submodules, “2-absorbing preradi-
cals and submodules” was investigated by Yousefian and Mostafanasab in
[23]. In [14], Raggi et al. defined and investigated semiprime preradicals,
and Mostafanasab and Yousefian [10], studied the concepts of quasi-n-
absorbing and semi-n-absorbing preradicals. Raggi et al. [11] defined the
notions of semicoprime preradicals and submodules. In this paper, we
introduce the concepts of “quasi-co-n-absorbing preradicals” and “semi-
co-n-absorbing preradicals”. As well we investigate*quasi-co-n-absorbing
submodules” and “semi-co-n-absorbing submodules” in this paper.

2. Preliminaries

Throughout this paper R is an associative ring with nonzero identity,
and R-Mod denotes the category of all the unitary left R-modules. We
denote by R-simp a complete set of representatives of isomorphism classes
of simple left R-modules. For M € R-Mod, we denote by E(M) the
injective hull of M. Let U, N € R-Mod, we say that N is generated by
U (or N is U-generated) if there exists an epimorphism U — N for
some index set A. Dually, we say that N is cogenerated by U (or N is
U-cogenerated) if there exists a monomorphism N — U» for some index
set A. Also, we say that an R-module X is subgenerated by M (or X is
M-subgenerated) if X is a submodule of an M-generated module. The
category of M-subgenerated modules (the Wisbauer category) is denoted
o[M] (see [21]). A preradical over the ring R is a subfunctor of the identity
functor on R-Mod. Denote by R-pr the class of all preradicals over R.
There is a natural partial ordering in R-pr given by 0 < 7if o(M) < 7(M)
for every M € R-Mod. It is proved in [15] that with this partial ordering,
R-pr is an atomic and co-atomic big lattice. The smallest and the largest
elements of R-pr are denoted, respectively, 0 and 1.

Let M € R-Mod. Recall ([5] or [15]) that a submodule N of M is
called fully invariant if f(N) < N for each R-homomorphism f : M — M.
In this paper, the notation N <y; M means that “N is a fully invariant
submodule of M”. Obviously the submodule K of M is fully invariant if
and only if there exists a preradical 7 of R-Mod such that K = 7(M).
If N < M, then the preradicals a¥ and wd are defined as follows: For
K € R-Mod,
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1) ad(K) = S{F(N)|f € Homp(M, K)}.

2) wif (K) = N{f~(N)If € Homp(K, M)},

Notice that for 0 € R-prand M, N € R—Mod we have that o(M) = N
if and only if N <y M and o} < o < wi. We have also that if
K < N < M with K, NéfiM,thena]I\(/[<aN andwK <wN

The atoms and coatoms of R-pr are, respectively, {a e ] S € R-simp}
and {w¥ | I is a maximal ideal of R} (See [15, Theorem 7]).

There are four classical operations in R-pr, namely, A, V,- and : which
are defined as follows. For o, 7 € R-pr and M € R-Mod:

1) (cAT)(M)=cMnNTM,

2) (oVT)(M)=0M+ 1M,

3) (77)(M) = (M) and

4) (o :7)(M) is determined by (o : 7)(M) /oM = 7(M /o M).

The meet A and join V can be defined for arbitrary families of preradicals
as in [15]. The operation defined in (3) is called product, and the operation
defined in (4) is called coproduct. It is easy to show that for o, 7 € R-pr,
or Ko AT 20V T =X (0:7). It is clear that in R-pr the operations
(1)-(3) are associative, and in [22] it was shown that the coproduct “ :” is
associative. Notice the fact that coproduct of preradicals preserves order
on both sides, see [8, Remark 2.1]. We denote oo - - - o (n times) by ¢” and
(0:0:---:0) (ntimes) by op,. Recall that o € R-pr is an idempotent
if 02 = o, while o is a radical if o[z = 0. Note that o is a radical if and
only if, o(M/o(M)) = 0 for each M € R-Mod. We say that o is nilpotent
if 6™ =0 for some n > 1, Whlle o is unipotent if o, = 1 for some n > 1.

Using the preradical wd | in the papers [6], [7] and [18], the following
operation was introduced and studied:

w-coproduct of submodules K, N < M : (K :3y N) = (wi = Wi (M).

Henceforward, for brevity, (K : N) is written instead of (K :p; N).
For any o € R-pr, we will use the following class of R-modules:

T,={M € R—Mod|o(M)=M}.

Let 0 € R-pr. By [18, Theorem 8.2], the following classes of modules
are closed under taking arbitrary meets and arbitrary joins:

={reRpr|to=0} and A ={reRpr|(c:7)=1}

As in [16], we define, for o € R-pr, the following preradicals:
o e(0) = N{7 € A.} the equalizer of o;
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o t(o) = N{7 € A} the totalizer of o.

Clearly e(o)o = 0 and (o : t(0)) = 1. For undefined notions we refer
the reader to [13,15-17].

In [18], Raggi et al. defined the notions of coprime preradicals and
coprime submodules as follows:

Let ¢ € R-pr. o is called coprime in R-pr if ¢ # 0 and for any
T, 1 € R-pr, o = (7 : n) implies that 0 < 7 or ¢ < 7. Let M € R-Mod
and let N < M be a nonzero fully invariant submodule of M. The
submodule N is said to be coprime in M if whenever K, L are fully
invariant submodules of M with N < (K : L), then N < K or N < L.
Also, Raggi et al. [11] defined a preradical o semicoprime in R-pr if o # 0
and for any 7 € R-pr, 0 =< (7 : 7) implies that o < 7. They said that
a nonzgero fully invariant submodule N of M is semicoprime in M if
whenever K is a fully invariant submodule of M with N < (K : K),
then N < K. In special case, M is called a coprime (resp. semicoprime)
module if M is a coprime (resp. semicoprime) submodule of itself.

Yousefian and Mostafanasab in [22] defined the notions of co-2-absorb-
ing preradicals and co-2-absorbing submodules. The preradical o € R-pr
is called co-2-absorbing if o # 0 and, for each n, u,v € R-pr,o < (n: p:v)
implies that ¢ < (n: pu) or 0 X (n:v) or o = (u: v). More generally,
a preradical 0 # ¢ in R-pr is said to be a co-n-absorbing preradical if

whenever o < (91 : 2 @ -+ Nuy1) for ni,ma, ... Npt1 € R-pr, there
are i1,42,...,i, € {1,2,...,n + 1} such that i; < 72 < -+ < i, and
o =X (M, * Wiy = -+ : M, ). They denoted by R-co-ass the class of all

R-modules M that the operation w-coproduct is associative over fully
invariant submodules of M, i.e., for any fully invariant submodules K, N, L
of M, (K :N):L)=(K:(N:L)).Let M € R-co-ass and K be a
fully invariant submodule of M. Then (K : K : --- : K) (n times)
is simply denoted by Kj,. By Proposition 5.4 of [7], we can see that
if an R-module M is injective and artinian, then M € R-co-ass. Let
M € R-co-ass and N a nonzero fully invariant submodule of M. The
submodule N is said to be co-2-absorbing in M if whenever J, K, L are
fully invariant submodules of M with N < (J: K : L), then N < (J : K)
or N < (J:L)or N < (K :L). The generalization of co-2-absorbing
submodules is that, the submodule N is said co-n-absorbing in M if

whenever N < (K7 : Ky : -+ : Kp4q) for fully invariant submodules
Ky, Ky, ...,Ky41 of M, there are iy,ia,...,i, € {1,2,...,n+ 1} such
that i1 < ig < -+ <ipand N < (K, : K, : -+ : K;,). An R-module M

is called a co-n-absorbing module if M is a co-n-absorbing submodule of
itself.



218 GENERALIZATIONS OF SEMICOPRIME PRERADICALS

We say that a preradical 0 # o € R-pr is called a quasi-co-n-absorbing
preradical if whenever o = (up, : v) for p,v € R-pr, then o = py, or
o= (u[n_l] : v). A preradical 0 # o € R-pris called a semi-co-n-absorbing
preradical if whenever o < pi, ;1) for p € R-pr, then o < pup,). Let M € R-
co-ass. We say that a nonzero fully invariant submodule N of M is quasi-
co-n-absorbing in M if for every fully invariant submodules K, L of M,
N < (K ¢ L) implies that N < K, or N < (Kjp,—q) : L). A nonzero fully
invariant submodule N of M is called semi-co-n-absorbing in M if for every
fully invariant submodule K of M, N < K[, implies that N < K},
An R-module M satisfies the w-property if (7(M) :pr n(M)) = (7 : n)(M)
for every 7, n € R-pr, see [22].

We recall the definition of relative epi-projectivity (see [20]). Let M
and N be modules. N is said to be epi-M -projective if, for any submodule
K of M, any epimorphism f: N — % can be lifted to a homomorphism
g:N—M

Proposition 1 (][22, Proposition 2.9 (1)]). Let M € R-Mod. If for any
fully invariant submodule K of M, % is epi-M -projective, then M has
the w-property.

In the next sections we frequently use the following proposition.

Proposition 2 ([12, Proposition 1.2]). Let {M,}yer and {Ny},er be
families of modules in R-Mod such that for each v € I, Ny < M,. Let
N = @761N77 M = @’yGIM'Y? N' = H’YEIN'Y and M' = H,YHMW.

(1) If N <j; M, then for each v € I, Ny <gi M, and oX = \/vela%'

(2) If N' <y M, then for each v € I, Ny <y My and wAN/[,I = /\yelwzj\\;ﬁ-

3. Quasi-co-n-absorbing preradicals

Suppose that m, n are positive integers with n > m. A preradical
o # 0 is called a quasi-co-(n,m)-absorbing preradical if whenever o <
(fn—1) : v) for p,v € R-pr, then o = pify) or 0 = (ffpm—1] : V)-

Proposition 3. Let 0 € R-pr and let m > 0. The following conditions
are equivalent:

(1) o is quasi-co-(n,m)-absorbing for every n > m;

(2) o is quasi-co-(n,m)-absorbing for some n > m;

(3) o is quasi-co-m-absorbing.

Proof. (1)=-(2) Is trivial.
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(2)=-(3) Assume that o is quasi-co-(n, m)-absorbing for some n > m.
Let o = (ppm) : v) for some 1, v € R-pr. Since m < n—1, then (g, : v) <
(Bfn—-1) : v) and so 0 = (pp—1) : v). Therefore o < iy or 0 2 (ppm—q) : V).
Consequently o is quasi-co-m-absorbing.

(3)=(1) Suppose that o is quasi-co-m-absorbing and get n > m. Let
0 =2 (pfp—1) : v) for some p,v € R-pr. Therefore o =X (p1jm) @ (Hpn—1—m] :
v)). Hence 0 = pijm) or 0 = (Upm-1] ¢ (Bn—1-m] * V) = (2] : V).
Repeating this method implies that o < i, or 0 = (pif—1) : v). Thus o
is quasi-co-(n, m)-absorbing. O

Remark 1. Let 0 € R-pr.

(1) o is coprime if and only if o is quasi-co-1-absorbing if and only if o
is co-1-absorbing.

(2) If o is quasi-co-n-absorbing, then it is quasi-co-i-absorbing for all
1> n.

(3) If o is coprime, then it is quasi-co-n-absorbing for all n > 1.

(4) If o is quasi-co-n-absorbing for some n > 1, then there exists the
least ng > 1 such that o is quasi-co-ng-absorbing. In this case, o is
quasi-co-n-absorbing for all n > ng and it is not quasi-co-i-absorbing
for ng > > 0.

Proposition 4. Let C be a family of coprime preradicals. Then \/ cc 0
1S a quasi-co-i-absorbing preradical for every i > 2.

Proof. Let 7 = \/,cc 0. By Remark 1(2), it is sufficient to show that
T is a quasi-co-2-absorbing preradical. Suppose that 7 < (M[Q] : v) for
some (1, v € R-pr. Since every o € C is coprime and o < (g : V), then
o X poro = v. Hence 7 < (p : v), and so we conclude that 7 is a
quasi-co-2-absorbing preradical. ]

Let ¢ = VV{a2 | S € R-simp}. Note that for every R-module M,
C(M) = Soc(M). As in [14], ¢ is called the socle preradical. Also, let
K= {agﬁ | I a maximal ideal of R}. We call k the ultrasocle preradical,
see [11].

As a direct consequence of Proposition 4 we have the following result.

Proposition 5. (, k are quasi-co—i-absorbing preradicals for every i > 2.

Proof. By [18, p. 57], for each simple R-module S, ag is coprime. Also, for
R/I

every maximal ideal I of R, o/, i1 is a coprime preradical, [11, Remark 6].
Then by Proposition 4, the claim holds. O
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Proposition 6. If R is a semisimple Artinian ring, then every nonzero
preradical o € R-pr is a quasi-co-i-absorbing preradical for every i > 2.

Proof. Suppose that R is a semisimple Artinian ring. According to [18,
E(S)

Proposition 3.2], every atom ag "’ is a coprime preradical. On the other
hand [15, Theorem 11] implies that o = \/{ag(s) | S € R-simp, ag(s) <o}
Therefore every nonzero preradical ¢ in R-pr is quasi-co-i-absorbing for
every i > 2, by Proposition 4. [

Remark 2. Let S1,5,...,5,+1 € R-simp be distinct. Then by Proposi-
tion 4, ozgi \/agg Ve '\/agﬁi is a quasi-co-i-absorbing preradical in R-pr for
every i > 2. But, [22, Proposition 3.6] implies that agi \/agj V- -\/aﬁiﬁ is
not a co-n-absorbing preradical. This remark shows that the two concepts
of quasi-co-n-absorbing preradicals and of co-n-absorbing preradicals are

different in general.

Corollary 1. If R is a ring such that every quasi-co-n-absorbing prerad-
ical in R-pr is co-n-absorbing, then |R-simp| < n.

Notice the fact that coproduct of preradicals preserves order on both
sides.

Proposition 7. Let R be a ring. The following statements are equivalent:
(1) for every p,v € R-pr, (pipn) 1 v) = Py o7 (W) 2 V) = (Bpn—1) © V);

(2) for every o1,09,...,0n41 € R-pr,
(or1:09: 1 0py1) = (01\/02\/"'\/071)[74
or
(01:09::10p41) X ((01 Vo V---V O'n)[n_l} D Ont1);

(3) every preredical 0 # o € R-pr is quasi-co-n-absorbing.
Proof. (1)=(2) If 01,09, ...,0n41 € R-pr, then by part (1) we have that,

(o01:09: - :10p41) = ((01 Voo \/--'\/Un)[n] D Ont1)
=(o1VoaV-Vou)m,
or
(o1:02: - 10p41) 2 (01 VoV Vou)m : Ont1)

= ((Ul VoagV:.--V Un)[n—l} : Un+1).
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(2)=-(1) For preradicals u,v € R-pr, we have from (2),

n times
—_—~
(V) 2BV -V W) ] = B

or
n times

() 2 v) 2 (V- V @)y V) = (Wp—1) 2 V)

Thus we have that (up,) : v) = gy or (i) 1 v) = (Bp—1) : V)-

(1)<(3) Is evident. O
In the next proposition we use (g1 : -« : f1; : -+ : fin4+1) when the i-th
term is excluded from (g1 : -+ @ fp41)-

Proposition 8. Let 0 # o € R-pr be an idempotent radical.
(1) If o is such that for any p,v € R-pr, we have

pVv =0 2 (pp) i v) = o =2 pp or o 2 (ppoy v,

then o is quasi-co-n-absorbing.
(2) If o is such that for any p1, po, ..., int1 € R-pr, we have

NV p VoV ipingr 2o X (ot flng) =

[0 < (- -t fg - piny1), for somel <i<n+1],

then o is a co-n-absorbing preradical.

Proof. (1) Let 0 # 0 be an idempotent radical that satisfies the hypothesis
in part (1). Let 0 =< (7p,) : A) for some 7,A € R-pr. Then, by [15,
Theorem 8(3)] we have

ToV AT <0 =07 =< (Tin] : A)o = (Tjp0 2 Ad) = ((T0)[) : A).

So, by hypothesis we have 0 X (70),] = 7[00 =X Tjp) or 0 2 ((T0)p—1] :
Ao) = (Tp—1] : A)o =2 (Tjp—1] : A). Therefore o is quasi-co-n-absorbing.
(2) The proof is similar to that of (1). O

Proposition 9. Let C be a chain of quasi-co-n-absorbing preradicals, that
18, a subclass of quasi-co-n-absorbing preradicals which is linearly ordered.
Then \/,cc 0 is a quasi-co-n-absorbing preradical.
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Proof. Let T =\/,¢¢ 0 and assume that 7 < () : v) for some p,v € R-
pr. If o < py, for each o € C, then 7 =< pyp,). If there exists og € C
such that ¢ £ n]; then o £ fn) for each og < 0. Since all preradicals
in C are quasi-co-n-absorbing, it follows that o < (p,—1) : v) for each
o9 = 0. Thus 0 < (1) : v) for each o € C, so that 7 < (pp,—1) : V).
Consequently, we deduce that 7 is a quasi-co-n-absorbing preradical. [

Proposition 10. If 0; is a quasi-co-n;-absorbing preradical in R-pr for
everyl < v < k, then o1 Voo V---Voy is a quasi-co-n-absorbing preradical
forn=mny+---+ny.

Proof. For k = 1 there is nothing to prove. Then, suppose that £ > 1.
Assume that o1 Vo2 V- Vo = () : v) for some p, v € R-pr. Notice
that for every 1 < i < k, 07 = (fpn) : V) = (Wny] @ Hn—n,] : V). Then,
for every 1 < i < k, either 0; < ppp,) or 0 X (Hjn,—1) * Bjp—n,] : V) =
(Bn—1 : v), because o; is quasi-co-n;-absorbing. On the other hand,
for every 1 < i < k, ppn,) = ffn—1) and 80 ppp,) = (fjp—1) : ). Hence
o1VoaV---Vop < (u[n_l] : v) which shows that o1 Voa V- Voy is a
quasi-co-n-absorbing preradical. O

Proposition 11. Let o1,09,...,0; € R-pr.

(1) If o1 is a quasi-co-n-absorbing preradical and o2 is a quasi-co-m-
absorbing preradical for m < n, then o1V o2 is a quasi-co-(n + 1)-
absorbing preradical.

(2) If o1,09,...,0¢ are quasi-co-n-absorbing preradicals, then o1V o3 V
-V oy s a quasi-co-(n +t — 1)-absorbing preradical.

(3) If o; is a quasi-co-n;-absorbing preradical for every 1 < i <t with
np<ng<---<mngandt>2, then oy VogV-- Vo is a quasi-co-
(n¢ + 1)-absorbing preradical.

Proof. (1) Let p,v € R-pr be such that o1 V o2 = (i141) : ¥). Since oy
is quasi-co-n-absorbing and o1 =< (p,) : i : v), then either o1 = pu,) or
01 =2 (Ppp—1) : o2 V) = (P : v). Also, o2 is quasi-co-m-absorbing and

02 2 ([fm] * Bins1—m] © V), S0 either o9 = pi,) OF 02 = (pn—1) * Kns1—m)] :
v) = (ppn : V). There are four cases.

Case 1. Assume that o1 = pp,) and o2 = pupy,- Then o1 Vo = pupy).-
Case 2. Assume that 01 = pu,,) and 02 =X (1) : v). Then o1 V o9 =X () : V).
Case 3. Assume that o1 < () : v) and 02 < ). Then oy V og =< (g : V).

Case 4. Assume that oy < (u[n} :v) and o9 < () = v). Then o1 V g =<
(1) : v). Hence o1 V 03 is quasi-co-(n + 1)-absorbing.
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(2) We use induction on t. For ¢ = 1 there is nothing to prove. Let
t > 1 and assume that for ¢ — 1 the claim holds. Then o1 Voo V---Voy_1 is
quasi-co-(n + t — 2)-absorbing. Since o is quasi-co-n-absorbing, then it is
quasi-co-(n+t — 2)-absorbing, by Remark 1(2). Therefore o1 Voo V- --Voy
is quasi-co-(n + t — 1)-absorbing, by part (1).

(3) Induction on ¢: For t = 3 apply parts (1) and (2). Let ¢ > 3
and suppose that for ¢ — 1 the claim holds. Hence o1 Voo V---V o1 is
quasi-co-(n¢—1 + 1)-absorbing. We consider the following cases:

Case 1. Let ny—1 +1 < ny. In this case o1 Vo V- - -V oy is quasi-co-(n; + 1)-
absorbing, by part (1).

Case 2. Let ng—1 +1 = ny. Thus o1 V oy V -+ V oy is quasi-co-(ny + 1)-
absorbing, by part (2).

Case 3. Let ng—1 +1 > ny. Then o9 Vo V- -+ V oy is quasi-co-(ny—1 + 2)-
absorbing, by part (1). Since ny—1 +2 < n;+ 1, then o1 Vo V--- V oy is
quasi-co-(n + 1)-absorbing. O

Proposition 12. Let 0 € R-pr be a radical. If o is quasi-co-n-absorbing,
then e(o) is quasi-co-n-absorbing.

Proof. Assume that o is quasi-co-n-absorbing, and let e(o) =X (s, : v) for
some j1,v € R-pr. Then o = e(0)o =X (py) : )0 = ((4o)p) : vo). Since o
is quasi-co-n-absorbing and radical, [15, Theorem 8(3)| implies that either
0 2 (UO)) = B0 = fp) or 0 2 ((p0)poq) 1 vo) = (Up-1) V)T =
(Kfn—1] : ¥). Consequently e(o) is quasi-co-n-absorbing. O

Definition 1. For 7, p € R-pr define the totalizer of p relative to T as
tz(p) = N{n € R-pr| (p:n) = 7}. Note that t1(p) = t(p).

Proposition 13. Let 7 € R-pr. If T is quasi-co-2-absorbing, then for
each A € R-pr, either 7 X A or tz(Ap)) = tr (A1) In particular,
if 1 is a quasi-co-2-absorbing preradical, then for each A € R-pr, either
)‘[n] =1 or t()\[n]) = t()\[n,u).

Proof. Suppose that 7 is quasi-co-2-absorbing and let A € R-pr such that
T 2 A If v € R-pris such that 7 < (Ap, : v), then 7 < (Xj,_q) : v), since
o is quasi-co-2-absorbing. Therefore t;(Aj,_1]) = t7(A[;)). On the other
hand Aj,—1) = Ay and 50 t-(Ap)) =X tr(Ap—1)). Consequently t-(Ap)) =
tr(Ap—1))- O
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4. Semi-co-n-absorbing preradicals

Suppose that m, n are positive integers with n > m. A more general
concept than semi-co-n-absorbing preradicals is the concept of semi-co-
(n, m)-absorbing preradicals. A preradical o # 0 is called a semi-co-(n, m)-
absorbing preradical if whenever o = py, for pn € R-pr, then o = puf,,.

Note that a semicoprime preradical is just a semi-co-1-absorbing
preradical.

Theorem 1. Let o € R-pr and m, n be positive integers with n > m.

(1) If o is quasi-co-m-absorbing, then it is semi-co-(k,m)-absorbing for
every k > m.

(2) If o is semi-co-(n, m)-absorbing, then it is semi-co-(i, m)-absorbing
for every m < i < n, in particular it is semi-co-m-absorbing.

(3) o is semi-co-(n,m)-absorbing if and only if o is semi-co-(n,k)-
absorbing for each n > k > m if and only if o is semi-co-(i,j)-
absorbing for eachn > 1 > j > m.

(4) If o is semi-co-(n,m)-absorbing, then it is semi-co-(nk, mk)-absorb-
ing for every positive integer k.

(5) If o is semi-co-(n,m)-absorbing and semi-co-(r, s)-absorbing for
some positive integers r > s, then it is semi-co-(nr,ms)-absorbing.

Proof. (1) Is trivial.
(2) Is easy.
(3) Straightforward.
(4) Suppose that o is semi-co-(n, m)-absorbing. Let p € R-pr and let

k be a positive integer such that o < ;). Then o =< (M[k]>[ . Since o
n

is semi-co-(n, m)-absorbing, o < (u[k]) = Uk, and so o is semi-co-

[m]
(nk, mk)-absorbing.

(5) Assume that o is semi-co-(n, m)-absorbing and semi-co-(r, s)-
absorbing for some positive integers r > s. Let o < pj,,]. Since o is
semi-co-(n, m)-absorbing, then o =X pi,,,|; and since o is semi-co-(r, 5)-
absorbing, o < pu[;,s- Hence o is semi-co-(nr, ms)-absorbing. [

Corollary 2. Let 0 € R-pr and n be a positive integer.
(1) If o is quasi-co-n-absorbing, then it is semi-co-n-absorbing.
(2) Lett < n be an integer. If o is semi-co-(n + 1,t)-absorbing, then it
is semi-co-(nk + i, tk)-absorbing for all k > 1 > 1.
(3) If o is semi-co-n-absorbing, then it is semi-co-(nk+1i,nk)-absorbing
forallk >1>1.
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(4) If o is semi-co-n-absorbing, then it is semi-co-(nk + j)-absorbing
forall k>35> 0.

(5) If o is semi-co-n-absorbing, then it is semi-co-(nk)-absorbing for
every positive integer k.

(6) If o is semicoprime, then it is semi-co-k-absorbing for every positive
integer k.

(7) If o is semicoprime, then for every k > 1 and every p € R-pr,
o =X up) tmplies that o =< p.

(8) If o is semi-co-n-absorbing, then it is semi-co-((n + 1), nt)-absorb
-ing for all t > 1.

(9) If o is semicoprime, then it is quasi-co-k-absorbing for every k > 1.

Proof. (1) By parts (1), (2) of Theorem 1.

(2) Let o be semi-co-(n + 1,t)-absorbing. Then by Theorem 1(4), o
is semi-co-(nk + k, tk)-absorbing, for every positive integer k. Hence by
Theorem 1(2), o is semi-co-(nk + i, tk)-absorbing for every k > i > 1.

(3) In part (2) get t =n.

(4) By part (3).

(5) Is a special case of (4).

(6) Is a direct consequence of (5).

(7) By part (6).

(8) By Theorem 1(5).

(9) Assume that o is semicoprime. Let o = (u) : v) for some p,v €
R-pr and some k > 1. Then o =< (pp; : v) = (p : V). Therefore
o =< (p:v), by part (7). So o is quasi-co-k-absorbing. O

In the following remark we prove Proposition 4 in another way.

Remark 3. Clearly, an arbitrary join of a family of semicoprime (coprime)
preradicals is semicoprime, and so it is quasi-co-k-absorbing for every
k > 1, by Corollary 2(9).

Proposition 14. Let o1,09,...,0, € R-pr. If for every 1 <i < n, o; is
a semicoprime preradical, then (01 D09 o) iS a semi-co-n- absorbmg
preradical. In particular, if o is a semicopm'me preradical, then o, is a
semi-co-n-absorbing preradical.

Proof. Apply Corollary 2(7). O

Lemma 1. Let 0 € R-pr. If o[, 11) is a semi-co-n-absorbing preradical,
then o, 11) = o). In particular, if o) is a semicoprime preradical, then
o is radical.
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Proposition 15. Let 0 € R-pr, o # 0 be an idempotent radical. If o is
such that for any p € R-pr, we have pp X 0 = ljpq1] = 0 2 ), then o
s semi-co-n-absorbing.

Proof. The proof is similar to that of Proposition 8(1). O

Proposition 16. Let 01,03,...,0, € R-pr be semi-co-2-absorbing pre-
radicals. Then (o1 : 0g: -+ : 0y) is a semi-co-(3" —1)-absorbing preradical.

Proof. Suppose that (01 : 09 : -+ : 0y) = juzn) for some p € R-pr. For
every 1 <i < n, 0y X ugn) = (M[3n71})[3] and o; is semi-co-2-absorbing,
then o; < (M[3n71})[2] = fppgn-1] = (,U/[2_37172})[3]. Again, since o; is semi-
co-2-absorbing, we conclude that o; < fip2.3n—2]. Repeating this method

implies that o; = pgn). So (01 : 02 -+ 1 0p) =X pppae)- On the other
hand n2" < 3" —1. So (01 : 09 : -+ : 0p) = pizn—1) which shows that
(01 :09:---:0p) is semi-co-(3" — 1)-absorbing. O

Proposition 17. If o; is a semi-co-n;-absorbing preradical in R-pr for
every 1 < i < k, then o1V o2V -+ V 0y, is a semi-co-(n — 1)-absorbing

k
preradical for n = [] (n; + 1).

=1
Proof. Let u € R-pr be such that o1 Vo2V -+ Vog < pup,. Thus for every

[n;+1] i #i

k

1<i<k 0, = (u[mo , where m = 1H‘ (n; + 1). Since o;’s are
=L

k, oi = fifn;m)- Note that for

semi-co-n;-absorbing, then, for each 1 <1 <
every 1 <1 <k,

n;m <

—.

(m—f—l)—lzn—l.

=1

So we have 0; < pu,_q) forevery 1 <i < k. Hence o1VoaV---Voy < pip,_q
which implies that o1 V o3 V -+ V 0y is a semi-co-(n — 1)-absorbing
preradical. [

Proposition 18. Let 01,09 € R-pr and m, n be positive integers.
(1) If o1 is quasi-co-m-absorbing and oy is semi-co-n-absorbing, then
(01 : 02) is semi-co-(n(m + 1) + m)-absorbing.
(2) If o1 is quasi-co-(2m)-absorbing and o9 is semi-co-m-absorbing,
then (o1 : 09) is semi-co-(m? + 2m)-absorbing.

Proof. (1) Suppose that (01 : 02) =X fi(n41)(m+1) for some p € R-pr.
Since o1 is quasi-co-m-absorbing and o1 = fi[(ny1)(m+1)), then o1 = -
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On the other hand o3 is semi-co-n-absorbing and o3 =< {{(,11)(m+1)], then
02 2 fjn(m+1)]- Consequently (o1 : 02) = fijn(m+1)+m], and so (01 : 02) is
semi-co-(n(m + 1) + m)-absorbing.

(2) Suppose that (o1 : 02) = fi(m1)2) for some p € R-pr. Since oy
is quasi-co-(2m)-absorbing and o1 =< Ki(m+1)2]> then o1 = iz, Since
o2 is semi-co-m-absorbing and o2 =< p[(m1)2], then oz < ,u[ng. Hence
(01 : 02) 2 fijm242pm) Which shows that (o : 02) is semi-co-(m* + 2m)-

absorbing. O
Proposition 19. Let R be a ring. The following statements are equiva-
lent:

(1) for every preradical o € R-pr, 0jy11) = Ol

(2) for all preradicals o109, ...,0,41 € R-pr we have

(01:09:10p41) S (01 VoaV--- \/O’n+1)[n];
(3) every preredical 0 # o € R-pr is semi-co-n-absorbing.
Proof. (1)=(2) If 01,09,...,0n41 € R-pr, then we get from (1),
(o1:09:---10py1) 2 (01VO2V - VOui1)y1) = (01VO2V- - -VOni1) -
(2)=(1) For a preradical ¢ € R-pr, we have from (2),

n+1 times
—
Ofnt1) S (OV VO = opy.

So we have that oy, 1) = o).
(1)<(3) Is clear. O

Remark 4. Let {04 }acr C R-pr. If o, is semi-co-n-absorbing for every
a € I, then \/ ¢ 04 is semi-co-n-absorbing.

Proposition 20. Let o € R-pr be radical. If o is semi-co-n-absorbing,
then e(o) is semi-co-n-absorbing.

Proof. Is similar to the proof of Proposition 12. O

In Proposition 23 of [11], it was shown that o := \/{o € R-pr | o is
semicoprime} is the unique greatest semicoprime preradical.

Proposition 21. There exists in R-pr a unique greatest semi-co-n-
absorbing preradical.
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Proof. Set a?n) = V{0 € R-pr | o is semi-co-n-absorbing}. By Remark 4,
a?n) is the greatest semi-co-n-absorbing preradical. [

By notation in the the proof of the previous proposition we have that
0 0

Remark 5. As ( < x = ¢ are semicoprime preradicals, then Cin)s Kin)»

afn] are semi-co-n-absorbing preradicals, by Proposition 14. Therefore

Cin) = Rin) = Oy = (-

Proposition 22. The following statements hold:
0 _ 0
(1) 0" = n/>\1 Tin)-
(2) O'(On) = a&k] for every positive integer k.

(3) op = a?n) for every semicoprime preradical o.

Proof. (1) By Corollary 2(6) every semicoprime preradical is semi-co-n-
absorbing for every n > 1. Then o% < a?n) for every n > 1.

(2) By Corollary 2(5).

(3) By Proposition 14. O

In Proposition 26 of [11] it was shown that ¢° =< 1, where 1y =
AN{7 | 7 € R-pr, 7 is unipotent}.

The following proposition is straightforward.
Proposition 23. Suppose that l/((]n) = M7 | 7 € R-pr, Tjppq) = 1}
Then:

(1) oty

(2) vy =< V(()l).

= I/(()n) .

)

Corollary 3. The following statements hold:

(1) If C[n+1] = ]., then C[n] = K;[n] = O-?n] — O-?n) — l/én);

(2) If Gy =1, then ¢ = k = 0° = vy = V.

Proof. (1) By Remark 5 and Proposition 23 we have that (j,) = K}, =<

081] = O'?n) = l/[gn). If Cjy1) = 1, then Z/[gn) = ([n); and S0 () = Ky =

oty = oy = 7
(2) By part (1) and [11, Corollary 27]. O

Proposition 24. For a ring R the following statements are equivalent:
(1) For every i € R-pr, pijpq1) = 1 implies that pp,) = 1;
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(2) 1 is a semi-co-n-absorbing preradical;

(3) O-E)n) — ].;
4) M =1.
Proof. Is easy. O

For 7 € R-pr define
c™(r) = \/{o € R-pr | o < 7, o semi-co-n-absorbing},

which is the unique greatest semi-co-n-absorbing preradical less than or
equal to 7. Notice that in [11], C()) is denoted by C.

Proposition 25. Let R be a ring.
(1) opy =CM(1) =V CM(r).
TER-pr
2) For each T € R-pr, C (1) < 7.

(2)

(3) For each 7,0 € R-pr we have T < 0 = C™ (1) < O™ (o).

(4) For each T € R-pr, C(n)(T[n+1]) =Ccm (Tin))-

(5) For each T € R-pr, T is semi-co-n-absorbing if and only if T =
cm (7).

(6) {7 € R-pr| T is semi-co-n-absorbing} = Im C") = {C"(s) | o €
R-pr}.

2
(7) [C(”)} = C™. Thus, C™ is a closure operator on R-pr.
(8) For each family {7a}acr € R-pr, we have

C(N 7a) = CM(N C™(1,)).

acl acl
9) ¢ = A C0F) in particular C = N\ CW.
k>1 k=1
(10) ¢ (Ont1) = c) (0[n) = ) for any semicoprime preradical o.

Proof. The proofs of (1), (2), (3), (5) and (6) is easy.

(4) For any 7 € R-pr, part (3) implies that C'(") (Tn)) = C(")(T[nﬂ}).
Since C(™) (Tin41)) is semi-co-n-absorbing (by Remark 4) and c™) (Ting1))
= Tln+1]> then C(") (T[n+1]) = Tln]- Hence C(™) (T[n+1]) = cm (T[n]) So the
equality holds.

(7) Is a direct consequence of part (5).

(8) The proof is similar to that of [11, Proposition 31](5).
(9) By Corollary 2(5).
(10) Apply Proposition 14 and parts (4), (5). O
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Now consider the operator (_) in R-pr that assigns to each preradical
o the least radical over o (see [19, p. 137]).

Lemma 2. Let 0,7 € R-pr be such that o is radical and T is semi-co-n-
absorbing. Then:
(1) ™ (o) = Ct (o)
(2) C"(0) =0
(3) 740("( ) X T.
(4) 7= OO ().

Proof. Similar to the proof of [11, Lemma 32]. O

Proposition 26. Let R be a ring.
(1) The operator C((_) defines an interior operator on the ordered
class of radicals.
(2) The operator C™((_)) defines a closure operator on the ordered
class of semi-co-n-absorbing preradicals.

Notice that the “open” radicals associated with the interior operator

C)(_) are

(’)(nzl = {0 radical | 0 = T for some semi-co-n-absorbing 7}.

The “closed” semi-co-n-absorbing preradicals associated with the closure
operator C(™((_)) are

C™) = {7 semi-co-n-absorbing | 7 = C(™(¢) for some radical o}.

The following result is immediate.

Corollary 4. For a ring R the operators C™(_) and (_) restrict to

mutually inverse maps between 07(“221 and c§22

Definition 2. Let 7 € R-pr. Define

C’fn) (1) = /\{o[n] | 0 € R-pr, 7 =X 0[py)}-

Proposition 27. For a ring R the following conditions hold:
(1) For each T € R-pr, C%n) (1) X Ty
(2) For each 7 € R-pr, T is semi-co-n-absorbing if and only if T =
C(n)( ).
(3) 1 is a semi-co-n-absorbing preradical if and only if C’{n)(l) =1.
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(4) Let T, o € R-pr. If T < o, then Cfn) (1) = C’{n) (o).
(5) For each family {14 }acr C R-pr, C£n)( A7) XA Cfn)(Ta) and

ael acl
V O () 2 C(V 7).
acl acl
Proof. The assertions have straightforward verifications. [

We apply an “Amitsur construction” to Cfn) as follows:

Definition 3. Let 7 € R-pr. We define recursively the preradical C/(\")(T)
for each ordinal X\ as follows:

(1) cé";(f) T

(2) O3 (r) = YV (CY (7).

(3) If A is a limit ordinal, then C{"” (1) = A CF"(7).

B<A
@ = A ).
A ordinal

Proposition 28. Let 7 € R-pr. Then the following statements are equiv-
alent:

(1) 7 is semi-co-n-absorbing;

(2) For each ordinal \, T < C/(\n) (1);

(3) () =r.
Proof. By Proposition 27 and using transfinite induction we have the
claim. O

As is the case with Cfn), all of the operators C)(\n) preserve order
between preradicals.

Proposition 29. Let 7, 0 € R-pr be such that T < 0. Then:

(1) For each ordinal X, C/(\n) (1) = C/(\n)(o).

2) 05" (1) 2 05" (0).
Proposition 30. For each T € R-pr, C™ (1) < Cézn) (7).
Proof. Let 7 € R-pr. We use transfinite induction. First, note that
C(r) <7 = C(()n) (7). Assume that \ is an ordinal such that C(r) <
C/(\n)(T). Since C'"(7) is semi-co-n-absorbing, C™ (1) < CYZ)(C’(”) (1))
< (M () = W (7), by parts (2) and (4) of Proposition 27.
If X is a limit ordinal and C™(7) < Cén)(T) for each § < A, then
C(r)y = A CF(r) = C\V(n). O

B<A
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In the following result we give equivalent conditions for the equality

) (r) = (7).

Proposition 31. For each 7 € R-pr the following statements are equiv-
alent:
(1) C(n)( ) is semi-co-n-absorbing;
@ ¢’ = o (C5 ()
3) For each ordinal A we have C'g()n) (1) = C')(\n)(Cg()n) (1));
1) 680 () = ¢ r);
5) 0§ (r) = ().

Proof. (1)=-(2) By Proposition 27(2).
(2 ) (3) It follows by using transfinite induction on A.
(3)=(4) Is easy.

(4)=(1) By Proposition 28.

(1)=(5) Assume that C(n)( ) is semi-co-n-absorbing. Since C’S()n)(T) =7,
the definition of C(7) implies that C( )( ) < C™(7). On the other

hand C™"(7) < CS({L) (1), by Proposition 30. So the equality holds.
(5)=-(1) Is straightforward. O

5. Quasi-co-n-absorbing and semi-co-n-absorbing
submodules

Remark 6. Let M € R-co-ass and N be a nonzero fully invariant
submodule of M. Then we have:
(1) N is co-n-absorbing in M = N is quasi-co-n-absorbing in M = N
is semi-co-n-absorbing in M.
(2) N is a quasi-co-1-absorbing submodule of M if and only if N is a
coprime submodule of M.
(3) N is a semi-co-1-absorbing submodule of M if and only if N is a
semicoprime submodule of M.

Proposition 32. Let o € R-pr. If for every M € R-Mod, oc(M) is a
semicoprime submodule of M, then o is a semicoprime preradical.

Proof. By hypothesis, [11, Proposition 19] implies that aé\/f M) IS a semi-
coprime preradical. So o = \/{a%M) | M € R-Mod} (see [17, Remark 1])

is a semicoprime preradical. O

Corollary 5. Let R be a ring. If every nonzero R-module is semicoprime,
then 1 is a semicoprime preradical in R-pr.



A. YOUSEFIAN DARANI, H. MOSTAFANASAB 233

Lemma 3 ([7, Lemma 2.5]). Let M € R-Mod. Then for any submodules
N, K of M, a]]{,/[+K =a¥vall.

Proposition 33. Let M € R-Mod. Suppose that {N;};cr is a family
of semicoprime submodules of M. Then N = > N; is a semicoprime

el
submodule of M .

Proof. Let {N;};cr be a family of semicoprime submodules of M. Then,

by [11, Proposition 19], a%j 's are semicoprime preradicals. Thus a% =

Vier a%fi is a semicoprime preradical. Again by [11, Proposition 19],
N = > N, is a semicoprime submodule of M. O
1€l
Proposition 34. Let R be a ring and {M;}icr be a family of semicoprime
R-modules. Then M = @ M; is a semicoprime R-module.
el
Proof. Since for every i € I, M; is a semicoprime R-module, then for
every i € I, a%j is a semicoprime preradical, by [11, Proposition 19].
Therefore \/ a%ﬁ = a% is a semicoprime preradical, and so again by
el
[11, Proposition 19], M = @ M, is a semicoprime R-module. O
el

Proposition 35. For a ring R the following statements are equivalent:

(1) R is a finite product of simple rings;

(2) k=1;

(3) 1 is a semicoprime preradical;
(4) rR is a semicoprime R-module;
(5) There exists a semicoprime R-module that is a generator in R-Mod.

Proof. (1)<(2) By [11, Theorem 10].

(1)<(3) By [11, Theorem 29].

(3)<(4) Notice the fact that an R-module G is a generator in R-Mod
if and only if ag = 1. Since R is a generator in R-Mod, then aﬁ = 1.
Now, use [11, Proposition 19].

(4)=(5) Is trivial.

(5)=-(3) See the proof of (3)=(4). O

Theorem 2. Let M € R-co-ass and N a fully invariant submodule of M.
Consider the following statements.

(a) N is co-n-absorbing in M.

(b) o is a co-n-absorbing preradical.

Then (b) = (a), and if M satisfies the w-property, then (a) = (b).
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Proof. The proof is similar to that of [22, Theorem 4.2]. O]

Theorem 3. Let M € R-co-ass and N a fully invariant submodule of M.
Consider the following statements:

(1) N is quasi-co-n-absorbing (resp. semi-co-n-absorbing) in M.

(2) oAl is a quasi-co-n-absorbing (resp. semi-co-n-absorbing) preradical.
Then (2) = (1), and if M satisfies the w-property, then (1) = (2).

Proof. (1) = (2) Assume that N is quasi-co-n-absorbing in M and that
(n(M) : p(M)) = (n: u)(M) for every n, p € R-pr. Since N # 0 we have
o £ 0. Now let , 4 € R-pr be such that o < () + p)- In this case
we have

N = ay (M) < (ng  p)(M) = (n(M)g = p(M)).

Since N is quasi-co-n-absorbing in M, by hypothesis we have that N <
(M) = 1) (M) or N < (n(M)p—1) 2 p(M)) = (M) = p)(M). It
follows from [15, Proposition 5] that a%[ = a%l](M) = 7y Or a%f <
aé\T/il[n—l]:H‘)(M) = (Mp—1) : 1), and so o is quasi-co-n-absorbing.

(2) = (1) Assume that o)/ is a quasi-co-n-absorbing preradical. Since
oM # 0, we have N # 0. Suppose that J, K are fully invariant submodules
of M such that N < (Jp,) : K). Then we have N < ((wy)[n] :w%) (M).

By [15, Proposition 5], we get

N i My . M

Since o is quasi-co-n-absorbing, we have o < (w¥ )[n] Or oM <

((wy)[n} :w%). Therefore N = o (M) < (wf,w)[n}(M) = Jppy or N =

oM (M) < ((wy)[n} :w%) (M) = (Jjp—y) = K). Hence N is a quasi-co-
n-absorbing submodule. A similar proof can be stated for semi-co-n-
absorbing preradicals. O

Remark 7. Note that in Theorem 3, for the case n = 2 we can omit
the condition M € R-co-ass, by the definition of quasi-co-2-absorbing
(semi-co-2-absorbing) submodules.

Definition 4. Let M € R-co-ass. We say that M is a quasi-co-n-absorbing
(resp. semi-co-n-absorbing) module if M is a quasi-co-n-absorbing (resp.
semi-co-n-absorbing) submodule of itself.
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Corollary 6. Let My, Mo, ..., M; be injective Artinian R-modules. Sup-
pose that M;’s are quasi-co-n-absorbing modules that satisfy the w-property.
Then M = @'_, M; is a quasi-co-(n + t — 1)-absorbing R-module.

Proof. Let My, Ms, ..., M; be quasi-co-n-absorbing R-modules. Then,
by Theorem 3, a%i,a%ﬁ, e ,a%ﬁ are quasi-co-n-absorbing preradicals,
and so ot = a%i v oz]\]\g VERERY, a%ﬁ is a quasi-co-(n + t — 1)-absorbing
preradical, by Proposition 11(2). Again by Theorem 3, M = @'_; M; is

a quasi-co-(n + ¢ — 1)-absorbing R-module. O

Corollary 7. Let R be a ring. The following statements hold:

(1) Ifthe preradical 1 is quasi-co-2-absorbing (resp. semi-co-2-absorbing),
then every generator R-module is a quasi-co-2-absorbing (resp. semi-
co-2-absorbing) R-module.

(2) If R is a semisimple Artinian ring, then every R-module is quasi-
co-i-absorbing for every i > 2.

Proof. (1) Suppose that 1 is a quasi-co-2-absorbing (resp. semi-co-2-
absorbing) preradical and G is a generator R-module. Since ag =1, the
result follows from Theorem 3.

(2) By Proposition 6 and Theorem 3. O

Example 1. Let R be a semisimple Artinian ring and S1, S, ...,S,4+1 €
R-simp be distinct. Then the injective Artinian R-module @?:’Lll S; is
quasi-co-n-absorbing, by Corollary 7(2). But note that, by [22, Proposi-
tion 3.6] and Theorem 2, @?jll S; is not co-n-absorbing. This example
shows that the two concepts of quasi-co-n-absorbing modules and of
co-n-absorbing modules are different in general.

The following two propositions can be proved similar to [22, Proposi-
tion 4.10] and [22, Theorem 4.11], respectively.

Proposition 36. Let N, H € R-co-ass such that H be a fully invariant
submodule of N and N be self-injective. For a fully invariant submodule
K of H,
(1) If K is quasi-co-n-absorbing in N, then K is quasi-co-n-absorbing
in H.
(2) If K is quasi-co-n-absorbing in N and K € R-co-ass, then K is a
quasi-co-n-absorbing module.
(3) If a]]\([ s a quasi-co-n-absorbing preradical and N satisfies the w-

property, then a% 1 a quasi-co-n-absorbing preradical.
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Proposition 37. Let N, QQ € R-co-ass such that N be a fully invariant
submodule of Q and Q) be self-injective. Then N is a quasi-co-n-absorbing
module if and only if N is quasi-co-n-absorbing in Q).

Theorem 4. Let M € R-co-ass that satisfies the w-property. The follow-
ing statements are equivalent:

(1) M is quasi-co-n-absorbing;

(2) oAl is quasi-co-n-absorbing;

(3) For each T,n € R-pr, M € Tirpymy = M € Ty or M €T(r, 1y

Proof. (1) < (2) Is clear by Theorem 3.
(2) = (3) Suppose that a}} is quasi-co-n-absorbing. Let 7,7 € R-pr
such that M € T(; ;). Then (7,) : n)(M) = M, and so aqt = (T 2 1)

Therefore ajf = 7, or ajf 3 (1) ¢ n). Hence 73, (M) = M or
(Tin—1) : m)(M) = M. Consequently M € T, , or M € T i)
(3) = (2) has a routine verification. O

Similarly we can prove the following theorem.

Theorem 5. Let M € R-co-ass that satisfies the w-property. The follow-
ing statements are equivalent:

(1) M is semi-co-n-absorbing;

(2) oAl is semi-co-n-absorbing;

(3) For each T € R-pr, M € Ty ., = M €T,
Theorem 6. Let M € R-Mod be such that, for each pair K, L of fully
invariant submodules of M, we have (w% : w%) = wé\;[{:L). Then, for each
quasi-co-n-absorbing (resp. semi-co-n-absorbing) preradical o such that
o(M) # 0, we have that o(M) is quasi-co-n-absorbing (resp. semi-co-n-
absorbing) in M.
Proof. By hypothesis M € R-co-ass, [22, Lemma 4.12]. Let o be a quasi-

co-n-absorbing preradical such that o (M) # 0. If K, L are fully invariant
submodules of M such that o(M) < (K, : L), then

~—~

M M M M
0 =2 Wo(m) = WKL) = ((WK)[n} Swr ) :
Since o is quasi-co-n-absorbing, then
o =< (W) n]or0<((wK (n—1] : wﬁ/‘[)
In the first case we have o(M ) < (WY )in) (M) = Kp,); in the second case

we have (M) < ((wK [n—1] )(M) (Kjp—1) ¢ L). Consequently
o (M) is quasi-co-n- absorblng O
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