On a product of two formational tcc-subgroups* A. Trofimuk

Communicated by L. A. Kurdachenko

For the 70th anniversary of L. A. Kurdachenko

ABSTRACT. A subgroup A of a group G is called tcc-subgroup in G, if there is a subgroup T of G such that G = AT and for any $X \leq A$ and $Y \leq T$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$. The notation $H \leq G$ means that H is a subgroup of a group G. In this paper we consider a group G = AB such that A and B are tcc-subgroups in G. We prove that G belongs to \mathfrak{F} , when A and B belong to \mathfrak{F} and \mathfrak{F} is a saturated formation of soluble groups such that $\mathfrak{U} \subseteq \mathfrak{F}$. Here \mathfrak{U} is the formation of all supersoluble groups.

Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use the standard notations and terminology of [1,2]. The monographs [2,3] contain the necessary information of the theory of formations.

We say that the subgroups A and B of a group G are totally permutable if every subgroup of A is permutable with every subgroup of B.

Asaad and Shaalan [4] proved the supersolubility of a group G = AB such that the subgroups A and B are totally permutable and supersoluble, see [4, Theorem 3.1]. Following Maier [5] such factorization is called

^{*}This work was supported by the BRFFR (grant No. F19RM-071).

²⁰¹⁰ MSC: 20D10.

Key words and phrases: supersoluble group, totally permutable product, saturated formation, tcc-permutable product, tcc-subgroup.

totally permutable product of the subgroups A and B. In the same paper Maier showed that this statement is also true for the saturated formations containing the formation \mathfrak{U} of all supersoluble groups.

Theorem 1 ([5, Theorem]). Let G = HK be the totally permutable product of the subgroups H and K. Let \mathfrak{F} be a saturated formation such that $\mathfrak{L} \subseteq \mathfrak{F}$. If H and K lie in F, then so does G. Here \mathfrak{L} denote the class of groups all of whose Sylow subgroups are cyclic.

In [5] Maier also proposes the following question: «Does the above result extend to non-saturated formations which contain all supersoluble groups?»

Ballester-Bolinches and Perez-Ramos gave a positive answer to this question in [6].

Theorem 2 ([6, Theorem]). Let \mathfrak{F} be a formation containing the class \mathfrak{U} of all supersoluble groups. Suppose that G = HK be the totally permutable product of the subgroups H and K. If H and K belong to \mathfrak{F} , then G belongs to \mathfrak{F} .

In works [7], [8] the authors extended a previous Maier's result by considering an arbitrary number of pairwise totally permutable factors.

In the articles [9]–[13] (see also the references from [13]) we can see that the supersolubility of a group can also be obtained for other generalizations of totally permutable product.

The notation $H \leq G$ means that H is a subgroup of a group G. So, for example, the product G = AB is said to be tcc-*permutable* [13], if for any $X \leq A$ and $Y \leq B$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$. The subgroups A and B in this product are called tcc-*permutable*.

One of the main results of [12] for two tcc-permutable factors is formulated as follows.

Theorem 3 ([12, Theorem 5]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} . Let the group G = HK be the tcc-permutable product of subgroups H and K. If $H \in \mathfrak{F}$ and $K \in \mathfrak{F}$, then $G \in \mathfrak{F}$.

Besides, in [12] the authors gave examples showing that Theorem 3 not remains true for arbitrary non-saturated formations containing \mathfrak{U} even in the universe of soluble groups.

Now we introduce the following concept

Definition 1. A subgroup A of a group G is called tcc-subgroup in G, if it satisfies the following conditions:

1) there is a subgroup T of G such that G = AT;

2) for any $X \leq A$ and $Y \leq T$ there exists an element $u \in \langle X, Y \rangle$ such that $XY^u \leq G$.

Clear that by condition 2 of Definition 1, G = AT is the tcc-permutable product of the subgroups A and T. In this case, we say that the subgroup T is a tcc-supplement to A in G.

If G = AB is the tcc-permutable product of subgroups A and B, then the subgroups A and B are tcc-subgroups in G. The converse is false.

Example 1. Let Z_n be a cyclic group of order n. Dihedral group $G = \langle a \rangle \rtimes \langle c \rangle$, |a| = 12, |c| = 2 ([14], IdGroup=[24,6]) is the product of tcc-subgroups $A = \langle a^3 c \rangle$ of order 2 and $B = \langle a^{10} \rangle \rtimes \langle c \rangle$ of order 12. But A and B are not tcc-permutable. Indeed, there are the subgroups X = A and $Y = \langle c \rangle$ of A and B respectively such that doesn't exist $u \in \langle X, Y \rangle = \langle a^3 \rangle \rtimes \langle c \rangle$ such that $XY^u \leqslant G$.

In the present paper we prove the following theorem.

Theorem A. Let G = AB, where A and B are tcc-subgroups in G. Let \mathfrak{F} be a saturated formation of soluble groups such that $\mathfrak{U} \subseteq \mathfrak{F}$. Suppose that A and B belong to \mathfrak{F} . Then G belongs to \mathfrak{F} .

1. Preliminaries

In this section, we give some definitions and basic results which are essential in the sequel.

A group whose chief factors have prime orders is called *supersoluble*. If $H \leq G$ and $H \neq G$, we write H < G. The notation $H \leq G$ means that H is a normal subgroup of a group G. Denote by Z(G), F(G) and $\Phi(G)$ the centre, Fitting and Frattini subgroups of G respectively, and by $O_p(G)$ the greatest normal p-subgroup of G. Denote by $\pi(G)$ the set of all prime divisors of order of G. The semidirect product of a normal subgroup A and a subgroup B is written as follows: $A \rtimes B$. If H is a subgroup of G, then $H_G = \bigcap_{x \in G} H^x$ is called the core of H in G.

A formation \mathfrak{F} is said to be *saturated* if $G/\Phi(G) \in \mathfrak{F}$ implies $G \in \mathfrak{F}$. Let \mathbb{P} be the set of all prime numbers. A *formation function* is a function f defined on \mathbb{P} such that f(p) is a possibly empty, formation. A formation \mathfrak{F} is said to be *local* if there exists a formation function f such that $G \in \mathfrak{F}$ if and only if for any chief factor H/K of G and any $p \in \pi(H/K)$, one has $G/C_G(H/K) \in f(p)$. We write $\mathfrak{F} = LF(f)$ and f is a local definition of \mathfrak{F} . By [3, Theorem IV.3.7], among all possible local definitions of a local formation \mathfrak{F} there exists a unique f such that f is integrated (i.e. $f(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$) and full (i.e. $f(p) = \mathfrak{N}_p f(p)$ for all $p \in \mathbb{P}$). Here \mathfrak{N}_p is the formation of all p-groups. Such local definition f is said to be *canonical local definition* of \mathfrak{F} . By [3, Theorem IV.4.6], a formation is saturated if and only if it is local.

If a group G contains a maximal subgroup M with trivial core, then G is said to be *primitive* and M is its *primitivator*.

Lemma 1. Let \mathfrak{F} be a saturated formation and G be a group. Assume that $G \notin \mathfrak{F}$, but $G/N \in \mathfrak{F}$ for all non-trivial normal subgroups N of G. Then G is a primitive group.

Proof. Since \mathfrak{F} is a saturated formation, it follows that $\Phi(G) = 1$ and G contains a unique minimal normal subgroup N. For some maximal subgroup M of G, we have G = NM, because $\Phi(G) = 1$. It is obvious that the core $M_G = 1$. Hence G is a primitive group. \Box

Lemma 2 ([1, Theorem II.3.2]). Let G be a soluble primitive group and M is a primitivator of G. Then the following statements hold:

(1) $\Phi(G) = 1;$

(2) $F(G) = C_G(F(G)) = O_p(G)$ and F(G) is an elementary abelian subgroup of order p^n for some prime p and some positive integer n;

(3) G contains a unique minimal normal subgroup N and moreover, N = F(G);

(4) $G = F(G) \rtimes M$ and $O_n(M) = 1$;

Lemma 3 ([13, Theorem 1, Propositions 1, 2]). Let G = AB be the tcc-permutable product of subgroups A and B and N be a minimal normal subgroup of G. Then the following statements hold:

(1) $\{A \cap N, B \cap N\} \subseteq \{1, N\};$

(2) if $N \leq A \cap B$ or $N \cap A = N \cap B = 1$, then |N| = p, where p is a prime.

Lemma 4 ([12, Theorem 4]). Let G = AB be the tcc-permutable product of subgroups A and B. Then $[A, B] \leq F(G)$.

Lemma 5. Let A be a tcc-subgroup in G and Y be a tcc-supplement to A in G. Then the following statements hold:

(1) A is a tcc-subgroup in H for any subgroup H of G such that $A \leq H$;

(2) AN/N is a tcc-subgroup in G/N for any $N \leq G$;

(3) for every $A_1 \leq A$ and $X \leq Y$ there exists an element $y \in Y$ such that $A_1X^y \leq G$. In particular, $A_1M \leq G$ for some maximal subgroup M

of Y and $A_1H \leq G$ for some Hall π -subgroup H of soluble Y and any $\pi \subseteq \pi(G)$;

(4) $A_1K \leq G$ for every subnormal subgroup K of Y and for every $A_1 \leq A$;

(5) if $T \leq G$ such that $T \leq A$ and $T \cap Y = 1$, then $T_1 \leq G$ for every $T_1 \leq A$ such that $T_1 \leq T$;

(6) if $T \leq G$ such that $T \cap A = 1$ and $T \leq Y$, then $A_1 \leq N_G(T_1)$ for every $T_1 \leq T$ and for every $A_1 \leq A$.

Proof. 1. Since Y is a tcc-supplement to A in G, it follows that G = AY, A and Y are tcc-permutable subgroups of G. By Dedekind's identity, $H = H \cap AY = A(H \cap Y)$. Since $H \cap Y \leq Y$, then for any $X \leq A$ and $Z \leq H \cap Y$ there exists an element $u \in \langle X, Z \rangle$ such that $XZ^u \leq G$. Hence A and $H \cap Y$ are tcc-permutable and therefore A is a tcc-subgroup in H.

2. Since G = AY, we have G/N = (AN/N)(YN/N). Let B/N be an arbitrary subgroup of AN/N and X/N be an arbitrary subgroup of YN/N. Since $N \leq B \leq AN$, it follows that by Dedekind's identity, $B = B \cap AN = (B \cap A)N$. Similarly, $X = X \cap YN = (X \cap Y)N$. Since $B \cap A \leq A$ and $X \cap Y \leq Y$, we have $(B \cap A)(X \cap Y)^u \leq G$ for some $u \in \langle B \cap A, X \cap Y \rangle$. Hence

$$(B/N)(X/N)^{uN} = (B \cap A)(X \cap Y)^u N/N \leqslant G/N$$

for $uN \in \langle B \cap A, X \cap Y \rangle N/N \subseteq \langle B, X \rangle N/N = \langle B/N, X/N \rangle$. Thus AN/N is a tcc-subgroup in G/N.

3. Since A is a tcc-subgroup in G, by definition, for every $A_1 \leq A$ and $X \leq Y$ there exists an element $u \in \langle A_1, X \rangle$ such that $A_1 X^u \leq G$. Because $u \in G = AY = YA$, it follows that u = ya for some $y \in Y$ and $a \in A$. Then

$$A_1 X^u = A_1 X^{ya} = A_1 (X^y)^a = A_1^a (X^y)^a = (A_1 X^y)^a \leqslant G.$$

Hence there is a subgroup A_1X^y in G for some $y \in Y$. Clearly, that if X is a Hall π -subgroup of Y, then $H = X^y$ is a Hall π -subgroup of Y. Thus $A_1H \leq G$. Similarly, for maximal subgroup X of Y. Then $M = X^y$ is a maximal subgroup of Y and $A_1M \leq G$.

4. Since K is subnormal in Y, there is a chain of subgroups $Y = K_0 \ge K_1 \ge \ldots \ge K_{n-1} \ge K_n = K$ such that K_{i+1} is normal in K_i for all *i*. We use induction by *n*. By (3), there exists an element $y \in Y$ such that $A_1K_1^y = A_1K_1 \le G$. Hence the statement holds for n = 0 and n = 1. Therefore $n \ge 2$. By (1), A is a tcc-subgroup in AK_1 and K_1 is a

tcc-supplement to A in AK_1 . Since the length of subnormal chain between K and K_1 less than n, it follows that by induction, there is a subgroup A_1K of AK_1 . Consequently $A_1K \leq G$.

5. By (3), there is a subgroup T_1Y of G. Since $T_1 = T \cap T_1Y$ is normal in T_1Y , we have $Y \leq N_G(T_1)$ and T_1 is normal in G = AY.

6. Since T_1 is subnormal in Y, it follows that by (4), there is a subgroup A_1T_1 of G for any $A_1 \leq A$. Because $T_1 = T \cap A_1T_1$ is normal in A_1T_1 , we have $A_1 \leq N_G(T_1)$.

Lemma 6. Let A be a tcc-subgroup in a soluble primitive group G and Y be a tcc-supplement to A in G. Suppose that N is a minimal normal subgroup of G. If $N \cap A = 1$ and $N \leq Y$, then A is cyclic of order dividing p - 1.

Proof. Since $N \cap A = 1$ and $N \leq Y$, by Lemma 5 (6), $A \leq N_G(K)$ for any $K \leq N$. Since N is an elementary abelian group, it follows that $|N| = p^s$ for some prime p and some integer s, and $N = N_1 \times N_2 \times \ldots \times N_s$, where $N_i = \langle x_i \rangle$ and $|N_i| = p$. Because $A \leq N_G(N_i)$, we have A induces a power automorphism group on N. Indeed, let $a \in A$ and $x_i \in N_i, x_j \in N_j$, $i \neq j$. Suppose that $x_i^a = x_i^t, x_j^a = x_j^r$ and $(x_i x_j)^a = (x_i x_j)^m = x_i^m x_j^m$, because N is abelian. Then $x_i^m x_j^m = x_i^t x_j^r$. Consequently m = t = r and a transforms every element of N to the same power. By [2, Theorem 2.3], $A/C_A(N) \simeq P(N)$, where P(N) is the power automorphism group of N. Since $C_G(N) = N$, it follows that $C_A(N) = 1$. On the other hand, P(N) is a cyclic group of order p - 1. Really P(N) is a group of scalar matrices over the field \mathbf{P} consisting of p elements. Hence P(N) is isomorphic to the multiplicative group \mathbf{P}^* of \mathbf{P} and besides, \mathbf{P}^* is a cyclic group of order p - 1. □

Lemma 7 ([15, Lemma 2.16]). Let \mathfrak{F} be a saturated formation containing \mathfrak{U} and G be a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

2. Proof of Theorem A

Assume that the claim is false and let G be a minimal counterexample. Let N be a non-trivial normal subgroup of G. The quotients $AN/N \simeq A/A \cap N$ and $BN/N \simeq B/B \cap N$ are tcc-subgroup in G/N by Lemma 5 (2), $AN/N \simeq A/A \cap N \in \mathfrak{F}$ and $BN/N \simeq B/B \cap N \in \mathfrak{F}$, because \mathfrak{F} is a formation. Hence the quotient $G/N = (AN/N)(BN/N) \in \mathfrak{F}$ by induction. If $F(G) \neq 1$, then $G/F(G) \in \mathfrak{F}$ and consequently G is soluble, since \mathfrak{F} is a formation of soluble groups. Hence F(G) = 1 and by Lemma 4, $Y \leq C_G(A)$. Then A is normal in G and G is soluble.

Since \mathfrak{F} is saturated, it follows that G is primitive by Lemma 1. Hence $\Phi(G) = 1$, $N = C_G(N) = F(G) = O_p(G)$ is a unique minimal normal subgroup of G by Lemma 2 and $G = N \rtimes M$, where $|N| = p^n$ and M is a primitivator.

By Lemma 3, is either |N| = p, or $N \leq A$ and $N \cap Y = 1$, or $N \cap A = 1$ and $N \leq Y$. In the first case, by Lemma 7, $G \in \mathfrak{F}$. Suppose that $N \leq A$ and $N \cap Y = 1$. Since Y is a tcc-subgroup in G, it follows that by Lemma 6, Y is a cyclic group of order dividing p - 1. Then $Y \in g(p)$, where g is the canonical local definition of \mathfrak{U} . Since $\mathfrak{U} \subseteq \mathfrak{F}$, we have by [3, Proposition IV.3.11], $g(p) \subseteq f(p)$, where f is the canonical local definition of \mathfrak{F} . Hence $Y \in f(p)$.

Because Y is a cyclic group of order dividing p-1, it follows that Y is contained in some Hall p'-subgroup H of G. Hence there exists an element $g \in G$ such that $Y \leq H = H_1^g \leq M^g$, where H_1 is a Hall p'-subgroup of G such that $H_1 \leq M$, because $|G: M| = p^n$. Let $M_1 = M^g$. Then $G = N \rtimes M_1$ and M_1 is a primitivator. Clearly that $M_1 = (A \cap M_1)Y$.

Since $N \leq A$, we have $A = N \rtimes (A \cap M_1)$. Because $A \in \mathfrak{F}$, it follows that $A/C_A(N_1) \in f(p)$, where N_1 is a minimal normal subgroup of Asuch that $N_1 \leq N$. Since A is a tcc-subgroup in G, by Lemma 5 (5), N_1 is normal in G. Hence $N = N_1$ and $C_A(N_1) = C_A(N) = N$. Then $A \cap M_1 \simeq A/N \in f(p)$.

We consider the direct product $(A \cap M_1) \times Y = \{(a, b), a \in A \cap M_1, b \in Y\}$. Let $\varphi : (A \cap M_1) \times Y \to M_1 = (A \cap M_1)Y$ be a function and $\varphi(a, b) = ab$. Since by Lemma 4, $[A, Y] \leq F(G) = N$, it follows that $[A \cap M_1, Y] \leq N$. Because $[A \cap M_1, Y] \leq M_1$, we have $[A \cap M_1, Y] \leq M_1 \cap N = 1$. Hence $A \cap M_1 \leq C_{M_1}(Y)$ and φ is an epimorphism. Then by [2, Theorem 2.3],

$$(A \cap M_1) \times Y / \text{Ker } \varphi \simeq \text{Im } \varphi = M_1.$$

Since f(p) is a formation, $A \cap M_1 \in f(p)$ and $Y \in f(p)$, it follows that $M_1 \in f(p)$. Because $N \in \mathfrak{N}_p$, we have $G \in \mathfrak{N}_p f(p) = f(p) \subseteq \mathfrak{F}$.

So, we assume that $N \cap A = 1$ and $N \leq Y$. Similarly, we can show that $N \cap B = 1$ and $N \leq X$, where X is a tcc-supplement to B in G. By Lemma 6, A and B are cyclic. Hence G is supersoluble and therefore $G \in \mathfrak{F}$.

The theorem is proved.

Corollary 1. Let A and B be tcc-subgroups in G and G = AB. If A and B are supersoluble, then G is supersoluble.

Corollary 2 ([4, Theorem 3.1]). Suppose that A and B are supersoluble subgroups of G and G = AB. Suppose further that A and B are totally permutable. Then G is supersoluble.

References

- [1] B. Huppert, Endliche Gruppen I. Berlin-Heidelberg-New York, Springer, 1967.
- [2] V. S. Monakhov, Introduction to the Theory of Final Groups and Their Classes [in Russian]. Vysh. Shkola, Minsk, 2006.
- [3] K. Doerk and T. Hawkes, *Finite soluble groups*. Berlin-New York: Walter de Gruyter, 1992.
- M. Asaad, A. Shaalan, On the supersolubility of finite groups, Arch. Math., 53, 1989, pp.318–326.
- [5] R. Maier, A completeness property of certain formations, Bull. Lond. Math. Soc. 24, 1992, pp.540–544.
- [6] A. Ballester-Bolinches, M. D. Perez-Ramos, A question of R. Maier concerning formations, J. Algebra, 182, 1996, pp.738–747.
- [7] A. Carocca, A note on the product of F-subgroups in a finite group, Proc. Edinb. Math. Soc., 39, 1996, pp.37–42.
- [8] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, M. D. Pérez-Ramos, *Finite groups which are products of pairwise totally permutable subgroups*, Proc. Edinb. Math. Soc., 41, 1998, pp. 567–572.
- [9] W. Guo, K. P. Shum, A. N. Skiba, Criterions of supersolubility for products of supersoluble groups, Publ. Math. Debrecen, 68(3-4), 2006, pp.433-449.
- [10] M. Arroyo-Jorda, P. Arroyo-Jorda, A. Martinez-Pastor, M. D. Perez-Ramos, On finite products of groups and supersolubility, J. Algebra, 323, 2010, pp.2922–2934.
- [11] M. Arroyo-Jorda, P. Arroyo-Jorda, M. D. Perez-Ramos, On conditional permutability and saturated formations, Proc. Edinb. Math. Soc., 54, 2011, pp.309–319.
- [12] M. Arroyo-Jorda, P. Arroyo-Jorda, A. Martinez-Pastor and M. D. Perez-Ramos, On conditional permutability and factorized groups, Annali di Matematica Pura ed Applicata, 193, 2014, pp.1123–1138.
- [13] M. Arroyo-Jorda, P. Arroyo-Jorda, Conditional permutability of subgroups and certain classes of groups, Journal of Algebra, 476, 2017, pp.395–414.
- [14] GAP, Groups, Algorithms, and Programming, Version 4.10.1. www.gap-system.org, 2019.
- [15] A. N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315, 2007, pp.192–209.

CONTACT INFORMATION

Alexander TrofimukDepartment of Mathematics, Gomel Francisk
Skorina State University, Gomel 246019,
Belarus
E-Mail(s): alexander.trofimuk@gmail.com

Received by the editors: 03.06.2019.