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Cohen–Macaulay modules over the plane curve

singularity of type T44, II
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To the memory of Volodymyr Kyrychenko

Abstract. We accomplish the classification of Cohen–
Macaulay modules over the curve singularities of type T44 and the
description of the corresponding matrix factorizations, started in [8].

Introduction

The plane curve singularities of types Tpq, given by the relation

Xp + Y q + aX2Y 2 = 0,

where 1/p+1/q 6 1/2, play an important role in the theory of singularities.
They are “serial” unimodal singularities in the Arnold classification [1].
They also are the “critical” Cohen–Macualay tame curve singularities [7].
The simplest of them is the singularity of type T44, which can be also
given by the relation

XY (X − Y )(X − λY ) = 0 (λ /∈ {0, 1}).

A classification of Cohen–Macaulay modules over this singularity in terms
of their Auslander–Reiten quiver was given by Dieterich [5]. Another
approach, using cluster tilting, was suggested in [4]. Nevertheless, neither
of them gave an explicit description of modules by generators and relations,
or, equivalently, the corresponding matrix factorizations [9].
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In the paper [8], the authors used for this purpose the technique of
matrix problems and classified a part of such modules, called the modules
of the first level, together with the corresponding matrix factorizations.
In this paper we will accomplish the classification of Cohen–Macaulay
modules over the singularity of type T44 and of the corresponding matrix
factorizations.

1. Matrix problem and modules of the first level

We recall the results of [8] on Cohen–Macaulay modules over the
T44-singularity, i.e. the ring R = S/(F ), where S = ❦[[X,Y ]], ❦ is an
algebraically closed field, and F = XY (X−Y )(X−λY ) (λ ∈ ❦\{0, 1}). We
denote by CM(R) the category of maximal Cohen–Macaulay R-modules.
We consider R as the subring of the direct product R1 ×R2 ×R3 ×R4,
where all Ri = ❦[[t]], generated by the elements x = (t, 0, t, λt) and y =
(0, t, t, t). We denote by Rij the projection of R to Ri×Rj . All rings Rij

are isomorphic to ❦[[X,Y ]]/(XY ), hence all indecomposable Rij-modules
are Ri, Rj and Rij . Let Ki ≃ ❦((t)) be the field of fractions of Ri, Kij =
Ki ×Kj . Every Cohen–Macaulay R-module M embeds into K ⊗R M .
Denote by N the image of M under the projection K⊗RM → K12⊗RM
and by L be the kernel of the surjection M → N . Then N ∈ CM(R12)
and L ∈ CM(R34), the exact sequence 0 → L → M → N → 0 defines an
element χ(M) ∈ Ext1

R
(N,L) and the following result holds [8].

Theorem 1.1. The map M 7→ χ(M) induces an equivalence of the
category CM(R) of maximal Cohen–Macaulay modules over R and the
category E of elements of the CM(R12)-CM(R34)-bimodule Ext1

R
(in the

sense of [6]).

If Is denotes the kernel of the projection R → Rs (s ∈ {1, 2, 12})
and L ∈ CM(R34), then Ext1

R
(Rs, L) ≃ L/IsL, which gives a list of

generators of the vector spaces Ext1
R
(Rs,Rr) for s ∈ {1, 2, 12}, r ∈

{3, 4, 34} presented in Table 1.
Here 1s is the unit of the ring Rs, and ts = t1s. Thus an object of the

category E is given by a block matrix

X =





X1
3 X2

3 X12
3

X1
4 X2

4 X12
4

X1
34 X2

34 X12
34



 ,

where Xs
r is a matrix with elements from Ext1

R
(Rs,Rr).
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Table 1.

R1 R2 R12

R3 13 13 13, t3

R4 14 14 14, t4

R34 134, 134, 134, t3, t4,
t3 = −t4 t3 = −λt4 t23 = −λt24

Two matrices X and X′ of this form describe isomorphic modules if and
only if SX = X′T , where S = (Ss

r) (s, r ∈ {3, 4, 34}) and T = T s
r (s, r ∈

{1, 2, 12}) are block matrices of the appropriate size such that1

• Ss
r = 0 if {s, r} = {3, 4} and T s

r = 0 if {s, r} = {1, 2};
• the elements of Sr

r or T r
r are from Rr;

• the elements of T s
12 are from Rs if s ∈ {1, 2} and elements of S34

r

are from Rr if r ∈ {3, 4};
• the elements of T 12

1 are from xR12 and the elements of T 12
2 are from

yR12;
• the elements of Ss

34 (s ∈ {3, 4} are from tsR34.
In [8] a description was given of the modules of the first level, i.e. those

corresponding to the matrices X whose elements are from ❦ (no terms
with ti). A list of indecomposable matrices of this kind is given in Table 2.

Remark 1.2. Note that in the representations X3(n)
+, X5(n)

+, X8(n),
X9(n) we can set the vector en either in the last row of the first horizontal
stripe or in the last row of the second horizontal stripe, obtaining equivalent
representations. Just in the same way, we can set the vector e

⊤
1 either

in the last column of the first vertical stripe or in the last column of the
second vertical stripe.

Actually, a complete list of indecomposable matrices is obtained from
this table if we also consider the transposed matrices and also replace some
superscripts + by −. The latter operation means that we interchange the
first two stripes (horizontal or vertical). Namely, in X1(n) we interchange
both vertical and horizontal stripes, while in other cases we interchange
the stripes which are of unequal sizes. Note that transposing the matrices
Xi for i ∈ {0, 1, 6, 9, 10} gives isomorphic objects from E.

1 Note that the description of these matrices in [8] is inaccurate. It does not imply
the results of [8], since only modules of the first kind were considered there.
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Table 2.

X0(n, µ) =

(

In Jn(µ)

In In

)

(µ ∈ ❦ \ {0, 1});

X1(n)
++ =

(

Im Jm(0)

Im Im

)

if n = 2m;

X1(n)
++ =







Im 0 Jm(0)
0 1 em

Im 0 Im






if n = 2m+ 1; X2(n)

+ =







In Jn(1)
0 en

In In






;

X3(n)
+ =













In 0 In 0 0
0 1 0 1 0
0 0 0 0 1

Jn(1) e
⊤

1 In 0 0
en 0 0 0 1













; X4(n)
+ =









In 0 Jn(1)
0 1 en

In 0 In
0 1 0









;

X5(n)
+ =









In e
⊤

1 Jn(1) 0
0 0 en 1

In 0 In 0
0 0 0 1









; X6(n) =

(

In Jn(1)

In In

)

;

X7(n) =























Im 0 0 Jm(1) 0 0
0 Ik 0 0 Ik 0
0 (1− ε)ek 0 em 0 0

Im 0 0 Im 0 0
0 Jk(1) e

⊤

1 0 Ik 0
0 ek 0 εem 0 0

0 0 1 0 0 1























,

where m = [n/2], k = n−m− 1, ε = 0 if n is odd and ε = 1 if n is even;

X8(n) =









In Jn(1) 0
0 en 1

In In 0
0 0 1









; X9(n) =















In 0 In 0 0
0 0 0 0 1

Jn(1) e
⊤

1 In 0 0
en 0 0 0 1

0 1 0 1 0















;

X10 =
(

1
)

.

(The matrix X10 only has the entry from Ext1
R
(R12,R34); it corresponds to the

regular R-module).
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2. Reduced matrix problem. First step

Suppose now that an object from E is presented by a matrix M =
X+ tY, where X has elements from ❦ and is a direct sum of canonical
indecomposable matrices from Table 2 and, maybe, zero matrices:

X =













C1 0 . . . 0 0
0 C2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . Cm 0
0 0 . . . 0 0













,

where each Ck is one of the matrices Xi(n) or X⊤
i (n) (perhaps with

superscripts + or −). Respectively, Y becomes subdivided into blocks
Ykl (1 6 k, l 6 m+1). If we replace M by (I + tS)M or by M(I + tT ), the
part X does not change. Taking for S and T elementary matrices, we can
add the block Ck to the blocks Ykl and Ylk. Using these transformations,
we get the following results.

1) If Ck = X0(n, µ) and µ 6= λ−1 or C is one of the representations
{X1(n)

±,X6(n),X8(n),X9(n),X10 } or their transposed, we can make zero
all blocks Ykl and Ylk. Here one must take into account that the matrix
X1

4 multiplied by x becomes λt4X
1
4 and in the part X2

34 we have t3 = −λt4,
while in the part X1

34 we have t3 = −t4. Moreover, if Ck = X8(n) or
Ck = X9(n), we can do zero the rows containing 1 in the (12)-column, using
endomorphisms of R12 given by multiplications by t1 and t2. Analogously,
if Ck = X8(n)

⊤ or Ck = X9(n), we can make zero all columns containing 1
in the (34)-row.

Therefore, these representations are actually direct summands of the
whole matrix M. So we can further suppose that they do not occur in X.

2) If Ck = X0(n, λ
−1), we only can make zero all rows of Ykl except

one of then (the first one in either Y3-part or in Y4-part), as well as all
columns of Xlk, except one of them (the first one in either Y1-part or in
Y2-part). We denote this row and this column, respectively, by a0(n) and
a0(n).

3) If Ck ∈ {X2(n)
±,X4(n)

± }, its columns are linear independent, so
we can make zero all blocks Ylk of the same vertical stripe. On the other
hand, we can make zero all rows of the matrices Ykl of the same horizontal
stripe, except one of them (for definiteness, the first one). We denote this
row, respectively, by a2(n)

± and a4(n)
±.
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4) In the same way, if Ck ∈
{

X⊤
2 (n)

±,X⊤
4 (n)

±
}

, we can make zero
all blocks Ykl and all columns of the matrices Ylk except one of them (for
definiteness, the first one), denoted, respectively, by a2(n)± or a4(n)±.

5) If Ck ∈ {X3(n)
±,X5(n)

± }, it is non-degenerate. So we can make
zero all blocks Ykl. We can also make zero all columns of the blocks Ylk,
except the last one, since the latter can contain both t3 and t4, while
we can only delete one of them. We denote this column, respectively,
by a3(n)± or a5(n)± and suppose that it only contains t3 and does not
contain t23, since t23 = −λt24.

6) In the same way, if Ck ∈
{

X⊤
3 (n)

±,X⊤
5 (n)

±
}

, we can make zero
all blocks Ylk and all rows of Ykl, except the last one, which we denote,
respectively, by a3(n)

± or a5(n)
± and suppose that it only contains t3

and does not contain t23.
7) Finally, if Ck = X7(n), it is of size (2n+ 1) × 2n and of rank 2n.

Hence we can make zero all blocks Ylk. The same observations as above
show that we can make zero all rows of Ykl, except 2 of them, namely, the
last row and one more row (for definitness, the first one). We denote them,
respectively, by ã7(n) and a7(n) and suppose that ã7(n) only contains t3
and does not contain t23.

8) In the same way, if Ck = X⊤
7 (n), we can make zero all blocks Ykl

and all columns of Ylk, except 2 of them, namely, the last column and one
more column (for definitness, the first one). We denote them, respectively,
by ã7(n) and a7(n) and suppose that ã7(n) only contains t3 and does not
contain t23.

We gather all rows, as well as all columns with the same names. Then
we obtain a block matrix Ȳ whose horizontal stripes are those labelled by
the symbols ai(n)

± (2 6 i 6 5), a7(n), ã7(n) and stripes Os consisting of
zero rows of the stripe Xs, while the vertical stripes are those labelled by
the symbols aj(n)± (2 6 j 6 5), a7(n), ã7(n) and stripes Or consisting
of zero columns of the stripe Xr. We denote by Or

s the block on the
intersection of the horizontal stripe Os and the vertical stripe Or. It is
convenient to suppose that O1,O2,O12 are the last among vertical stripes
and O3,O4,O34 are the last among horizontal stripes. Note that the block
Or

s is zero if both r 6= 12 and s 6= 34.
Obviously, one can make elementary transformations within each stripe

with the following restrictions:
• the transformations inside the stripes a7(n) and ã7(n) are the same;
• the transformations inside the stripes a7(n) and ã7(n) are the same;
• the transformations inside the stripes a0(n) and a0(n) are contra-

gradient.
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The transformations between different stripes are obtained from the
morphisms of the corresponding matrices X and X′, i.e. the pairs of
matrices (S, T ) of the form described in Section 1, but without t-part,
such that SX = X′T . Namely, denote by yi (y′i) the rows of Y (respectively,

of Y′) and by yi (y′i) the columns of Y (respectively, of Y′). If S = (σij)
and T = (τij), we can replace each row y′i by y′i +

∑

j σijyj and each

column yi by yi +
∑

j τjiy
′j .

3. Reduced matrix problem. The O-part

Now we consider the blocks Or
s. The block O12

34 is of the
form t3A3 + t4A4 + t23B, where A1, A2, B are scalar matrices. Using
automorphisms of N and L, we can replace the triple (A4, A4, B) by
(SA4T

−1, SA4T
−1, SBT−1), where S, T are arbitrary invertible matrices.

Therefore, we can consider the pair (A3, A4) as a pencil of matrices
[10, Chapter XII] or, the same, a representation of the Kronecker quiver
[11, Sec. 3.2]. So we can use the Kronecker classification of indecomposable
pencils (ibid.), they are the pairs

Pq(n) = (In, Jn(q)), P∞(n) = (Jn(0), In),

P+(n) = (U, V ), P−(n) = (U⊤, V ⊤),

where In is the unit n× n matrix, Jn(q) (q ∈ ❦) is the n× n Jordan cell
with the eigenvalue q,

U =









1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0









, V =









0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1









(both of size n× (n+ 1)).

We can add the rows of the stripe O34 to the rows of all other stripes.
It allows to make zero all columns over each pair Pq(n) (q ∈ ❦∪{∞,+ }),
except, maybe, the first column over P0(n) (only containing t4) or over P∞

0

(only containing t3). Over the pair P−(n) we can make zero all columns
of the matrix X12

3 except the first one and all columns of X12
4 except

the last one. Analogously, one can add the columns of the stripe O12 to
the columns of all other stripes. Since t3 = −t4 in the block X1

34 and
t3 = −λt4 in the block X2

34 (see Table 1), it allows to make zero all rows
to the left of each pair Pq(n) (q ∈ ❦ ∪ {∞,−}), except the last row for
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the pair P1(n) in the block O1
34 or for the pair Pλ(n) in the block O2

34. To
the left of the pair P+(n) we can make zero all rows of the matrix X1

34

except the first one and all rows of X2
34 except the last one. Moreover, we

can delete all terms with t2i in these rows. Therefore, all pairs Pq(n) with
q ∈ ❦ \ {0, 1, λ} become direct summands of the whole matrix M. So we
can further suppose that they do not occur in the decomposition of O12

34.
We denote the remaining rows by pq(n) (q ∈ { 1, λ,+ }) and p̃−(n) so

that p1(n) and p̃+(n) are in the stripe Y1, while pλ(n) and p̃+(n) are in the
stripe Y2. We also denote the remaining columns by pq(n) (q ∈ { 0,∞,−}
and p̃−(n) so that p0(n) and p−(n) are in the stripe Y4, while p∞(n) and
p̃−(n) are in the stripe Y3. Again we gather all rows and columns with a
fixed label and denote the resulting stripe with the same label. The stripe
of the matrix Ȳi (i = 1, 2) consisting of the rows which are zero in O12

34 is
denoted by oi and the stripe of the matrix Ȳi (i = 3, 4) consisting of the
columns which are zero in O12

34 is denoted by oi. We call the stripes pq(n)
and pq(n) extra.

Using the description of morphisms between indecomposable pencils
(see [11, Sec. 3.2]), we can see the effect of these morphisms on the new
stripes. It is convenient to present them using an order on the corresponding
symbols: p < p′ means that we can add rows (columns) of the stripe p
to those of the stripe p′ (one can see that then there is no converse
transformation). Here is the resulting order:

• pq(n) < pq(n
′) if q ∈ {1, λ} and pq(n) < pq(n′) if q ∈ {0,∞}, d > d′;

• p+(n) < p+(n
′), p̃+(n) < p̃+(n

′) and p−(n) < p−(n′), p̃−(n) <
p̃−(n′) if d < d′;

• p+(n) < p1(n
′), p̃+(n) < pλ(n

′) and p−(n) < p∞(n′), p̃−(n) <
p0(n′) for all d, d′;

• oi 6 p and oi 6 p′ for every horizontal stripe p and every vertical
stripe p′.

Hence the remaining part of the matrices Or
s can be considered as a

representation of a bunch of chains N in the sense of [2] or [3, Appendix B]
(we use the formulations of the second paper). Namely, we have the pairs
of chains:

E1 = { o1, p1(n), p−(n) | d ∈ N } , F1 = {f1},

E2 = { o2, pλ(n), p̃−(n) | d ∈ N } , F2 = {f2},

E3 = {e3}, F3 =
{

o3, p∞(n), p+(n) | d ∈ N
}

,

E4 = {e4}, F4 =
{

o4, p0(n), p̃+(n) | d ∈ N
}

,
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with the order defined above and the relation ∼ defined as follows:

p+(n) ∼ p̃+(n) and p−(n) ∼ p̃−(n).

The description of representations of bunches of chains imply that in
this case every indecomposable representation has at most one non-zero
element in every row and in every column. Except “trivial,” i.e. containing
no non-zero elements, they correspond to the following words:

f1 − p−(n) ∼ p̃−(n), p−(n) ∼ p̃−(n)− f2, f1 − p−(n) ∼ p̃−(n)− f2,

e3 − p+(n) ∼ p̃+(n), p+(n) ∼ p̃+(n)− e4, e3 − p+(n) ∼ p̃+(n)− e4,

f1 − p1(n), f2 − pλ(n), e3 − p∞(n), e4 − p0(n),

o1 − f1, o2 − f2, o3 − e3, o4 − e4.

where the relation ‘−’ show the places, where the element is non-zero
(actually, it equals 1). We denote the corresponding representations (in
the same order) by

P−
1
(n), P−

2
(n), P−

12
(n),

P+
3
(n), P+

4
(n), P+

34
(n),

P1
1(n), Pλ

2(n), P∞
3 (n), P0

4(n),

F1, F2, E3, E4.

(3.1)

For instance, the representation P−
12
(n) is

(

e
⊤
1 e

⊤
n P−(n)

)

, where e
⊤
1

is in the block O1
34 and e

⊤
n is in the block O2

34. The representation P∞
3 (n)

is

(

e1

P∞(n)

)

, where e1 is in the block O12
3 . The representation F2 is the

1× 1 matrix (1) in the block O2
34.

Note that the terms with t23 = −λt24 can be deleted from all rows and
columns except those which become zero after the above decompositions
of X and O. Therefore, such terms can only occur as direct summands
of the whole matrix M of the form (t23) (or, the same, (t24) ). So we can
suppose that there are no such terms at all.

One can easily reconstruct the matrix factorizations which describe the
presentations of the corresponding Cohen–Macaulay modules in terms of
generators and relations. For instance, the representation P−

12
(n) considered
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above gives the element of the bimodule Ext1
R

:

M =

















t3 0 t3 0 . . . 0
0 0 t4 t3 . . . 0
0 0 0 t4 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . t3
0 t3 0 0 . . . t4

















It means that in the corresponding module M there are 2n+1 generators
u1, u2, . . . , un, v1, v2, . . . , vn+1, where uk ∈ R34, while vk is a preimage of
a generating element from R12 if 1 6 k 6 n − 1, from R1 if k = n and
from R2 if k = n+ 1. Thus (x− y)(x− λy)uk = 0. The columns of the
matrix M give the following relations for vk:

xyvk = (1− λ)−1(x− λy)uk + (1− λ)−1(y − x)uk+1 for 1 6 k 6 n− 1,

xvn = yu1,

yvn+1 = xun−1.

Here we use the fact that the projection of x− λy on R34 equals ((1−
λ)t, 0) = (1 − λ)t3, while the projection of y − x equals (0, (1 − λ)t) =
(1− λ)t4. Replacing vk by (λ− 1)vk, we obtain the matrix factorization

































z3z4 0 . . . 0 0 0 . . . 0 0 0
0 z3z4 . . . 0 0 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . z3z4 0 0 . . . 0 0 0
0 0 . . . 0 z3z4 0 . . . 0 0 0

−z4 z3 . . . 0 0 z1z2 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . −z4 z3 0 . . . z1z2 0 0

−z1 0 . . . 0 0 0 . . . 0 z2 0
0 0 . . . 0 −z2 0 . . . 0 0 z1

































Here, like in [8], we set z1 = y, z2 = x, z3 = x− y, z4 = x− λy. They are
generators of the kernels of the projections R → Ri. Just in the same
way one obtains the modules and matrix factorizations corresponding to
the other representations of the bunch of chains N .

Proposition 3.1. Every indecomposable direct summand of the block O
is actually a direct summand of the wholle matrix M.
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Proof. The claim is obvious for all summands except Pµ(n), where µ ∈
{+,−, 0,∞, 1, λ } and those from the list (3.1). The main ingredient of
the proof in these exceptional case is the following result.

Lemma 3.2. 1) Let the matrix M be of the form:

M =





1 1 0

a1t4 a2t4 t3
a3t4 a4t4 t4



 ,

where the first two column are in the M1 and in the M2 stripes, the
third column is in the M12 stripe, the first row is in any horizontal
stripe and the other two rows are in the M34 stripe. Replacing M by
SMT , where S and T are invertible matrices of the form described
on page 77, one can transform it to the form





1 1 0

0 0 t3
0 0 t4



 .

2) Let the matrix M be of the form:

M =





1 a1t3 a2t3
1 a3t4 a4t4
0 t3 t4



 ,

where the first two rows are in the M3 and in the M4 stripes, the
third row is in the M34 stripe, the first column is in any vertical
stripe and the other two columns are in the M12 stripe. Replacing M
by SMT , where S and T are invertible matrices of the form described
on page 77, one can transform it to the form





1 0 0

1 0 0
0 t3 t4



 .

Proof. (1) We suppose that the first row is in stripe M3 (the case M4

is analogous and the case M34 easier). Set S =





1 0 0
x1t3 1 0
x2t3 0 1



 and T =





1 0 0
0 1 0
y1 y2 1



. Since t3 = −t4 in the M1 stripe and t3 = −λt4 in the M2
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stripe, we see that the claim means that

a1 = x1 + y1,

a2 = λx1 + λy2,

a3 = x2 − y1,

a4 = λx2 − y2.

One esily sees that the determinant of this set of linear equastions is
λ2 − λ 6= 0, since λ /∈ {0, 1}.

(2) is proved analogously, the calculations being even easier.

Now, let our summand be P−(n). We have seen that all columns
intersecting this block can be made zero. Let H be any block from Table 2
such that not all columns intersecting it has already been made zero. From
Table 2 one sees that there are two columns and a row in the block H
such that their non-zero coefficients just form the configuration ( 1 | 1 )
from the claim (1) of the lemma and one of these columns is the same
column which remained non-zero. Then, using the lemma, one can make
both these columns zero. All other cases are quite analogous.

4. Reduced matrix problem. The final step

Proposition 3.1 shows that we can now suppose that O = 0 in the
matrix M, so

M =

(

X+Y Y0

Y0 0

)

,

where the coefficients of the matrices Y,Y0,Y
0 are of the form at3 + bt4.

The nonzero elelments of Y can only be on the intersections of stripes
ai(n) (maybe ai(n)

±) with the stripes aj(n) (maybe aj(n)±).
The following of these stripes and the corresponding representations

are called the extra:
• horizontal stripes a3(n)

±, a5(n)
±, ã7(n) (they are in the stripe Y12);

• vertical stripes a3(n)±, a5(n)±, ã7(n) (they are in the stripe Y34).
We denote by os the part of the matrix Y0 consisting of its intersections

with the extra vertical stripes and by ou the remaining part of this matrix.
Analogously, we denote by os the part of the matrix Y0 consisting of its
intersections with the extra horizontal stripes and by ou its remaning part.
We also call the stripes os and os extra.

Let now α be one of the indices ai(n)
±, ai(n), ã7(n), os, ou, β be one

of the indices ai(n)±, ai(n), ã7(n), os, ou. We denote by Yβ
α the block on
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the intersection of the horizontal stripe α and the vertical stripe β. Note
that the cases when both α ∈ {os, ou} and β ∈ {os, ou} are impossible.

Using transformations of the matrix Y we can make zero some of these
blocks. For instance, if Ck = X2(n)

± and Cl = X3(m)±, we can make
Ykl = 0. Indeed, before we could make zero all rows except the first one
and all columns except the last one. But using the last row of X3(n)

±,
we can make zero the last remaning element. Therefore, we can suppose
that Y β

α = 0 if α = a2(n)
± and β = a3(n)±. Just in the same way, one

can make zero the blocks Y β
α in all cases when one of the indices α, β is

extra while the other one is not.
Now we have to see what transformations of the remaining blocks

are induced by the morphisms between different direct summands of the
part X. Obviously, we can also add the rows (columns) of the stripe Y0
(respectively, Y 0) to all other horizontal (respectively, vertical) stripes.

The representations of the first kind containing no horizontal stripe
X34 and no vertical stripe X12 are indeed representations of the quiver Γ
of type Ã3, namely,

1 //

&&

3

2 //

88

4

Namely, the representations of types X2(n)
± and X4(n)

± constitute the
prepojective part of its Auslander–Reiten quiver [11], which is

X2(0)
+ //

&&

X4(0)
+ //

&&

X2(1)
+ //

&&

X4(1)
+ //

&&

X2(2)
+ //

&&

X4(2)
+ //

$$

. . .

X2(0)
− //

88

X4(0)
− //

88

X2(1)
− //

88

X4(1)
− //

88

X2(2)
− //

88

X4(2)
− //

::

. . .

Note that the map X2(n)
+ → X4(n)

+ idenity X2(n)
+ with the part of

X4(n)
+ obtained by deleting the last column of the X1-stripe (analogously

for X2(n)
− and X4(n)

− with the X2-stripe instead). Note that if we delete
the last row and the last column of the representation X7(n+1), we obtain
the representation equivalent to X4(n). Therefore, there are morphisms
X2(n)

± → X7(n+ 1) and X7(n+ 1) → X4(n)
±.

The representations X0(n, λ
−1) form a homogenious tube from the

regular part of the Auslander–Reiten quiver. As there are morphisms from
any preprojective representation to any representation of a homogenious
tube, there are morphisms from X2(n)

±, X4(n)
± and X7(n) to X0(m,λ−1)

for any m. There are also morphisms

X0(n, λ
−1)

α
--
X0(m,λ−1)

β

mm
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for arbitrary n,m. Moreover, one can easily check that if m > n the
map α does not imply the non-zero row and the non-zero column of the
corresponding part of Y.

It gives the order for the stripes a0(n), a2(n)
±, a4(n)

± and a7(n) as
described below (a < a′ means that the rows of the stripe a can be added
to those of the stripe a′):

a2(n)
± < a7(n+ 1) < a4(n)

± < a2(n+ 1)± < a0(m+ 1) < a0(m)

for any n,m and any combination of +,−. Note that X2(n)
+ and X2(n)

−

are incomparable, as well as X4(n)
+ and X4(n)

−. Certainly, the stripe ou
is the least among non-extra horizontal stripes.

For the transposed representations X⊤
2 (n)

±, X⊤
4 (n)

± (which consti-
tute the preinjective component of the Auslander–Reiten quiver) and
X⊤

7 (n), together with the representations X0(n, λ
−1) we have the analo-

gous morphisms going in the opposite directions. Nevertheless, since the
transformations of columns are contragradient to those of rows, it gives
the same order:

ou < a2(n)± < a7(n+ 1) < a4(n)± < a2(n+ 1)± < a0(m+ 1) < a0(m)

for any n,m and any combination of +,−.
We consider now the extra stripes. Note that an extra representation

S has either a row which is non-zero only at the (12)-place or a column
which is non-zero only at the (34)-place. Suppose that S 6= X9(n). If we
delete this row and the last column or, respectively, this column and the
last row, we obtain a non-extra representation. Namely, if we delete a row,
we obtain (by types)

• X1(2n)
∓+ from X3(n)

±;
• X1(2n+ 1)+± from X5(n)

±;
• X⊤

4 (n+ 1)+ from X⊤
7 (n).

We call these representations truncated.
Note that the representations of type X1 form a special tube of repre-

sentations of the quiver Γ, so there are morphisms to these representations
from any of representations of type X2 or X4 and morphisms from these
representations to any of representations of type X⊤

2 or X⊤
4 .

If we add the (12)-column of one of the preceding representations to
the (12)-column of another one, we obtain two non-zero elements in the
latter column. One of them can be deleted using the row with a unique
non-zero element, which is in the last column. If we delete the other
non-zero element using another row, the result becomes as if we add a row
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of the second truncated representation to a row of the first one. So it is
possible if there is a non-zero morphism of these truncated representations.
Therefore, we obtain the following partial order for extra stripes:

os < ã7(n) < ã7(n+ 1) < a3(m)± < a5(m)± < a3(m+ 1)±

for any n,m and any combination of +,−.
Analogously, for extra horizontal stripes we obtain the order

os < ã7(n) < ã7(n+ 1) < a3(m)± < a5(m)± < a3(m+ 1)

for any n,m and any combination of +,−.
One can also check that there are no transfromations between extra

and non-extra stripes.
Therefore, for the remaining part of the matrices Y, Y0, Y

0 we obtain
a problem which can also be formulated in terms of a bunch of chains Y .
Namely, Y consists of two pairs of chains

E1 = { ou, a0(n), a2(n), a4(n), a7(n) } ,

F1 =
{

ou, a0(n), a2(n), a4(n), a7(n)
}

;

and

E2 = { os, a3(n), a5(n), ã7(n) } , F2 =
{

os, a3(n), a5(n), ã7(n)
}

with the order

ou < a2(n) < a7(n+ 1) < a4(n) < a2(n+ 1) < a0(m+ 1) < a0(m),

ou < a2(n) < a7(n+ 1) < a4(n) < a2(n+ 1) < a0(m+ 1) < a0(m),

os < ã7(n) < ã7(n+ 1) < a3(m) < a5(m) < a3(m+ 1),

os < ã7(n) < ã7(n+ 1) < a3(m) < a5(m) < a3(m+ 1)

for any n,m, and the relation ∼ given by the rules

ou ∼ os and ou ∼ os;

ai(n) ∼ ai(n) and ai(n) ∼ ai(n) for i ∈ { 2, 3, 4, 5 } ;

a7(n) ∼ ã7(n) and a7(n) ∼ ã7(n);

a0(n) ∼ a0(n).

We call the elements of these chains the Y-letters.
So we obtain now the following complete description of isomorphism

classes for the category E, hence for Cohen–Macaulay modules over the
T44 singularity R.
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Theorem 4.1. Cohen–Macaulay modules over the ring R are those of
the first level [8], modules from the list 3.1 and modules corresponding to
representations of the bunch of chains Y.

5. Generators and relations

One can interpret this answer in terms of generators and relations (or
matrix factorizations) analogously to the procedure described in [8]. As
matrix factorizations for the modules of the first level and those of the
list 3.1 are known, we only have to consider indecomposable modules that
are defined by indecomposable representations of the bunch of chains Y.
This time there is a vast variety of Y-words, hence of representations of
this bunch of chains, we just explain how to construct generators and
relations and present examples.

So, let B be an indecomposable representation of the bunch of chains Y .
It is defined by one of the combinatorial data:

1) usual word w, i.e. a Y-word such that it does not begin with a− b
and does not end with b− a, where a ∼ a;

2) a pair (w, δ), where δ ∈ {+,−} and w is a special word w, i.e. a
Y-word such that either it begins with a− b or it ends with b− a,
where a ∼ a, but not both;

3) a quadruple (w, δ0, δ1,m), where m ∈ N, δ0, δ1 ∈ {+,−} and w is a
byspecial word w, i.e. a Y-word such that it begins with a− b and
ends with b′ − a′, where a ∼ a and a′ ∼ a′;

4) a triple (w, µ,m), where µ ∈ ❦, m ∈ N and w is a cyclic word.

There are some restrictions on these data (see [2,3]), but we do not precise
them here, since they do nor imply the procedure of the construction of
generators and relations.

The ends a and a′ of a special or a bispecial word are called special
ends. If the word w has a part a ∼ a, we replace the first a by a+ and the
second one by a−. If a is a special end of a special word, we replace it by
aδ. If a and a′ are the ends of a bispecial word, we replace them by aδ0

and a′δ1 . The resulting word is denoted by w̃.

Let now M be the Cohen–Macaulay defined by one of the described
combinatorial data, w̃ = x1r1x2r2 . . . rn−1xn, Υ be the matrix describing
the corresponding representation of the bunch of chains Y. Every letter
xi /∈ { ou, os, o

u, os } corresponds to a matrix Xi from the Table 2, hence
to an R-module Mi of the first lever. Moreover, we have chosen above
a fixed generator gi of this module, corresponding to the chosen row or
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column of the matrix Xi. Note that this row (column) is in the R34-
stripe (respectively, in the R12-stripe) if xi denotes an extra stripe. If
xi ∈ { ou, os }, we set Mi = R12 and if xi ∈ { ou, os }, we set Mi = R34. In
these cases Mi has one generator which we also denote by gi. We call gi
marked generators. If xi ∈ { ou, os }, the relation for the marked generator
is z12gi = 0 and xi ∈ { ou, os }, the relation for the marked generator
is z34gi = 0. If w contains a subword xi ∼ xi+1, where xi+1 6= xi and
xi ∈ { ou, os, o

u, os }, we call i+ 1 a non-essential index. In this case we
set gi+1 = gi. All other indices are called essential. We denote by |w| the
set of essential indices. Now the procedure of constructing generators and
relations for M is the following.

Procedure 5.1. 1) We consider the module of the first level M̃ =
⊕

i∈|w|M
m
i , where m = 1 if w is a usual or a special word. The

set of generators for M is the union of the sets of generators for
Mm

i . If m > 1, we denote the copies of marked generators gi by
gij (1 6 j 6 m).

2) The relations for non-marked generators of M remain the same as
in M̃ (taken from the matrices of [8, Table 2]).

3) Also the relations for the marked generators gi remain the same as
in M̃ if xi ∈ E1 ∪ E2 (i.e. corresponds to a row).

4) If xi ∈ F1∪F2 (i.e. corresponds to a column), we add to the relations
for the marked generators gi the terms γijzsuj , where γij are the
coefficients of the i-th column of the matrix Υ and uj are the marked
generators of M̃ from the Rs-part, where s ∈ {3, 4}. If uj comes
from an extra stripe, it must be replaces by zrhj (r ∈ {1, 2}), where
hj is the generator of the representation Mj such that zrhj = gj (it
comes from the column of the form e

⊤
m). Then the corresponding

term is γijzszrhj .

Note that it is convenient to write first all representations corresponding
to the letters with “lower” indices (like a7(n) or ou). Then the matrix Φ
will be lower triangular, like most matrices in [8, Table 2].

Example 5.2. Let M corresponds to the pair (w,−), where w = os ∼
ou − a2(1) ∼ a2(1)− a4(2), thus w̃ = os ∼ ou − a2(1)+ ∼ a2(1)− − a4(2)

−

and

Υ =

(

1 1

0 1

)
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Then the matrix Φ from the matrix factorization of F is








z3z4 0 0 0
0 Φ4(2)

− 0 0
Υ1 0 Φ∗

2(1)
+ 0

Υ2 Υ3 0 Φ∗
2(1)

−









where Φ∗
2(1)

± and Φ4(2)
− are the matrices from [8, Table 2], Υ1 = Υ2 =

(

z1 0 0
)

and Υ3 is 6×3 matrix with z1 at the (11)-place and 0 elsewhere.

Example 5.3. Let M corresponds to the triple (w, µ, 2), where w =
a3(2) ∼ a3(2)− a5(1) ∼ a5(1). Then

Υ =









1 0 1 0
0 1 0 1

1 + µ 0 1 0
1 1 + µ 0 1









and

Φ =

























Φ∗

5(1)
+ 0 0 0 0 0 0 0

0 Φ∗

5(1)
− 0 0 0 0 0 0

0 0 Φ∗

5(1)
+ 0 0 0 0 0

0 0 0 Φ∗

5(1)
− 0 0 0 0

Υ̃ 0 (µ+ 1)Υ̃ Υ̃ Φ3(2)
+ 0 0 0

0 Υ̃ 0 (µ+ 1)Υ̃ 0 Φ3(2)
+ 0 0

Υ̃ 0 Υ̃ 0 0 0 Φ3(2)
− 0

0 Υ̃ 0 Υ̃ 0 0 0 Φ3(2)
−

























,

where Υ̃ is 7× 4 matrix having z2z3 at the (74)-place and 0 elsewhere.

Just in the same way we obtain matrix factorization in all cases.
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