Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 21 (2016). Number 1, pp. 24-50

© Journal “Algebra and Discrete Mathematics”

Normally (-reversible profinite groups

Leone Cimetta and Andrea Lucchini

Communicated by I. Ya. Subbotin

ABSTRACT. We examine (finitely generated) profinite groups
in which two formal Dirichlet series, the normal subgroup zeta
function and the normal probabilistic zeta function, coincide; we
call these groups normally (-reversible. We conjecture that these
groups are pronilpotent and we prove this conjecture if G is a
normally (-reversible satisfying one of the following properties: G
is prosoluble, G is perfect, all the nonabelian composition factors of
G are alternating groups.

Assume that G is a profinite group with the property that for each
positive integer n, G contains only finitely many open subgroups of index
n. We denote by (;(s) the Dirichlet generating function associated with
the sequence counting the number of open subgroups of index n in G: so

Cals) =) ann(sG)

neN

where a,(G) is the number of open subgroups of G of index n and s
is a complex variable. Another sequence of nonnegative integers can
be associated to G by setting bn(G) = 3 |G.p|=n, H<, W(H,G), where
the M6bius function p of the lattice of open subgroups of GG is defined
recursively by u(G,G) = 1 and Y e o u(K,G) = 0 for any proper
open subgroup H <, G. Again we can consider the corresponding Dirichlet
generating function

pa(s) = bné?)‘

neN
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The study of the subgroup sequence {a,(G)}, and the corresponding
zeta function (g(s) started with [5]; since then there has been an intense
research activity aiming at understanding analytical properties of subgroup
zeta functions and their local factors for finitely generated nilpotent groups.

The formal inverse of pg(s) is the probabilistic zeta function which
was first introduced and studied by A. Mann in [15] for finitely generated
profinite groups and by N. Boston in [1] in the case of finite groups.
A central role in the investigation of the properties of the probabilistic
zeta function was played by the probabilistic meaning of pg(t) when
G is a finite group and ¢ is a positive integer: Hall in [9] showed that
pa(t) is equal to the probability that ¢t random elements of G generate
G. In [15] Mann made a conjecture which implies that pg(s) has a
similar probabilistic meaning for a wide class of profinite groups. More
precisely, define Probg(t) = u(Qa(t)), where p is the normalised Haar
measure uniquely defined on the profinite group G* and Q¢ (t) is the set
of generating ¢-tuples in G (in the topological sense). We say that G is
positively finitely generated if there exists a positive integer ¢ such that
Probg(t) > 0. Mann considered the infinite sum

p(H, G)
i< |G HI
As it stands, this is not well defined, but he conjectured that this sum is
absolutely convergent if GG is positively finitely generated. The Dirichlet
series pg(s) can be obtained from this infinite sum, grouping together
all terms with the same denominator so in particular Mann’s conjecture
implies that if G is positively finitely generated, then pg(s) converges in
some right half-plane and pg(t) = Probg(t), when ¢ € N is large enough.
The second author proved in [13] that this is true if G is a profinite group
with polynomial subgroup growth. But even when the convergence is
not ensured, the formal Dirichlet series pg(s) encodes information about
the lattice generated by the maximal subgroups of G and combinatorial
properties of the probabilistic sequence {b,(G)} reflect on the structure
of G. For example in [6] it is proved that a finitely generated profinite
group G is prosoluble if and only if the sequence {b,,(G)} is multiplicative.
One can ask whether and how the two formal Dirichlet series (z(s) and
pa(s) are related. The first example that it is usually presented is when
G =Z, the profinite completion of an infinite cyclic group. In this case
G5(s) =32, 1/n? is the Riemann zeta function, while p5(s) = >, u(n)/n*
and an easy application of the Mobius Inversion Formula shows that
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p7(s) and (5(s) are one the multiplicative inverse of the other. A natural
question is whether this is a particular coincidence or a more general
phenomenon. Motivated by this question, in [4] it was introduced the
notion of (-reversible profinite groups: a profinite group G is said to be (-
reversible if and only if the formal identity pg(s)(a(s) = 1 is satisfied. This
definition can be introduced and studied independently of the convergence
and possible analytic properties of pg(s) and (g(s). Hence (-reversible only
means that >, ., a,(G)bs(G) = 0 for each n > 1 while a;1(G)b1(G) = 1.
In [4] it is proved that, even when the convergence of the two series involved
is not ensured, the information that G is (-reversible can have useful
consequences. The results obtained in [4] indicate that (-reversibility
is a strong property: a (-reversible group must have a sort of uniform
subgroup structure, in the sense that the open subgroups, even when they
are not all isomorphic, must have a comparable structure.

In this paper, our aim is to study a corresponding property, obtained by
restricting the attention to the open normal subgroups of a profinite group
G. We assume that G is a profinite group with the property that for each
positive integer n, G' contains only finitely many open normal subgroups
of index n (a sufficient, but not necessary, condition for satisfying this
property is that G is topologically finitely generated). For any n € N,
let a5 (G) be the number of the open normal subgroups of G and let
ba(G) = X6t |=n,ia,c W (H, G), where p is the Mobius function in
the lattice of the open normal subgroups of G. Again the properties
of the sequences {ay(G)}nen and {b5s(G)}nen can be encoded by the
corresponding Dirichlet generating function

G = %D e = Y B

neN neN

called, respectively, the normal subgroup zeta function and the normal
probabilistic zeta function of G. Again p¢,(s) has a probabilistic meaning:
if G is a finite group and t € N, then pg(t) is the probability that
t randomly chosen elements of G generate a subgroup whose normal
closure is G (see [7, Section 3]). We will say that a profinite group G is
normally (-reversible if (&(s)p&(s) = 1. We conjecture that a normally
(-reversible profinite group is pronilpotent. An evidence for this conjecture
will be given by the following theorem, which implies in particular that a
prosoluble normally (-reversible profinite group is pronilpotent.
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Theorem 1. Assume that G is a normally (-reversible profinite group.
If there is no open normal subgroup N <G such that G/N is a nonabelian
sitmple group, then G is pronilpotent.

Our main results are the following.

Theorem 2. A non trivial normally (-reversible profinite group cannot
be perfect.

Theorem 3. Let G be a normally (-reversible profinite group. If G is
not pronilpotent, then G has as a composition factor a nonabelian simple
group which is not an alternating group.

The proofs of the previous two theorems rely on the following result
(see Theorem 22): suppose that a normally (-reversible profinite group
G admits a finite nonabelian simple group as an epimorphic image; then
there exists a pair (H,T'), where H is a finite epimorphic image of G and
T is a finite nonabelin simple group, with the following properties:

1) |H| = |12,

2) H contains a unique minimal normal sugroup N.

3) Either H/N is nilpotent, or there exists a finite nilpotent group X
and a nonabelian simple group S such that H/N = X x S. In the
latter case |T'| < |S| and 7(S) = =(T).

With the help of the classification of the finite simple groups, we prove
that there are no pairs (H,T') with these properties, under the additional
assumption that either H is perfect or all the nonabelian composition
factors of H are alternating groups.

1. Notations and general auxiliary results

Given an integer k and a set 7 of primes, k; will be the greatest
divisors of k£ whose prime divisors belong to 7. In particular, with a little
abuse of notation, if p is a prime we will call k, the greatest power of p
dividing k. Moreover we will say that k is a w-number if k, = k.

Let R be the ring of formal Dirichlet series with integer coefficients.
For every set m of prime number, we consider the ring endomorphism

of R defined by:

Fe) =Y 2 rm =%

neN neN

where a; = a, if n is a m-number, a) = 0 otherwise.
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An element F(s) = >, an/n® € R is said to be multiplicative if
ars = aras whenever (r,s) = 1 (equivalently F'(s) coincides with the
infinite formal product [[, Fj(s)of its p-local factors). It can be easily
proved that if F'(s) is multiplicative, then also the formal inverse F(s)~!
is multiplicative.

During our proofs we will need information about the “prime gap”.
For our purpose the following result will suffice.

Lemma 4. For every integer n > 5, n ¢ {6,10}, there exist two primes
p,q such that § <p <q<n.

This lemma is in fact a corollary of a more complete result, proved by
Nagura in [14], stating that, if n > 25, then there is a prime p such that
n<p<6n/s.

We conclude this section by recalling some results concerning the
finite nonabelian simple groups.

A crucial role in our proof will be played by the following result:

Theorem 5. [11, Theorem 6.1] Let S and T' be non-isomorphic finite
simple groups. If |S%| = |T®| for some natural numbers a and b, then
a=>band S and T either are Az2(4) and As(2) or are By,(q) and Cy(q)
for some n = 3 and some odd q.

This result is a consequence of a collection of more general results
obtained in [11] and leading to the conclusion that a finite simple group is
in general uniquely determined by some partial information on its order
encoded by some arithmetical invariants (called Artin invariants). We will
make a large use of these results, so we recall here some related definitions.

Definition 6. Let n be a natural number and r one of its prime divisors.
The greatest power of r dividing n is called the contribution of r to n and
is denoted by n,. Moreover, r is called the dominant prime if n, > n, for
every other prime ¢. Given a finite group G, we will call the dominant
prime of G the dominant prime of its order. We will use the symbol p(G)
to denote the dominant prime of G.

Proposition 7. [11, Theorem 3.3] The dominant prime of a simple group
of Lie type coincides with its characteristic, apart from the following cases:
1) Ai(q), where q is a Mersenne prime;
2) Ai(q—1), where q is a Fermat prime;
3) A1(8), 2A5(3), 2A43(2).
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Definition 8. Let G be a finite group and p = p(G) its dominant prime,
then
_ log(|Gl,)

log(|G)

is called the logarithmic proportion of G.

Proposition 9. [11, Theorems 3.5, 3.6] Let x = p* be the contribution
of the dominant prime of a finite simple group S of Lie type, then x* <
|G| < 23, that is

1 1

= <AG) <z

3 (@) 2
Definition 10. Let n be an integer which is not a prime power, let
p = p(n) be its dominant prime and p' its contribution to n, then we
define w(n) as the largest order of p modulo a prime divisor p; of n/p'.
We will call such a p; a prominent prime in n.

Lemma 11. [11, Lemma 4.2] Given n and o € N, then w(n®) = w(n).
Furthermore, if p1 is prominent in n with contribution plll, then it is also

prominent in n® with contribution plfa.

Remark 12. Notice that, if @ and b have the same prime divisors and
the same dominant prime, then they have also the same prominent prime
and w(a) = w(b).

Let S = L(q) be a finite simple group of Lie type, defined over a
field of cardinality ¢ = p”, where p is a prime (which we will call the
characteristic of S). We will factorize the order of a simple group S = L(q)
of Lie type in the form

1L(q)| = éth(Q),

where d, h and P(q) are given in [11, Table L1]. In particular this order
has the cyclotomic factorization in terms of p:

()] = 37 [T #n(p) ™.

where ®,,(x) is the m-th cyclotomic polynomial. Summing up [11, Propo-
sition 4.5] and [11, Lemma 4.6], we obtain:
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Theorem 13. Let S = L(q) be a simple group of Lie type with charac-
teristic p and ¢ = p". Then the cyclotomic factorization

5] = 5™ P (0) P (1) ) -+~ P ()

satisfies the following properties:
1) a1 > ag;
2) d divides ®oq(p) - - - Po, (p) unless S = Ai1(q) and r = 1;
3) w(|S]) = a1 unless p =2 and a; = 6.

Definition 14. Let G be a group with dominant prime py, let p* be its
contribution to the order of G. Suppose that p; is a prime dividing the
order of G and that p;" is the contribution to the order. Then p; is called
a good contributor to G if n; log(p;)log(3) > nq log(p1) log(2).

The good contributors of the finite simple groups are classified in [2].
For later use we need to recall some definitions and results concerning
Zsigmondy primes.

Definition 15. A prime number p is called a primitive prime divisor of
a™ — 1 if it divides a™ — 1 but it does not divide a® — 1 for any integer
I1<e<n—1.

The following theorem is due to K. Zsigmondy [21]:

Theorem 16 (Zsigmondy’s Theorem). Let a and n be integers greater
than 1. There exists a primitive prime divisor of a™ — 1 except exactly in
the following cases:

1) n=2,a=2°—1 (i.e. ais a Mersenne prime), where s > 2.

2) n="6,a=2.

Primitive prime divisors have a close relation with the cyclotomic
factorization described in Theorem 13: if r is a primitive prime divisor of
p" — 1, then n is the smallest positive integer with the property that r
divides @, (p).

2. A reduction to a question on finite groups

Assume that G is a profinite group and let S be the set of the open
normal subgroups N of G with the property that Sy := G/N is a
nonabelian simple group. Let

Ac(s) = Pojer(s) and Be(s) = [ <1 ! )

NES S [?
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We know from [7, Section 5] that
pe(s) = Ag(s)Ba(s). (2.1)

Now consider the two series

Po(s) = (Ae(s)™ = X 9 A = (B = 1

Lemma 17. If G is a normally zeta-reversible profinite group, then
s) =1 Tan(s) = [T Cp(5)
P P
Proof. Since G is normally (-reversible, we have

1= (GG()P&(9))p = €& p()PG p(5) = (G p(8) Acp(5) Bap(s)-

Since Ag(s) and I'g(s) are multiplicative series, we deduce
s) = HFG,p(s) = HAG,p HCGp BGp s),
P p

but there are no nonabelian simple groups whose order is a prime power,
thus Bg p(s) = 1 for every prime p and we get I'c(s) =[], (5 ,(s). U

Lemma 18. If G is a normally zeta-reversible profinite group, then for
every n € N, v,(G) coincides with the number of open normal subgroups
N of G with the property that G/N is a nilpotent group of order n.

Proof. For every m € N, let \V,;, be the set of the open normal subgroups
N of G with the property that G/N is nilpotent of order m. Let n € N and
write n = q; - - - ¢ as a product of powers of different primes. If N; € N,
for every 1 < ¢ < r,then N = Ny n---N N, € N,,. Conversely every
N € N, can be uniquely expressed in the form N = Ny N ---N N,., with
N; € N, for every 1 <4 < r. This implies that [N] = [N, |-+ |V, |. On
the other hand if ¢ is a prime power and N is an open normal subgroup of
G of index ¢, then G//N, being a p-group, is nilpotent, hence |Ny| = ag(G);
moreover ay(G) = v,(G) by Lemma 17. Hence

(@) =701 (G) 7. (G) = a3, (G) -+ a3 (G) = Ny |-+ [N, | = INT. OO

Proof of Theorem 1. If there is no open normal subgroup N of G such
that G/N is a nonabelian simple group, then Bg(s) = 1, hence, by (2.1),
we have T'g(s) = Ag(s)™! = p&(s)™! = A(s), i.e. W (G) = a3 (G) for
every n € N. We conclude from Lemma 18 that G/N is nilpotent for
every open normal subgroup N of G. 0J
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Conjecture 1. If G is a normally (-reversible profinite group, then there
is no open normal subgroup N <G such that G/N is a nonabelian simple
group (and consequently G is pronilpotent).

For the remaining part of this section we will assume that G is a
counterexample to the previous conjecture. We will denote with g the
set of the finite nonabelian simple groups which are continuous epimorphic
images of G. Take T € Y with the property that the set m = 7(T") of the
prime divisors of |T'| is minimal and let M = O™(G) be the intersection
of the open normal subgroups N of G with the property that G/N is a
m-group. It can be easily checked that G/M is a pro-m-group. Moreover
Gnr(5) = Ga(5) amd 0, (5) = s (5). But then Gy, (5)p () =
CGra(8)PG = (8) = (CG(s)p&(s))x = 1, hence G/M is still a normally (-
reversible profinite group and represents a counterexample to Conjecture 1.
So we may assume that M = 1. With this assumption, if S € ¥, then S is
a m-group and, by the minimality property of T, < 7(S). Hence 7(S) = =
for every S € X¢. There are only finitely many nonabelian simple groups
S with 7(S) = 7, hence X is finite. Let m = |T| =m; <ma < -+ < my,
be the orders of the nonabelian simple in ¢ and for i € {1,...,u} let ¢;
(with ¢ = t1) be the cardinality of the set of the open normal subgroups
N of G such that G/N is a nonabelian simple group of order m;. We
must have:

o= (- 5) ) -1(E )

G(s) =Ta(s)Aq(s) =Ta(s) H (1 + % + mlzs 4. > l )

3 % %

and

We now want to collect information about the open normal subgroups N
of G with |G/N| < m?. Consider the series

t.
ar 1 1 \'& 1\"
n =2 4
If n < m?, then, as n < m? for i # 1, we have a(G) = a,.

Lemma 19. Let N be an open normal subgroup of G. If |G/N| < m?
then either G/N is nilpotent or G/N = X1 x X9 where X1 is nilpotent
and Xo is a nonabelian simple group.
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Proof. If n < m?, then

ay(G) =ah =(G)+ > tiv(G). (2.2)

m;r=n

Let N, be the set of the open normal subgroups N of G with the property
that G/N is nilpotent of order r and let S; be be the set of the open
normal subgroups M of G with the property that G/M is a nonabelian
simple group of order m;. Suppose m;r = n. If N € N, and M € S,,
then G/(NNM) = G/N x G/M (since the nilpotent group G/N and the
simple group G/M have no common composition factor) and this is the
unique way to obtain N N M as intersection of two subgroups in A, and
Si=, for some r* < n and ¢* < u. Hence there are at least a) open normal
subgroups N of G of index n and with the property that G/N is either
nilpotent or is the direct product of a nilpotent subgroup with a finite
nonabelian simple group. Since, by (2.2), an(G) = a} all the open normal
subgroups of G of index n have this property. O

Let us consider now the set of open normal subgroups of index m? in

G': in this case we have

an2(G) = ane =7m2(G) + Y ti(G (;)4—15. (2.3)

m;r=m?2

With the same arguments used in the proof of the previous lemma, it can
be easily noticed that:

Lemma 20. The first three summands in the previous expression of
w2(G) = a’ » have the following meaning:
1) Ym2(G) is the number of the open normal subgroups N of index m
such that G/N s nilpotent;
2) Yomir=m2 tive(G) is the number of the open normal subgroups N of
index m? such that G/N is a direct product of a nilpotent group and
a nonabelian simple group.
3) (é) is the number of the open normal subgroups N of index m? such
that G/N s the direct product of two nonabelian simple groups of
order m.

a
2

Notice that the last summand in equation (2.3) consists of ¢ open
normal subgroups of index m? that does not fill in any of the three classes
described in Lemma 20: let M be one of these normal subgroups and let
H=G/M.
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Lemma 21. H has a unique minimal normal subgroup.

Proof. Suppose by contradiction that H has two different minimal normal
subgroups N1, Na. By Lemma 19, there exists two finite nilpotent groups
X1, X5 and two finite groups Y7 and Y5 that are either trivial or nonabelian
and simple such that G/N; = X; x Y] and G/N2 = X9 NY;. Since
N1 N Ny =1, H is a subdirect product of X7 x Xo x Y7 X Y, However
this implies that H is either nilpotent, or it is the direct product of two
nonabelian simple groups of order m, or it is the direct product of a
simple nonabelian group with a nilpotent group; but then M fills in one
of the three family of open normal subgroups described in Lemma 20, a
contradiction. ]

We may summarize the conclusions of this section in the following
statement.

Theorem 22. If Conjecture 1 is false, then there exists a finite nonabelian
simple group T and a finite group H with the following properties:
1) |[H| = T2,
2) H contains a unique minimal normal sugroup N .
3) Either H/N is nilpotent, or there exists a finite nilpotent group X
and a nonabelian simple group S such that H/N = X x S. In the
latter case |T| < |S| and ©(S) = =(T).

3. Perfect profinite groups

In this section we concentrate our attention on the case of perfect
profinite groups. Our aim is to prove that a perfect profinite group cannot
be normally (-reversible.

It follows immediately from Theorem 22 that:

Proposition 23. If there exists a perfect normally -reversible profinite
group, then exist there a finite nonabelian simple group T and a finite
perfect group H with the following properties:
1) |[H| = T2,
2) H contains a unique minimal normal sugroup N .
3) There exists a finite nonabelian simple group S such that H/N = S.
Moreover |T| < |S| and w(S) = n(T).

Lemma 24. If H is a finite group satisfying the statement of Proposi-
tion 23, then N = soc H is abelian.
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Proof. Suppose by contradition that /N is nonabelian: there exist a non-
abelian simple group L and a positive integer u such that N = Ly x- -+ X Ly,
with L; = L for all ¢. It must be u # 1 (otherwise, by the Schreier con-
jecture, H/N would be soluble). The conjugation action on {Ly,- -, Ly}
induces a homomorphism ¢ : H — Sym(u) and ¥ (H) is a transitive
subgroup of Sym(u). The kernel of this action coincides with N so

S = H/N = ¢(H). In particolar S contains a subgroup of index u.

We have two cases:

1) S = Alt(n) for some n. We must have n < u. Moreover, by Lemma 4,
there exists a prime number 7 such that n/2 < r < n, in particular
r divides |S| with multiplicity 1. On the other hand |H| = |T|? =
|S||N| = |S||L|", hence 7| |L|. Since finite nonabelian simple groups
have even order, we deduce that 2r divides |L| and (2r)* divides
|N|, thus

2
’1;’:]N\>(2r)“>n“2n”>7;!:‘]I{[‘:\S\,

but then |T'| > |S], against Proposition 23.

2) S is not an alternating group and has a (faithful) transitive action
of degree u. In particular S has a primitive action of degree v < u,
hence, by [16], |S| < 4Y < 4". By Proposition 23, |T'| < |S|, hence

|7}

\LIUZINIIW@SK‘lua

but then |L| < 4, contradiction. O

Corollary 25. If there exists a perfect normally (-reversible profinite
group, then there exists a triples (S, T, V') with the following properties:
1) T and S are finite nonabelian simple groups;
2) V is an irreducible S-module of dimension a over the field with p

elements;
3) [T1* =S| [V =S| p;
4) VI <|T| <|S];

5
6

pen(T) ==(9);
if a =1, then p divides the order of the Schur multiplier M(S) of
S and divides |S| with multiplicity at least 3.

~— — — ——

Proof. The first five statements follow immediately from Proposition 23,
taking V' = soc(H) (we cannot have |S| = |T|, since this would imply
|T'| = p*). We have only to prove (6). A faithful irreducible representation
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of a nonabelian simple group cannot have degree 1; thus, if ¢ = 1, then V'
is a central S-module: in particular H = V.S is a central perfect extension
of S and, consequently, |V| = p divides |M(S)|. Moreover, if a = 1 then,
by (3), p must divide |S| with odd multiplicity. Now suppose that a = 1
and p divides |S| with multiplicity 1: then a Sylow p-subgroup of H,
having order p?, is abelian. We apply [10, Proposition 5.6] stating that,
if a group J has an abelian Sylow p-subgroup, then p does not divide
|J' N Z(J)|: since H = H and Z(H) = soc H =V, we would have that p
does not divide |V| = p, a contradiction. O

In the remaining part of this section, we will prove that there is no
triple (S, T, V) satisfying the properties listed in the previous corollary.
Suppose by contradiction that such a triple (S,7T,V) exists.

Remark 26. Since |S|-p® = |T|?, every prime divisor of |S| different
from p divides |S| with even multiplicity.

Proposition 27. S is a simple group of Lie type.

Proof. By Remark 26, it suffices to prove that, if S is alternating or spo-
radic, then there are at least two primes dividing |.S| with odd multiplicity.
This can be directly verified for the sporadic groups and for the alternating
groups Alt(n) when n < 10. For the remaining alternating groups, we
deduce from Lemma 4 that there are at least two primes p, ¢ dividing
| Alt(n)| = n!/2 with multiplicity exactly one. O

Proposition 28. If a # 1, then p is the characteristic of S.

Proof. If a # 1, then a is the degree of a faithful irreducible representation
of S over the field of order p. Assume, by contradiction, that p does not coin-
cide with the characteristic of S. We must have a > 6(.5), denoting by d(5)
the smallest degree of a nontrivial irreducible representation of S in cross
characteristic. Lower bounds for the degree of irreducible representations
of finite groups of Lie type in cross characteristic were found by Landazuri
and Seitz [12] and improved later by Seitz and Zalesskii [17] and Tiep [18].
It turns out that 6(5) is quite large, and, apart from finitely many excep-
tions, we have p®®) > |§|, in contradiction with |S| > p® > p®(%). The few
exceptions can be easily excluded, proving directly that, for these particu-
lar choices of S, there are no 7' and V with |12 = |S| - |V|. For example,
if S = A,(q) with n > 2, then |S| < gVt and, except in the excep-
tional cases (n,q) = (2,2),(2,4),(3,2),(3,3), we have §(5) > qn;—j;q -1
[18, Table II], which implies that either p?(S) > S| or (n,q) = (2,3). On
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the other hand, if (n,q) = (2,2),(2,3),(2,4),(3,2), (3, 3), then there are
at least two primes dividing |S| = |4, (¢)| with odd multiplicites, so these
cases must be excluded by Remark 26. The other families of finite simple
groups of Lie type can be discussed with similar arguments. [

Proposition 29. The dominant prime of S coincides with the charac-
teristic of S.

Proof. By Proposition 7, if the dominant prime of S does not coincide
with the characteristic of .S, then one of the following three cases occurs.
1) S = Ai(q), with ¢ = 28 — 1 a Mersenne prime. We must have that ¢
is an odd prime but then 2 and ¢ divide |S|=(¢—1)-¢-(¢+1)/2
with odd multiplicity, against Remark 26.
2) S=Ai(qg—1) with ¢ = 92" 1 1 a Fermat prime. Since

IT>=(q—2) (g—1)-q-p"

+1
we have that p = ¢, a is odd and |T)* = (22k + 1)a 92" (22k - 1);

this would imply that 22 _1isa square too, which is impossible.
3) S € {A1(8),%245(3),%245(2)}. The orders |A;(8)| and |?A3(3)| are
divisible by at least two different primes with odd multiplicity, so
these two cases must be excluded. If S = 2A43(2), then |T)? =
|S| - p* =26-.3%.5.p% hence p =5, a is odd and the condition
|T'| < |S| implies @ = 1,3, 5; however it cannot be a = 1 since 5 does
not divide the order of the Schur multiplier of 2A43(2), and it cannot
be a = 3,5 since there exists no simple group of order 23 - 32 . 52 or
23.3%. 53, O

Corollary 30. If a # 1, then p is the dominant prime of S and T'.

Proof. Suppose a # 1. By Propositions 28 and 29, p is the characteristic
and the dominant prime of S. Since |T'|> = |S| - p%, p is also the dominant
prime of 7T'. [

Proposition 31. T is not an alternating group.

Proof. Let T = Alt(m), m > 5. First assume m < 9. We use [3, p. 239—
242] to check that if |S| is a finite simple group with 7(S) = 7(T") and
|T|? = |S]| - p® for some prime power p®, then m = 6, p =5, a = 1 and
S = 2A3(2); however we must exclude this possibility, since 5 does not
divide the order of the Schur multiplier of 2A3(2).
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So from now on we will assume m > 10. This implies that 2 is the
dominant prime of T' [11, Table L.4]. We will prove that the dominant
prime of S is 2 too. Suppose, by contradiction, that the dominant prime
q of S is not 2. Then, being |T|> = |S|p®, we must have p = 2 and, by
Corollary 30, a = 1, so

T)? =2|S|. (3.1)

Let |T|, = 2%, \T|q = ¢", then 2¢ > ¢" (as 2 is the dominant prime of
T) and, by (3.1), ¢** > 2%~ (as ¢ is the dominant prime of S). Joining
these inequalities we get ¢ < 2¢ < ¢"*1/2, whence hlog(q) < tlog(2) <

1
(h + 2) log(q), and so

log(3)
log(2)

By Equation (3.2), ¢ is a good contributor to T', but [2, Theorem 3.§]
enlists all good contributors to alternating groups, and for m > 10, it
must be

1<

tlog(2 13
Og()<1+<2<

hlog(q) 2h (32)

q=3 or
g=5 and m € {10,11, 15, 25,26, 30}.

Moreover [2, 3.2] gives some useful lower and upper bounds for ¢, h as
linear functions on m. Using these bounds and some direct computations
for the small values of m, it can be easily proved that the only case in
which we really have ¢?* > 2%'=1 is when ¢ = 3 and m = 15; however, we
can again use [3, p. 239-242] to see that there is no simple group S with
2-|S| = | Alt(15)|?, against (3.1).

Now we claim that p # 2. Indeed, assume by contradiction, p = 2. By
Corollary 30, it must be a = 1. If m = 10, then we would have \(S) < 1/3,
in contradiction with Proposition 9. For m > 11 we have A(Alt(m)) < 1/3
(see [11, Table L.4]), hence

log(|Tl3) _ log(|Sl,) +log(2) _ log(|S],)

~ log(ITP) ~ log(IS]) +log(2) ~ Tog(IS)

1
3

contradicting again Proposition 9.
Thus S and T both have dominant prime 2 and p is odd. By Proposi-

tion 9

m\™  m!
(2) <5 =TI <Isi<Is < |75, (3.3
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Let |T'|, = 2!, then we can estimate [ by

= [m =.m
1= 1=

This result, joined with (3.3), gives m < e-26712/™: in particular m < 165.
Since p # 2, we have |S|, = |T'|3 and, by Proposition 9,

1 log(S]y) log(]T13)

3 S Tog(9))  10g(171)? — alog)’ (34)

Moreover 3 is dominant prime of [Alt(m)|, for every m > 10 (see
[2, Theorem 3.7 (b)]), so

T 2
< Tl (3.5)
3
From Equations (3.4) and (3.5) we finally get
2
1 log(|T) _ log(Tly) 56

3 log(|T])? — log(IT[3) +log(3)  log(|T]3) + log(3)/2

and it is easy to verify that, in the given range 10 < m < 165, (3.6) is true
only for 10 < m < 14 or 16 < m < 21 or m = 24. In all these cases, S
should be a simple group of Lie type of characteristic 2 with the property
that |S| = | Alt(m)|? - p* for some odd prime prime p < m and some
positive integer a. A boring but elementary check shows that there is no
simple group S with these properties. ]

Proposition 32. T is not a sporadic simple group.

Proof. At first, we will prove that S and 71" have the same dominant prime.
Suppose by contradiction that the dominant primes do not coincide: then,
since |T|?> = |S|p®, p coincides with the dominant prime of T" and, by
Corollary 30, a = 1. So we have

T1* =p-15|. (3.7)

Let ¢ be the dominant prime of |7, necessarily it is the dominant prime
of S. Let T, = p', [T, = q", then p' > ¢ and, by (3.7), ¢®" > p*~1 5o
we get

" < pt < ght/=1/2),
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By Corollary 25 (6), it must be t > 1 so

tlog(p) t log(3)
hlog(q) ~t—1/2 " log(2)

This implies that ¢ is a good contributor to T'. The good contributors to
sporadic simple groups are listed in [2, Theorem 1]: it is easy to verify
that these good contributors does not satisfy (3.8), apart from the cases
T = F5 and T = J;. However

(3.8)

T =Fs=|S|=|Fs]*/2 = \(S) <1/3
T=J =S| =|4]*/19 = A(S) < 1/3.

contradicting Proposition 9.
Thus, we know that S and T" have the same dominant prime p(S)
Now suppose a # 1. Then p = p(S) by Corollary 30 and A(S) > 1/3
by Proposition 9, so

1 _ 210g(|Tl,) — alog(p)
3 2log(|T]) — alog(p)

whence
3log(|T,) —log(|T]) |
) = a.(T). (3.9)

It can be easily checked that Equation (3.9) is satisfied only if

<a<

T € {B, Figy, Coy, Ru, Mag, May, *F4(2)'}.

All these groups have dominant prime 2, so p = p(S) =p(T) =2 and S
should be a simple group of Lie type of characteristic 2 with |T|? = |S|-2%
and 2 < a < a.(T). It can be checked that no simple group S satisfies
these conditions.

Thus, a = 1. In particular, |S| = |T|* /p. A direct computation shows
that that, for every possible choice of a sporadic simple group 7" and
every prime divisor p of its order, there is no simple group of Lie type
satisfying this condition (many possibilities can be excluded since they
are not compatible with the condition A(S) > 1/3). O

So from now on we may assume that both S and T" are simple groups
of Lie type.

Lemma 33. If p is the dominant prime of S, then p coincides with the
characteristic of T
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Proof. Suppose that p is the dominant prime of S. Since |T'|? = |S| - p®, p
is also the dominant prime of 7. By Proposition 7, if p does not coincide
with the characteristic of T', then one of the following cases occurs.
1) T = Ai(q), where ¢ = 2¥ — 1 is a Mersenne prime (so in particular
k is prime). The dominant prime of T is 2. So p = 2 and, by
Proposition 29, it also coincides with the characteristic of S. The
order of |S| has a cyclotomic factorization in term of 2 as it is
described in the statement of Theorem 13. We have

@ 2°. (I)a1 (2) Py, (2)

151= " d

We must have a; = k. Moreover ®;(2) = 2¥ — 1 = ¢, and the
multiplicity of ®x(2) in the factorization of |S]| is 2, so as = ay,
contradicting Theorem 13 (1).

2) T'=Ai(q—1), where ¢ = 22" 1 1 is a Fermat prime. Then ¢ is the
dominant prime of 7', whence ¢ = p and (¢-(¢—1)-(¢—2))? = |S|-¢%,
in particular ¢> = ¢* - |9| g~ As |S] and |T'| have the same prime
divisors, ¢ must divide |S|,so a = 1, but then |S| = q-(¢—1)%-(¢—2)?
and

Sly=(g—1?=2"">2" +1=4=|9],,

thus ¢ cannot be the dominant prime for S, a contradiction.
3) T = Ay(8). Then |T| =23-32-7, p=3and 26-3%.72 = | S| - 3¢ for
> 1, whence |S|; < 3% < 26 = |$],, a contradiction.
4) 2A2( ). Then |T| =2%-3%.7,p=2and 2!Y.36.72 = |§| . 22
for a > 1, whence |S], < 2% < 3% = [$/,, a contradiction.
5 T 2Ag,( ). Then |T'| = 26 3%.5, p=3and 2'2.3%.52 = 9| 32
for a > 1, whence |S|; < 37 < 2'2 = |S],, a contradiction. O

From Lemma 33, Proposition 28 and Proposition 29, it follows:

Corollary 34. If a # 1, then p coincides with the characteristic and
dominant primes of S and T.

Lemma 35. Let a1 (T"),a1(S) be the greatest indexes in the cyclotomic
decompositions of |T| and |S| described in Theorem 13. Then

a1 (T), a1(S) =2
and, denoting by pr and ps the characteristics of S and T, we have

(pr, (1)), (ps, () ¢ {(2,6), (2" — 1,2)|k € N}.
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Proof. First notice that a1(T"), a1(S) = 2 from Theorem 13.

If R is a simple group of Lie type with pr = 2¥ — 1 and a;(R) = 2,
then R = A;(2%F — 1). We can exclude (pg,ai(S)) = (28 — 1,2) by
Proposition 29 and (pr, a1 (T)) = (2% — 1,2) by Lemma 33. Suppose now
(pg, Odl(S)) = (2, 6) Then S € ¥ = {A5(2),A2(22), A1(23), 33(2)7 D4(2)},
but in these cases |S| is divisible with odd multiplicity by at least two
primes, contradicting Remark 26. Finally assume (pr,aq(T)) = (2,6).
Then T € . We may exclude T' = A;(23), since there is no simple group
S with |S|-p® = |T|? for some prime power p®. In the remaining cases, 2 is
the dominant prime of |T'| and also of |T'|/2 and this implies that 2 is also
the dominant prime of S (if a # 1 this follows from Corollary 30, while
if a = 1 it suffices to recall that |S| = |T|?/p). Hence the characteristic
of S is 2 too, moreover a;(S) < 6, as |S| cannot have primitive prime
divisors not dividing |7'|. We have already proved that «;(S) # 6. It is
easy to verify that if S is a simple group of Lie type with characteristic 2
and satisfying a1(S) < 5 then the condition |T|?> = |S| - p® cannot be
verified. 0

Lemma 36. The characteristic pg of S does not coincide with the prime p.

Proof. Suppose p = pg. By Proposition 29, p coincides with the dominant
prime of S, and consequently, since |S| = |T|? - p®, with the dominant
prime of T'; but then, by Lemma 33, p coincides also with the characteristic
of T. By Lemma 35 and Theorem 13 (3), we get that oy (T") = w(|T)
and a1 (S) = w(|S]). By Remark 12, w(|S|) = w(|T]), so we conclude that
a1(T) = a1(S). Again by Lemma 35, we can use Zsigmondy’s Theorem
to find a primitive prime divisor ¢ of p® () — 1. The multiplicity of ¢ in
|T| coincides with the multiplicity of ¢ in @, (pr) = Pag(ps), which is
equal to the multiplicity of ¢ in | S|, thus contradicting |T'|> = |S|-p®. O

Proposition 37. a = 1.

Proof. Suppose a # 1: then, by Corollary 34, p is the characteristic and
dominant prime of both S and 7', contradicting Lemma 36. O

We remain with the possibility that a = 1 and consequently |T'|* =
|S| - p where p divides the order of the Schur multiplier M (S). Moreover,
the Schur multiplier can be decomposed as M (S) = R x P, where P is a
ps-group and R a plg-group whose order coincides with the denominator
dg of the cyclotomic factorization of the order of S (see [8, Table 4.1]).
By Lemma 36, p # pg, thus p divides dg.
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Lemma 38. If S,T have the same dominant prime u and w # p, then u
coincides with the characteristic of T'.

Proof. By Proposition 7, if © does not coincide with the characteristic
of T', then one of the following cases occurs.
1) T = Ai(q), where ¢ = 2¥ — 1 is a Mersenne prime. Then v = 2 and

(2 =1)-2%- 2" —1))® = 5] - p.

By Proposition 29, the characteristic of S coincides with u = 2,
hence, considering the cyclotomic factorization of |S| described in
Theorem 13, we have a;(S) = k and ®;(2) = 2¥ — 1 = ¢. By
Theorem 13 (1), ®x(2) divides |S| with multiplicity 1, so necessarily
p = q by Remark 26. On the other hand, p divides dg and, by
Theorem 13 (2), dg divides ®q4(2) - - - Py, (2) = (2871 — 1)2/D,,(2),
thus p divides (287! — 1), whence p < 21 —1 <28 ~1=¢g=p,a

contradiction.
2) T = Ai(q—1), where ¢ = 22" 1 1 is a Fermat prime. Then u = ¢
and

¢ (g—1)7% (q—2>=5|p.

By Proposition 29, the characteristic of S coincides with v = ¢, in
particular the characteristic of S divides |S| with multiplicity 2 and
it is easy to check that the only group satisfying this condition is
S = Ai(¢?), but then dg = 2 whence p = 2. Hence

¢ (q—-1° (-2 =4P) 2= (-1 (+1),

whence (¢ — 1) - (¢ —2)> = (¢+ 1) - (¢ + 1), but this is false.

3) T = A1(23). Then |T| =23-32.7,u=3,p=2and |S| =2°-3*. 7%
however there is no simple group of Lie type S with this order.

4) T =2A5(3). Then |T| =2°-3%-7,u=2,p=3and |S| = 210.3%.72,
however there is no simple group of Lie type S with this order.

5) T =2A3(2). Then |T| =2-3%.5, u =3, p=2and |S| = 2!1.3%.5%
however there is no simple group of Lie type .S with this order. [

Lemma 39. S and T have different dominant primes.

Proof. Suppose that r is the dominant prime of S and 7. Then, by
Lemma 36, r # p and therefore |T|z =|5|, and, by Remark 12, w(S) =
w(T). Moreover, by Lemma 35 and Theorem 13 (3), a;(S) = w(S) and
a1(T) = w(T), whence oy (S) = a1(T') = . By Proposition 29 and
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Lemma 38, r is also the characteristic of both S and T'. Again by Lemma 35,
we can apply Zsigmondy’s Theorem and consider a primitive prime divisor
u dividing of r® — 1. This prime u divides |S| and |T'| with the same
multiplicity (coinciding with the multiplicity of u in ®,(r)). On the other
hand |S|-p = |T|?, so we must have that » = p and that p divides |S|
with multiplicity 1, in contradiction with Corollary 25 (6). O

Now we are ready to conclude our proof. We have reduced to the case
|T|? = p-|S|, where the dominant prime of T and S (which coincide with
their characteristic) are different, and consequently p is the dominant
prime of T. Let r be the dominant prime of S and let p?, " be the
contributions of p and r to |S|. We have

pl < rf < pttl, (3.10)
and consequently, since ¢t > 1 by Corollary 25 (6),

hlog(r) 1 1 log(3)
tlog(p) t  log(2)

thus p is a good contributor of S. By [2, Theorem 4.1] S is one of following
groups:

1) A3(3), *A3(3), 2A3(7), *A4(3) ,B2(3), Ba(5), B2(7), Ba2(9), Bs(3),

C3(3), Da(3), G2(3) (and p = 2);

2) 245(2),244(2), *A45(2), Bs(2), Da(2) (and p = 3);

3) Al (’l"), AQ(T), QAQ(T‘).
The possibilities listed in (1) and (2) can be immediately excluded noticing
that either p does not divide |M(S)], or there exists a prime different
from p dividing |S| with odd multiplicity, or |S| - p is not a square.

The only cases that remain to be discussed are thus A;(r), Aa(r),
2A5(r): we have |S| = r¢-u where € is odd and (u,r) = 1, so, by Remark 26,
r = v? for some integer v. If S = 2A45(v?), then |[M(S)| = (3,02 +1) =1,
a contradiction. Suppose S = Aj(v?). We have already excluded the
possibilities S = A;(4) = Alt(5) and S = A;(9) = Alt(6), so we have
|M(S)| = (2,v? — 1) and consequently p = 2 and v is odd. In particular

1<

51, = & 5 e (= 1)22(”2 T2 _ 2y,

and from (3.10) we deduce (v —1)s < v? < 2(v?—1)s: the only possibility
is v = 3, but we have already excluded this case. Finally, suppose S =
As(v?). We may exclude S = Ay(4) since in this case 5 and 7 divide ||
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with multiplicity 1. In the remaining case M (S) = (3,v? — 1), so it must
v? —1=0 mod 3 and p = 3. But then v* + v? +1 = (v? — 1)? + 30? =
3v%2 =2 3 mod 9, thus
(0?2 + 1)3(v? — D3 + 02+ 1)3
|S]3 = 33 = (v* = 1)3
and by (3.10) we have (v? —1)3 < v% < 3(v? —1)3, whence v® < 3(v*—1)2,
a contradiction.

4. Proof of Theorem 3

It follows immediately from Theorem 22 that:

Proposition 40. If there exists a non-pronilpotent normally (-reversible
profinite group all of whose composition factors are of alternating type,
then there exist a positive integer m and a finite group H with the following
properties:
1) [H| = | Alt(m)[>.
2) H contains a unique minimal normal sugroup N .
3) Either H/N is nilpotent or there exist a nilpotent group X and a
positive integer n = m such that H/N = X x Alt(n); in the latter
case w(m!) = w(n!) i.e. there is no prime q with m < q < n.
4) Either N is abelian or N = Alt(u)! for some u and t € N.

In this section we will prove that there is no pair (m, H) satisfying
the condition requested by the previous proposition. We will assume, by
contradiction, that (m, H) is one of these pairs and we will prove a series
of restrictions that will lead to a finale contradiction.

Lemma 41. H is not soluble.

Proof. If H is soluble, then H is a finite soluble group which is not
nilpotent but all of whose proper quotients are nilpotent. This implies
that H = N x A, where N is an elementary abelian p-group and A is a
nilpotent p’-subgroup of Aut N. By [20, Theorem 1.6], |A| < [N |?/2 with

B =log(32)/log(9) so

log(|H|) _ log(288)
log(IN[) ~ 1log(9)

(4.1)

On the other hand, since |H| = | Alt(m)|?, we have

log(|H1)/log(IN]) > (A(Alt(m))) .
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The values of the logarithmic proportion of alternating groups are listed
in [11, Tables L.3 and L.4] and it can be easily seen that

log(|H]) L log(2s)

———= > (A(Alt(m >——- for m¢ {58

e = ()~ > SEEE £ (5.8)
contradicting (4.1). Direct computations show that (4.1) is false also when
m € {5,8}). O

Lemma 42. N = soc H is abelian.

Proof. Suppose by contradiction that N is nonabelian: then there exist
positive integers v > 5 and ¢ such that N = Ly X --+ X Ly, with L; 2 L =
Alt(u) for all 7. In particular

L'~ N9 H < Aut(N) = Aut(L)  Sym(t).

If t = 1, then |Alt(m)|*> = |H| = 27 - u! for some j € Z, however by
Lemma 4 there exists an odd prime dividing u! with multiplicity 1, a
contradiction. If + = 2, then from |Alt(m)|?> = H, we would deduce
(m!)? = (u!)?27 for some positive integer j € {1,2,3,4,5}, but this is
impossible. So we can assume t > 3. By Proposition 40 we can write
H/N = X;/N x X3/N, where X1/N is nilpotent and either Xy /N =1
or Xo/N = Alt(n) for some n > m. First suppose that either Xo/N =1
and m ¢ {6,10}, or Xo/N = Alt(n) with n ¢ {6,10}. Then, by Lemma 4,
we can find two primes p, g as follows:

§<p<qg<n if Xo/N = Alt(n),
F<p<g<m if Xo/N=1.

We claim that p, ¢ both divide the order of Alt(m) with multiplicity 1:
this is clear if X5/N is trivial, while if Xo/N = Alt(n) it follows from
the fact that m/2 < n/2 < p < q¢ < m. So p and ¢ divide |H| = (m!/2)?
with multiplicity exactly 2: as L' < H and t > 2, they cannot divide |L],
so they divide |H/N| = |X1/N||X2/N| with multiplicity 2. On the other
hand, by the way in which they have been defined, they divide | Xs/N|
with multiplicity at most 1, so p - ¢ must divide order of the nilpotent
group X1 /N. This implies that the transitive permutation group induced
by the conjugacy action of H on the ¢ direct factors Lq,..., L; contains
a central element of order p - ¢. In particular ¢ > p - ¢ and consequently,

m 2

60T <607 < |LI" < |H| = (m)? < m?™
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but this is false for all m > 5. We have still to consider the two cases
X9/N =1 and m € {6,10} or Xo = Alt(n) with n € {6,10}. If m =6 or
n = 6 (and consequently m < 6), then | Alt(u)|? divides | Alt(6)|?, hence
53 divides (6!)2, a contradiction. If m = 10 or n = 10, then 7 divides |H|
with multiplicity at most 2; as a consequence |H/N| is divisible by 7 and
t > 7; but then

7-60" < |H/N|-|N|=|H| < (10)?
which leads again to a contradiction. O

Combining Proposition 40 with Lemma 41 and Lemma 42, we can
conclude that there exist two subgroups X and Xo of H such that
1) H/N = X;/N x X3/N;
2) X;/N is nilpotent;
3) Xo/N = Alt(n).
4) N is an elementary abelian p-group.

Lemma 43. N is not central in X5.

Proof. Assume, by contradiction, N < Z(X3). Notice that Frat(Xs) is a
nilpotent normal subgroup of H, so either Frat(Xs) = 1 or Frat(X3) = N.
In the first case, we would have Xo = N x S, with S = Alt(n). But
then S would be normal in H, against the fact that N is the unique
minimal normal subgroup of G. If Frat(X2) = N, then X3 is a perfect
central extension of N, so in particular |N| divides the order of the Schur
multiplier of Alt(n), hence |N| € {2,3}. This implies that X is a {2,3}-
group (if a prime ¢ > 3 would divide |X1|, then a Sylow g-subgroup of
X1 would coincide with O9(Cx, (/V)) and would be normal in H). From
|H| = |X1/N|-|X2|, we deduce

(m!)? =n!.2%.3°

for some positive integers «, 8, in contradiction with the fact that, by
Lemma 4, there exists a prime dividing n! with multiplicity 1. [

The previous result, combined with Clifford’s theory, implies that N
contains a nontrivial irreducible Alt(n)-modulo, say M.

Lemma 44. n <8.
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Proof. Suppose n > 9. By [19, Theorem 1.1], the dimension of a nontrivial
irreducible Alt(n)-module is at least n — 2, so [N| > |M| > p"~2. But
then, from | Alt(m)|? = |H| > |N| - | Alt(n)|, we get

((m/2))5 > p" 72 - (n!/2),.

Let now a =m —n > 0 and 7, = 0 is p is odd, 172 = 1 if p = 2; since
(m!), < p"™/ =1 we have

PET s (nlf2), > (4 D+ )y P S 0,
This implies
p=2, n=m, |N|=|M|=2""2=(n!/2),.

Since

n! 2 ‘X1HX2’ TL"Xﬂ
,H|:<2> = SN =y and 272 — (n1/2),,

we must have that X1 = N x K, where N is an elementary abelian 2-group
and K is a nilpotent group of odd order; more precisely |K| = (n!)y.
Moreover, the fact that NV is the unique minimal normal subgroup of

H implies Cx(N) = 1, hence K is a completely reducible subgroup of
Aut N. In particular

log(32)
log(9)

N8
K| < ’2| = 2800=2)=1 with 8 =

whence
nl= (n)y - (n)g = |K| - (nl)y < 28(m=2=1 . gn=1 _ gn(f+1)=25-2
which is false for n > 9. ]

We remain with the the cases 5 < m < n < 8. Recall that 7(n!) =
N\ 2
(m!) and that [N - | Alt(n)| divides |H| = (”;) (i.e. 2|Nn! divides

(m!)?). This means that N is a completely reducible Alt(n)-module of
relatively small order. Looking to the irreducible representations of small
degree of Alt(n) over the field with p elements when 5 < n < 8 and p < n,
we easily conclude that the only possibilities are: m = n = 8 and N is
an irreducible Alt(8)-module with |N| € {2%,2°}. In both these cases,
a 2/-Hall subgroup K of X; would be nilpotent and of order 3% -5 - 7.
Moreover C(N) = 1 (otherwise we would have N # soc H) and Aut(N)
would contain an element of order 3% - 5 - 7, which is false.
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