Algebra and Discrete Mathematics
Volume 27 (2019). Number 1, pp. 70–74
(c) Journal "Algebra and Discrete Mathematics"

On free vector balleans

Igor Protasov and Ksenia Protasova

ABSTRACT. A vector balleans is a vector space over \mathbb{R} endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean (X, \mathcal{E}) , there exists the unique free vector ballean $\mathbb{V}(X, \mathcal{E})$ and describe the coarse structure of $\mathbb{V}(X, \mathcal{E})$. It is shown that normality of $\mathbb{V}(X, \mathcal{E})$ is equivalent to metrizability of (X, \mathcal{E}) .

1. Introduction

Let X be a set. A family \mathcal{E} of subsets of $X \times X$ is called a *coarse* structure if

- each $\varepsilon \in \mathcal{E}$ contains the diagonal Δ_X , $\Delta_X = \{(x, x) \colon x \in X\};$
- if $\varepsilon, \delta \in \mathcal{E}$ then $\varepsilon \circ \delta \in \mathcal{E}$ and $\varepsilon^{-1} \in \mathcal{E}$, where $\varepsilon \circ \delta = \{(x, y) : \exists z((x, z) \in \varepsilon, (z, y) \in \delta)\}, \varepsilon^{-1} = \{(y, x) : (x, y) \in \varepsilon\};$
- if $\varepsilon \in \mathcal{E}$ and $\Delta_X \subseteq \varepsilon' \subseteq \varepsilon$ then $\varepsilon' \in \mathcal{E}$;
- for any $x, y \in X$, there exists $\varepsilon \in \mathcal{E}$ such that $(x, y) \in \varepsilon$.

A subset $\mathcal{E}' \subseteq \mathcal{E}$ is called a *base* for \mathcal{E} if, for every $\varepsilon \in \mathcal{E}$, there exists $\varepsilon' \in \mathcal{E}'$ such that $\varepsilon \subseteq \varepsilon'$. For $x \in X$, $A \subseteq X$ and $\varepsilon \in \mathcal{E}$, we denote $\varepsilon[x] = \{y \in X : (x, y) \in \varepsilon\}$, $\varepsilon[A] = \bigcup_{a \in A} \varepsilon[a]$ and say that $\varepsilon[x]$ and $\varepsilon[A]$ are *balls of radius* ε around x and A.

The pair (X, \mathcal{E}) is called a *coarse space* [11] or a ballean [8], [10].

Each subset $Y \subseteq X$ defines the subballean (Y, \mathcal{E}_Y) , where \mathcal{E}_Y is the restriction of \mathcal{E} to $Y \times Y$. A subset Y is called *bounded* if $Y \subseteq \varepsilon[x]$ for some $x \in X$ and $\varepsilon \in \mathcal{E}$.

2010 MSC: 46A17, 54E35.

Key words and phrases: coarse structure, ballean, vector ballean, free vector ballean.

Let (X, \mathcal{E}) , (X', \mathcal{E}') be balleans. A mapping $f: X \to X'$ is called *coarse* or *macro-uniform* if, for every $\varepsilon \in \mathcal{E}$, there exists $\varepsilon' \in \mathcal{E}'$ such that $f(\varepsilon[x]) \subseteq \varepsilon'[f(x)]$ for each $x \in X$. If f is a bijection such that f and f^{-1} are coarse then f is called an *asymorphism*.

Every metric d on a set X defines the metric ballean (X, \mathcal{E}_d) , where \mathcal{E}_d has the base $\{\{(x, y) : d(x, y) < r\} : r \in \mathbb{R}^+\}$. We say that a ballean (X, \mathcal{E}) is metrizable if there exists a metric d on X such that $\mathcal{E} = \mathcal{E}_d$. In what follows, we consider \mathbb{R} as a ballean defined by the metric d(x, y) = |x - y|.

Given two balleans (X_1, \mathcal{E}_1) , (X_2, \mathcal{E}_2) , we define the product $(X_1 \times X_2, \mathcal{E})$, where \mathcal{E} has the base $\mathcal{E}_1 \times \mathcal{E}_2$.

Let \mathcal{V} be a vector space over \mathbb{R} and let \mathcal{E} be a coarse structure on \mathcal{V} . Following [5], we say that $(\mathcal{V}, \mathcal{E})$ is a *vector ballean* if the operations

$$\mathcal{V} \times \mathcal{V} \to \mathcal{V}, \quad (x, y) \mapsto x + y \quad and \quad \mathbb{R} \times \mathcal{V}, \quad (\lambda, x) \mapsto \lambda x$$

are coarse.

A family \mathcal{I} of subsets of \mathcal{V} is called a *vector ideal* if

- (1) if $U, U' \in \mathcal{I}$ and $W \subseteq U$ then $U \cup U' \in \mathcal{I}$ and $W \in \mathcal{I}$;
- (2) for every $U \in \mathcal{I}, U + U \in \mathcal{I};$
- (3) for any $U \in \mathcal{I}$ and $\lambda \in \mathbb{R}^+$, $[-\lambda, \lambda]U \in \mathcal{I}$, where $[-\lambda, \lambda]U = \bigcup \{\lambda' U \colon \lambda' \in [-\lambda, \lambda]\};$
- (4) $\bigcup \mathcal{I} = \mathcal{V}$.

A family $\mathcal{I}' \subseteq \mathcal{I}$ is called a *base* for \mathcal{I} if, for each $U \in \mathcal{I}$, there is $U' \in \mathcal{I}'$ such that $U \subseteq U'$.

If $(\mathcal{V}, \mathcal{E})$ is a vector ballean then the family \mathcal{I} of all bounded subsets of \mathcal{V} is a vector ideal. On the other hand, every vector ideal \mathcal{I} on \mathcal{V} defines the vector ballean $(\mathcal{V}, \mathcal{E})$, where \mathcal{E} is a coarse structure with the base $\{\{(x, y) : x - y \in U\} : U \in \mathcal{I}\}$. Thus, we have got a bijective correspondence between vector balleans on \mathcal{V} and vector ideas. Following this correspondence, we write $(\mathcal{V}, \mathcal{I})$ in place of $(\mathcal{V}, \mathcal{E})$.

Let $(\mathcal{V}, \mathcal{I}), (\mathcal{V}', \mathcal{I}')$ be vector balleans. We note that a linear mapping $f: \mathcal{V} \to \mathcal{V}'$ is coarse if and only if $f(U) \in \mathcal{I}'$ for each $U \in \mathcal{I}$.

In Section 2, we show that, for every ballean (X, \mathcal{E}) , there exists the unique vector ideal $\mathcal{I}_{(X,\mathcal{E})}$ on the vector space $\mathbb{V}(X)$ with the basis X such that

- (X, \mathcal{E}) is a subballean of $(\mathbb{V}(X), \mathcal{I}_{(X, \mathcal{E})});$
- for every vector ballean $(\mathcal{V}, \mathcal{I})$, every coarse mapping $(X, \mathcal{E}) \to (\mathcal{V}, \mathcal{I})$ gives rise to the unique coarse linear mapping $(\mathbb{V}(X), \mathcal{I}_{(X, \mathcal{E})}) \to (\mathcal{V}, \mathcal{I})$.

We denote $\mathbb{V}(X, \mathcal{E}) = (\mathbb{V}(X), \mathcal{I}_{(X, \mathcal{E})})$ and say that $\mathcal{I}_{(X, \mathcal{E})}$ and $\mathbb{V}(X, \mathcal{E})$ are free vector ideal and free vector ballean over (X, \mathcal{E}) . Free vector balleans can be considered as counterparts of free vector spaces studied in many papers, for examples, [1], [3], [4]. It should be mentioned that the free activity in topological algebra was initiated by the famous paper of Markov on free topological groups [6]. For free coarse groups see [9].

2. Construction

Given a ballean (X, \mathcal{E}) , we consider X as the basis of the vector space $\mathbb{V}(X)$. For each $\varepsilon \in \mathcal{E}$ and $n \in \mathbb{N}$, we set $\mathcal{D}_{\varepsilon} = \{x - y : (x, y) \in \varepsilon\}$ and denote by $\mathcal{S}_{n,\varepsilon}$ the sum of n copies of $[-n, n]\mathcal{D}_{\varepsilon}$.

Theorem 1. Let (X, \mathcal{E}) be a ballean and let $z \in X$. Then the family

$$\{S_{n,\varepsilon} + [-n,n]z \colon \varepsilon \in \mathcal{E}, n \in \mathbb{N}\}$$

is a base of the free vector ideal $\mathcal{I}_{(X,\mathcal{E})}$.

Proof. We denote by \mathcal{I} the family of all subsets U of $\mathbb{V}(X)$ such that U is contained in some $\mathcal{S}_{n,\varepsilon} + [-n,n]z$. Clearly, \mathcal{I} satisfies (1), (2), (3) from the definition of a vector ideal. To see that $\bigcup \mathcal{I} = \mathbb{V}(X)$, we take an arbitrary $y \in X$ and choose $\varepsilon \in \mathcal{E}$ so that $(y,z) \in \varepsilon$. Then $y = (y-z) + z \in \mathcal{D}_{\mathcal{E}} + z$. In view of (2), (3), we conclude that $\bigcup \mathcal{I} = \mathbb{V}(X)$.

To show that (X, \mathcal{E}) is a subballean of $(\mathbb{V}(X), \mathcal{I})$, we denote by \mathcal{E}' the coarse structure of the ballean $(\mathbb{V}(X), \mathcal{I})$. Since $\mathcal{D}_{\mathcal{E}} \in \mathcal{I}$ for each $\varepsilon \in \mathcal{E}$, $\mathcal{E} = \mathcal{E}^{-1}$ we have $\mathcal{E} \subseteq \mathcal{E}'|_X$. To verify the inclusion $\mathcal{E}'|_X \subseteq \mathcal{E}$ we take $x, y \in X$, assume that $x - y \in \mathcal{S}_{n,\mathcal{E}} + [-n, n]z$ and show that $(x, y) \in \varepsilon^n$.

We write $x - y = \lambda_1(x_1 - y_1) + \ldots + \lambda_n(x_n - y_n) + \lambda_{n+1}z, (x_i, y_i) \in \varepsilon$, $\lambda_i \in [-n, n]$. Since $(\lambda_1 - \lambda_1) + \ldots + (\lambda_n - \lambda_n) + \lambda_{n+1} = 0$, we have $\lambda_{n+1} = 0$ so $x - y = \lambda_1(x_1 - y_1) + \ldots + \lambda_n(x_n - y_n)$. If $(x_1, y_1), \ldots, x_n, y_n) \in \{x, y\}$ then the statement is evident because $(x_i, y_i) \in \varepsilon$. Assume that there exists $a \in \{x_1, y_1, \ldots, x_n, y_n\}$ such that $a \notin \{x, y\}$. We take all items $\lambda_i(x_i - y_i), i \in I$ such that $a \in \{x_i, y_i\}$, and denote by s the sum of all these items. The coefficient before a in the canonical decomposition of s by the basis X must be 0. We take $\lambda_k(x_k - y_k), k \in I$. If $x_k = a$ or $y_k = a$ then we replace each a in $\lambda_i(x_i - y_i), i \in I$, to y_k or x_k respectively. Then we get $x - y = \lambda_1(x'_1 - y'_1) + \ldots + \lambda_n(x'_n - y'_n),$ $a \notin \{x'_1, y'_1, \ldots, x'_n - y'_n\}$ and $(x'_i, y'_i) \in \varepsilon^2$. Repeating this trick, we run into the case $x_1, y_1, \ldots, x_n, y_n \in \{x, y\}$ and $(x_i, y_i) \in \varepsilon^n$.

To conclude the proof, we observe that \mathcal{I} is the minimal vector ideal on $\mathbb{V}(X)$ such that (X, \mathcal{E}) is a subballean of $(\mathbb{V}(X), \mathcal{I})$. If $(\mathcal{V}, \mathcal{I}')$ is a ballean

and $f: (X, \mathcal{E}) \to (\mathcal{V}, \mathcal{I}')$ is a coarse mapping then the linear extension $h: (\mathbb{V}(X), \mathcal{I}) \to (\mathcal{V}, \mathcal{I}')$ of f is coarse because $h^{-1}(\mathcal{I}')$ is a vector ideal on $\mathbb{V}(X)$ and $\mathcal{I} \subseteq h^{-1}(\mathcal{I}')$. \Box

3. Metrizability and normality

Theorem 2. A ballean $\mathbb{V}(X, \mathcal{E})$ is metrizable if and only if (X, \mathcal{E}) is metrizable.

Proof. By [10, Theorem 2.1.1], (X, \mathcal{E}) is metrizable if and only if \mathcal{E} has a countable base. Apply Theorem 1.

Let (X, \mathcal{E}) be a ballean, $A \subseteq X$. A subset U of X is called an *asymptotic* neighbourhood of A if, for every $\varepsilon \in \mathcal{E}$, the set $\varepsilon[A] \setminus U$ is bounded.

Two subsets A, B of X are called *asymptotically disjoint (asymptotically separated)* if, for every $\varepsilon \in \mathcal{E}$, the intersection $\varepsilon[A] \cap \varepsilon[B]$ is bounded (A, B) have disjoint asymptotic neighbourhoods).

A ballean (X, \mathcal{E}) is called *normal* [7] if any two asymptotically disjoint subsets of X are asymptotically separated. Every metrizable ballean is normal.

Given an arbitrary ballean (X, \mathcal{E}) , the family \mathcal{B}_X of all bounded subsets of X is called a *bornology* of (X, \mathcal{E}) . A subfamily $\mathcal{B}' \subseteq \mathcal{B}_X$ is called a *base* of \mathcal{B}_X if, for every $B \in \mathcal{B}_X$, there exists $B' \in \mathcal{B}_X$ such that $B \subseteq B'$. The minimal cardinality of bases of \mathcal{B}_X is denoted by $\operatorname{cof} \mathcal{B}_X$.

Theorem 3. For every ballean (X, \mathcal{E}) , the free vector ballean $\mathbb{V}(X, \mathcal{E})$ is normal if and only if $\mathbb{V}(X, \mathcal{E})$ is metrizable.

Proof. For |X| = 1, the statement is evident. Let |X| > 1, $a \in X$, $L = \mathbb{R}a$, $Y = X \setminus \{a\}$. Applying Theorem 1, we conclude that the canonical isomorphism between $\mathbb{V}(X, \mathcal{E})$ and $L \times \mathbb{V}(Y, \mathcal{E}_Y)$ is an asymorphism. If $\mathbb{V}(X, \mathcal{E})$ is normal then, by Theorem 1.4 from [2], $\operatorname{cof} \mathcal{B}_L = \operatorname{cof} \mathcal{B}_Z$, where $Z = \mathbb{V}(Y, \mathcal{E}_Y)$. Since $\operatorname{cof} \mathcal{B}_L = \aleph_0$, \mathcal{B}_Z has a countable base. To conclude the proof, it suffices to note that \mathcal{B}_Z is the vector ideal such that $\mathbb{V}(Y, \mathcal{E}_Y) = (\mathbb{V}(Y), \mathcal{I})$. Hence \mathcal{I} has a countable base and $\mathbb{V}(Y, \mathcal{E}_Y)$ is metrizable by Theorem 2.1.1. from [10].

References

- T. Banakh, A. Leiderman, ω^ω-dominated function spaces and ω^ω-bases in free objects in topological algebra, Topology Appl. 241 (2018), 203-241.
- [2] T. Banakh, I. Protasov, The normality and bounded growth of balleans, arXiv: 1810.07979.

- [3] S. S. Gabriyelyan, A description of the topology of free vector spaces, arXiv: 1804. 05199.
- [4] S. S. Gabriyelyan, S. A. Morris, Free topological vector space, Topology Appl. 223 (2017), 30-49.
- [5] Ie. Lutsenko, I.V. Protasov, Sketch of vector balleans, Math. Stud. 31 (2009), 219-224.
- [6] A. A. Markov, On free topological groups, Izv. Acad. Nauk SSSR 9 (1945), 3-64.
 English translation: Amer. Math. Soc. Transl. 30 (1950), 11-88.
- [7] I.V. Protasov, Normal ball structures, Math. Stud. 20 (2003), 3-16.
- [8] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL, Lviv, 2003.
- I. Protasov, K. Protasova Free coarse groups, J. Group Theory, DOI: https://doi.org/10.1515/jgth-2019-2048; arXiv:1803.10504.
- [10] I. Protasov, M. Zarichnyi, General Asymptopogy, Math. Stud. Monogr. Vol. 12, VNTL, Lviv, 2007.
- [11] J. Roe, *Lectures on Coarse Geometry*, AMS University Lecture Ser. 31, Providence, RI, 2003.

CONTACT INFORMATION

I. Protasov,	Department of Computer Science and
K. Protasova	Cybernetics, Kyiv University, Volodymyrska 64,
	01033, Kyiv, Ukraine
	E-Mail(s): i.v.protasov@gmail.com,
	ksuha@freenet.com.ua

Received by the editors: 10.03.2019.