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Abstract. It is proved that conjugated periodic elements

of the infinite wreath power of a finite permutation group are con-

jugated in the finite state wreath power of this group. Counter-

examples for non-periodic elements are given.

1. Introduction

The conjugacy classes in the full automorphism group of a regular
rooted tree are described in [1]. But for its subgroup of finite state automor-
phisms the corresponding description is a challenging task. In particular,
there exist finite state level-transitive automorphisms (and therefore, con-
jugated in the full automorphism group) which are not conjugates in the
finite state subgroup [2]. Deep results about conjugation of some special
finite state automorphisms were obtained in [3] and [4].

The most natural way to introduce finite state automorphisms uses
automata theory. But regarding our purposes we choose a language of
infinite wreath products. The full automorphism group of m-regular rooted
tree is the infinite wreath power of the symmetric group of degree m. If
we restrict ourselves to some subgroup (or even subsemigroup) G of this
symmetric group we naturally obtain the infinite and finite state wreath
powers of G (cf. [5, 6]).
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The work is organized as follows. In Section 2 we recall the finite state
wreath power of a finite permutation group. In Section 3 we prove the
main result of the paper. Namely, if periodic finite state elements of the
infinite wreath power of a finite permutation group are conjugated in this
wreath power then they are conjugated in the finite state wreath power
of a given permutation group. In Section 4 we show how to construct
non-periodic finite state elements conjugated in the wreath power but not
conjugated in the finite state wreath power of a given permutation group.

For all other definitions used in the paper one can refer to [2].

2. Finite state wreath power

Let A be a finite set of cardinality m > 2. Consider a finite group G
acting faithfully on the set A. In other words, the permutation group
(G,A) is a subgroup of the symmetric group Sym(A). In the sequel we
assume that the groups act on the sets from the right and denote by ag

the result of the action of a group element g on a point a.
Denote by W∞(G,A) the infinitely iterated wreath product of (G,A).

The group W∞(G,A) consists of permutations of the infinite cartesian
product X∞ given by infinite sequences of the form

g = [ g1, g2(x1), . . . , gn(x1, . . . , xn−1), . . . ], (1)

where g1 ∈ G, g2(x1) : A → G, . . . , gn(x1, . . . , xn−1) : A
n−1 → G, . . . For

each n > 1 we call gn the n-th term of g and denote it by [g]n. An
element g acts on a point

ā = (a1, a2, . . . , an, . . .) ∈ A∞

by the rule

āg = (ag11 , a
g2(a1)
2 , . . . , agn(a1,...,an−1)

n , . . .).

Let g = [g1, g2(x1), g3(x1, x2), . . .] ∈ W∞(G,A) and ā = (a1, . . . , an) ∈
An for some n > 1. Define an element rest(g, ā) ∈ W∞(G,A) as

rest(g, ā) = [h1, h2(x1), h3(x1, x2), . . .],

where

h1 = gn+1(a1, . . . , an),

h2(x1) = gn+2(a1, . . . , an, x1),

h3(x1, x2) = gn+3(a1, . . . , an, x1, x2), . . .
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The tuple rest(g, ā) has the form (1) as well and therefore belongs to the
group W∞(G,A). The element rest(g, ā) is called the state of g at ā. Also
we consider g as a state of itself.

Define the set

Q(g) = {rest(g, ā) : ā ∈ An, n > 1} ∪ {g}

of all states of g. In particular, for the identity element e ∈ W∞(G,A) we
get the equality Q(e) = {e}. The following lemma is directly verified.

Lemma 1. Let g, h ∈ W∞(G,A). Then

Q(gh) ⊆ Q(g) · Q(h), Q(g−1) = Q(g)−1.

If h ∈ Q(g) then Q(h) ⊆ Q(g).

Let
FW∞(G,A) = {g ∈ W∞(G,A) : |Q(g)| < ∞}.

Lemma 1 implies that this set form a subgroup of W∞(G,A).

Definition 1. The group FW∞(G,A) is called the finite state wreath
power of the permutation group (G,A).

The group FW∞(G,A) is countable while W∞(G,A) is not.
Another useful remark is that both permutation groups (W∞(G,A),A∞)

and (FW∞(G,A), A∞) split into the wreath product of (G,A) and itself,
i.e.

(W∞(G,A), A∞) = (G,A) ≀ (W∞(G,A), A∞) (2)

and
(FW∞(G,A), A∞) = (G,A) ≀ (FW∞(G,A), A∞). (3)

This allows us to present an element g = [g1, g2(x1), g3(x1, x2), . . .] ∈
W∞(G,A) in the form

g = [g1; rest(g, a), a ∈ A]. (4)

3. Conjugation of periodic elements

It is convenient for us to identify the set A with the set {1, . . . ,m}.
We need some additional notation here. Let elements g ∈ G and a ∈ A be
fixed. Consider the cyclic decomposition of g as a permutation on A. The
length of the cycle containing a will be denoted by l(g, a). Then ag

l(g,a)
= a
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and l(g, a) is the smallest integer satisfying this equality. The minimal
element of this cycle we denote by s(g, a). Note, that l(g, s(g, a)) = l(g, a).

The smallest integer d > 0 such that ag
d

= s(g, a) will be denoted by
d(g, a). Then 0 6 d(g, a) 6 l(g, a)− 1.

We have the following

Lemma 2. Let u, v and h be elements of G such that u = h−1vh. Then
for arbitrary a ∈ A the equality l(u, ah) = l(v, a) holds.

Proof. From the definition of l(v, a) we have av
l(v,a)

= a. Thus

(ah)u
l(v,a)

= (ah)(h
−1vh)l(v,a) = (ah)h

−1vl(v,a)h = (av
l(v,a)

)h = ah.

Hence, l(u, ah) 6 l(v, a). The inequality l(u, ah) > l(v, a) is proved analo-
gously.

The rules of multiplication and taking inverses in wreath products
imply that for arbitrary u = [u1, . . .], v = [v1, . . .] ∈ W∞(G,A) and a ∈ A
one have the equalities:

rest(uv, a) = rest(u, a)rest(v, au1) and rest(u−1, a) = rest(u, au
−1
1 )−1.

Then we can prove

Lemma 3. Let u = [u1, . . .], v = [v1, . . .] and h = [h1, . . .] be elements of
the group W∞(G,A) such that u = h−1vh. Then for arbitrary a ∈ A the
equality

rest(ul(u1,ah1 ), ah1) = (rest(h, a))−1rest(vl(v1,a), a)rest(h, a)

holds.

Proof. Note, that u1 = h−1
1 v1h1. By Lemma 2 we have equalities

ul(u1,ah1 ) = ul(v1,a) = h−1vl(v1,a)h.

Hence,

rest(ul(u1,ah1 ), ah1) = rest(h−1vl(v1,a)h, ah1)

= rest(h−1, ah1)rest(vl(v1,a), a)rest(h, av
l(v1,a)
1 )

= (rest(h, a))−1rest(vl(v1,a), a)rest(h, a).
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Theorem 1. Arbitrary elements of finite order of the group FW∞(G,A),
conjugated in the group W∞(G,A), are conjugated in the group FW∞(G,A)
as well.

Proof. Denote by M the set of all pairs (u, v) ∈ FW∞(G,A)×FW∞(G,A)
such that elements u and v have finite order and are conjugated in the
group W∞(G,A). For each pair θ = (u, v) ∈ M let us fix an element
Ψ(θ) ∈ W∞(G,A) such that the equality u = (Ψ(θ))−1vΨ(θ) holds. The
correspondence θ 7→ Ψ(θ) may be regarded as a mapping Ψ : M →
W∞(G,A).

Now we proceed as follows. Using Ψ we construct new mappings

Ψ∗ : M → W∞(G,A) and Φ : M ×A → W∞(G,A).

Then we show that for each pair θ = (u, v) ∈ M the equality

u = (Ψ∗(θ))
−1vΨ∗(θ)

holds. Finally, we prove that indeed Ψ∗(M) ⊂ FW∞(G,A). Then the
statement of the theorem follows.

For a pair θ = (u, v) ∈ M , where u = [u1, u2(x1), . . .] and u =
[v1, v2(x1), . . .], we will use the notation Ψ(θ) = [h1, h2(x1), . . .].

Step 1. Let us define mappings Ψ∗ and Φ.
It is sufficient to check that recursive equalities

Ψ∗(θ) = [h1; rest(v
d(v1,a), a)Φ(θ, a)

(

rest(ud(v1,a), ah1)
)

−1
, a ∈ A], (5)

Φ(θ, a) = Ψ∗

(

rest
(

ul(u1,ah1 ), (s(v1, a))
h1
)

, rest
(

vl(v1,a), s(v1, a)
)

)

, a ∈ A

(6)

correctly define required mappings Ψ∗ and Φ. First of all, from (5) we
have [Ψ∗(θ)]1 = [Ψ(θ)]1 and hence the term [Ψ∗(θ)]1 is well-defined. To
define other terms we need Φ(θ, a), a ∈ A. Then, by Lemma 3, for each
a ∈ A the pair

(

rest
(

ul(u1,ah1 ), (s(v1, a))
h1
)

, rest
(

vl(v1,a), s(v1, a)
)

)

belongs to M . Hence, equality (6) defines the first term of Φ(θ, a), a ∈ A.
Again looking at (5), we obtain the second term of Ψ∗(θ) and so on.
Inductively, for arbitrary k > 1, having defined the kth term of Ψ∗(θ)
by (5), we define the kth term of Φ(θ) by (6) and this gives us a possibility
to define the (k + 1)th term of Ψ∗(θ) by (5).
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Note that for every a ∈ A the equality Φ(θ, av1) = Φ(θ, a) holds.
Step 2. Let us prove the equality u = (Ψ∗(θ))

−1vΨ∗(θ), where θ =
(u, v) ∈ M .

We will prove by induction on k the equality

[u]k = [(Ψ∗(θ))
−1vΨ∗(θ)]k.

Since [Ψ∗(θ)]1 = [Ψ(θ)]1 and

[u]1 = [(Ψ(θ))−1vΨ(θ)]1

we obtain the required statement for k = 1.
Assume that for the (k − 1)th terms the equality is proved. Proceed

with the kth ones. Fix an element a ∈ A. Denote by g the state
of (Ψ∗(θ))

−1vΨ∗(θ) at ah1 . It is sufficient to check the equality
[rest(u, ah1)]k = [g]k. For g we have the equalities:

g = rest
(

(Ψ∗(θ))
−1vΨ∗(θ), a

h1
)

= rest
(

(Ψ∗(θ))
−1, ah1

)

rest(v, a)rest
(

Ψ∗(θ), a
v1
)

= (rest(Ψ∗(θ), a))
−1rest(v, a)rest(Ψ∗(θ), a

v1)

= rest(ud(v1,a), ah1)(Φ(θ, a))−1(rest(vd(v1,a), a))−1rest(v, a)

· rest(vd(v1,a
v1 ), av1)Φ(θ, av1)(rest(ud(v1,a

v1 ), av1h1))−1

= rest(ud(v1,a), ah1)(Φ(θ, a))−1(rest(vd(v1,a), a))−1

· rest(vd(v1,a
v1 )+1, a)Φ(θ, av1)(rest(ud(v1,a

v1 ), av1h1))−1.

There are two possibilities: s(v1, a) = a or s(v1, a) 6= a. Consider these
cases.

1) Let s(v1, a) = a. Then d(v1, a) = 0 and d(v1, a
v1) = l(v1, a) − 1.

This implies rest(ud(v1,a), ah1) = e and rest(vd(v1,a), a) = e. Lemma 2 and
equality (6) then implies

Φ(θ, a) = Ψ∗(rest(u
l(v1,a), ah1), rest(vl(v1,a), a)).

Then, in view of the inductive hypothesis, the equalities follow:

[g]k = [(Φ(θ, a))−1rest(vl(v1,a), a)Φ(θ, av1)(rest(ul(v1,a)−1, av1h1))−1]k

= [rest(ul(v1,a), ah1)(rest(ul(v1,a)−1, ah1u1))−1]k

= [rest(u, ah1)rest(ul(v1,a)−1, ah1u1)(rest(ul(v1,a)−1, ah1u1))−1]k

= [rest(u, ah1)]k.
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2) Let s(v1, a) 6= a. Then d(v1, a
v1) = d(v1, a)− 1. For g now we have:

g = rest(ud(v1,a), ah1)(Φ(θ, a))−1(rest(vd(v1,a), a))−1

· rest(vd(v1,a
v1 )+1, a)Φ(θ, av1)(rest(ud(v1,a

v1 ), av1h1))−1

= rest(ud(v1,a), ah1)(rest(ud(v1,a)−1, ah1u1))−1

= rest(u, ah1)rest(ud(v1,a)−1, ah1u1)(rest(ud(v1,a)−1, ah1u1))−1

= rest(u, ah1).

In both cases we obtained the equality [rest(u, ah1)]k = [g]k. Hence,
our statement is true for the kth terms.

Step 3. Let us check the inclusion Ψ∗(M) ⊂ FW∞(G,A).
Denote by Mk the subset of all pairs (u, v) ∈ M such that the orders

of u and v equal k. These subsets are pairwise disjoint and

M =
∞
⋃

k=1

Mk.

Let us prove by induction on k that Ψ∗(Mk) ⊂ FW∞(G,A).
In case k = 1 we have M1 = {(e, e)}. Since

rest(e, a) = e, a ∈ A,

equalities (5) and (6) imply

rest(Ψ∗(e, e), a) = Ψ∗(e, e), a ∈ A.

Hence, g ∈ FW∞(G,A).
Suppose that Ψ∗(Mi) ⊂ FW∞(G,A) for all i < k. We are going to

prove the inclusion Ψ∗(Mk) ⊂ FW∞(G,A). If the set Mk is empty then
the statement is true. Let θ = (u, v) be a pair belonging to the set Mk.
We have to show that |Q(Ψ∗(θ))| < ∞.

For an element g ∈ W∞(G,A) its set of stable states is defined as

SQ(g) = {rest(g, ā) : rest(g2, ā) = (rest(g, ā))2, ā ∈ An, n > 1} ∪ {g}.

Since u, v ∈ FW∞(G,A) the set

Q1 = Ψ∗

(

(

SQ(u)× SQ(v)
)

∩Mk

)

is finite. In particular, Ψ∗

(

(u, v)
)

∈ Q1. We are going to show that
Q1 ⊂ FW∞(G,A).
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Fix arbitrary g ∈ Q1. Then

g = Ψ∗

(

(ũ, ṽ)
)

for some ũ ∈ SQ(u), ṽ ∈ SQ(v) such that (ũ, ṽ) ∈ Mk.
Let a ∈ A. Denote l([ṽ]1, a) by ℓ. Two possible cases arise.
Case 1: ℓ = 1. Then s([ṽ]1, a) = a and d([ṽ]1, a) = 0. By equalities (5)

and (6) we now obtain

rest(g, a) = rest
(

Ψ∗((ũ, ṽ)), a
)

= Φ
(

(ũ, ṽ), a
)

= Ψ∗

(

rest
(

ũ, a[Ψ((ũ,ṽ))]1
)

, rest(ṽ, a)
)

.

The latter element belongs to Q1. Hence, in this case

rest(g, a) ∈ Q1.

Case 2: ℓ > 1. By Lemma 2 the equality l([ũ]1, a
[Ψ((ũ,ṽ))]1)= l([ṽ]1, a)=ℓ

holds. By (6) we have

Φ
(

(ũ, ṽ), a
)

= Ψ∗

(

rest
(

ũℓ, (s([ṽ]1, a))
[Ψ((ũ,ṽ))]1

)

, rest
(

ṽℓ, s([ṽ]1, a)
)

)

. (7)

Since cyclic decompositions of both [ũ]1 and [ṽ]1 contain a cycle of length ℓ,
the number ℓ divides the orders of both ũ and ṽ. It implies that the
orders of arguments of Ψ∗ in (7) are strictly less then k. Indeed, they are
states of the ℓth powers of elements ũ and ṽ correspondingly at elements
belonging to cycles of length ℓ. Applying the inductive hypothesis we get
Φ((ũ, ṽ), a) ∈ FW∞(G,A). Now from the definition of Ψ∗ we obtain that
the state

rest(g, a) = rest
(

Ψ∗((ũ, ṽ)), a
)

belongs to FW∞(G,A) as the product of elements from FW∞(G,A).
Thus, the state rest(g, a) belongs to the finite set Q1 or the set

Q(rest(g, a)) is finite.
Let

Q2 = {rest(g, a) : g ∈ Q1, a ∈ A} ∩ FW∞(G,A)

and
Q3 =

⋃

h∈Q2

Q(h).

Since sets Q1 and A are finite, the set Q2 is finite. Being a union of finite
number of finite sets, the set Q3 is finite as well. Then, using the definition
of the state we obtain

Q(g) ⊂ Q1 ∪Q3.

Therefore, g ∈ FW∞(G,A). The proof is complete.
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Observe that rewriting mapping Ψ∗ constructed in the proof of the-
orem 1 may be defined on the set of all pairs of conjugated elements of
W∞(G,A). Additional conditions on such elements were used only to
prove that the image of Ψ∗ belongs to the finite state wreath power of
(G,A). It would be interesting to examine this image in general case.

4. Non-conjugated elements of infinite order

Let us show how to construct two elements of the group FW∞(G,A)
which are conjugated in the group W∞(G,A) but are not conjugated in
the group FW∞(G,A).

Let g be a non-identity element of the group G. If n is the order of
the element g and p is a prime divisor of n then the element g∗ = gn/p

has order p and as a permutation on A is a product of independent cycles
of length p. Without loss of generality we assume that g∗ has no fixed
points. We will identify the set A with the set {0, . . . ,m− 1} in such a
way that for some k > 1 the permutation g∗ will be expressed in the form

g∗ = (0, . . . , p− 1)(p, . . . , 2p− 1) · · · ((k − 1)p, . . . , kp− 1).

Let us consider the set Ap = {0, . . . , p − 1}, the cyclic group Gp = 〈σ〉
generated by the permutation σ = (0, . . . , p − 1) and the mapping c :
Gp → G that maps an element h ∈ Gp to the permutation acting on the
set {0, . . . , kp− 1} by the rule x 7→ (x mod p)h + [x/p] · p and trivially on
other elements of the set A. In other words the mapping c duplicates action
on the set Ap onto the sets {p, . . . , 2p− 1}, . . . , {(k − 1)p, . . . , kp− 1}.

Using mapping c one can transform any element u ∈ W∞(Gp, Ap) into
an element u(k) ∈ W∞(G,A) by the equality

[u(k)]n(x1, . . . , xn−1) =











c
(

[u]n(x1 mod p, . . . , xn−1 mod p)
)

,

0 6 x1, . . . , xn−1 < kp,

e, otherwise.

Denote by f the function that for any u ∈ W∞(Gp, Ap) computes u(k) ∈
W∞(G,A). The function f is well-defined.

Lemma 4. If u ∈ FW∞(Gp, Ap) then u(k) ∈ FW∞(G,A).

Proof. If u ∈ W∞(Gp, Ap) then the value of [u]n equals to some power of σ.
By definition of the transformation the value of [u(k)]n equals to the same
power of g∗ or e depending on the arguments. Thus u(k) ∈ W∞(G,A).
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Denote by Akp the set {0, . . . , kp − 1} and denote by ā mod p the
element

(a1 mod p, a2 mod p, . . . , an mod p) ∈ An
p

for ā = (a1, a2, . . . , an) ∈ An. We are going to prove for u ∈ W∞(Gp, Ap)
that

rest(f(u), ā) =

{

f(rest(u, ā mod p)), ā ∈ An
kp, n > 1,

e, otherwise.
(8)

For ā = (a1, . . . , an) ∈ An and n > 1 we have

[rest(f(u), ā)]m(x1, . . . , xm−1) = [f(u)]n+m(a1, . . . , an, x1, . . . , xm−1).

If ā /∈ An
kp then [rest(f(u), ā)]m(x1, . . . , xm−1) = e for all x1, . . . , xm−1

that implies rest(f(u), ā) = e. In case ā ∈ An
kp the equality

[rest(f(u), ā)]m(x1, . . . , xm−1) =

=

{

c
(

[u]n+m(a1 mod p, . . . , xm−1 mod p)
)

, 06x1, . . . , xm−1<kp,

e, otherwise,

=











c
(

[rest(u, ā mod p)]m(x1 mod p, . . . , xm−1 mod p)
)

,

06x1, . . . , xm−1<kp,

e, otherwise,

= [f(rest(u, ā mod p))]m(x1, . . . , xm−1)

holds. Thus rest(f(u), ā) = f(rest(u, ā mod p)).
From equality (8) for u ∈ W∞(Gp, Ap) we get

Q(u(k)) = Q(f(u)) = {rest(f(u), ā) : ā ∈ An, n > 1} ∪ {f(u)} ⊂

⊂ {f(rest(u, ā mod p)) : ā ∈ An
kp, n > 1} ∪ {e} ∪ {f(u)} ⊂

⊂ f(Q(u)) ∪ {e} ∪ {f(u)} = f(Q(u)) ∪ {e}.

This implies that if u ∈ FW∞(Gp, Ap) then u(k) ∈ FW∞(G,A).

Suppose that we have two elements u, v ∈ FW∞(Gp, Ap) that satisfy
conditions: 1) u and v are conjugated in the group W∞(Gp, Ap); 2) growth
of u is logarithmic; 3) growth of v is exponential. Using elements u and v

we construct elements u(k) and v(k). By lemma 4 these new elements
belongs to the group FW∞(G,A). Since

f(Q(u)) ⊂ Q(f(u)) ⊂ f(Q(u)) ∪ {e}.
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u and f(u) have equivalent growth. If gu = vg then f(g)f(u) = f(v)f(g).
Therefore u and f(u) satisfy the following conditions: 1’) u(k) and v(k)

are conjugated in the group W∞(G,A); 2’) growth of u(k) is logarithmic;
3’) growth of v(k) is exponential. Since the growth of an element is invariant
under conjugation in FW∞(G,A) (see [2, subsection 4.3]) This implies
that elements u(k) and v(k) are non-conjugated in the group FW∞(G,A).

Let us consider the following elements of the group FW∞(Gp, Ap)

e = [e; e, . . . , e], ai = [σi; a0, a1, . . . , ap−1], 0 6 i < p,

s = [σ; e, . . . , e, s], bi = [σi; ai, ai, . . . , ai, bi+1], 0 6 i < p.

To simplify notations we will identify bp and b0. Let us show that the
elements s and b1 satisfy conditions 1)–3).

Lemma 5. An element g ∈ W∞(Gp, Ap) is level transitive (acts transi-
tively on the sets Ak

p, k > 1) if and only if g∗k =
∏

v∈Ak−1
p

[g]k(v) 6= e for

all k > 1.

Proof. The proof is similar to the proof of lemma 4.4 in [2] and we use
two additional facts that the group Gp is abelian and every non-unity
element generates a transitive subgroup.

Lemma 6. Let p be a odd prime number. Then the element b1 satisfies
equalities (b1)

∗

k = σ for all k > 1 which implies that b1 is level transitive.

Proof. Equalities (ai)
∗

1 = (bi)
∗

1 = σi are obvious and the recurrent formulas

(ai)
∗

k+1 = (a0)
∗

k(a1)
∗

k · · · (ap−1)
∗

k,

(bi)
∗

k+1 = ((ai)
∗

k)
p−1(bi+1)

∗

k

follow from definitions. The first of the recurrent formulas implies

(ai)
∗

2 = (a0)
∗

1(a1)
∗

1 · · · (ap−1)
∗

1 = σ0+1+...+(p−1) = σ
p(p−1)

2 = e

and by induction we get (ai)
∗

k = 1 for all k > 2. The second of the recurrent
formulas implies

(bi)
∗

2 = ((ai)
∗

1)
p−1(bi+1)

∗

1 = σ−iσi+1 = σ,

(bi)
∗

k = ((ai)
∗

k−1)
p−1(bi+1)

∗

k−1 = (bi+1)
∗

k−1 = σ, k > 3.

Lemma 7. The elements s and b1 are conjugated in the group W∞(Gp, Ap).
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Proof. The adding machine s is level transitive. The element b1 is level
transitive by the lemma 6. Thus the elements s and b1 are conjugated in
the group W∞(Sp, Ap).

Suppose that equality b1 = g−1sg holds for some g ∈ W∞(Sp, Ap). Let
us prove that g ∈ W∞(Gp, Ap). The element g for every k > 0 satisfies

equality b
pk

1 = g−1sp
k

g which implies [g]k(ā)(b1)
∗

k = (s)∗k[g]k(ā) for ā ∈ Ak
p.

From the last equality it follows by lemma 6 that [g]k(ā)σ = σ[g]k(ā) and
finally we get [g]k(ā) ∈ Gp.

Lemma 8. The element b1 has exponential growth.

Proof. The proof is analogous to the proof of the proposition 4.2 in [2].
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