© Algebra and Discrete Mathematics Volume **31** (2021). Number 1, pp. 71–83 DOI:10.12958/adm1319

On invariants of polynomial functions, II

Y. Fukuma

Communicated by V. A. Artamonov

ABSTRACT. Let P be a finite partially ordered set. In our previous paper, we defined the sectional geometric genus $g_i(P)$ of Pand studied $g_i(P)$. In this paper, by using this sectional geometric genus of P, we will give a criterion about the case in which P has no order.

Introduction

In our previous paper [1], we studied polynomial functions. In particular, we generalized the notion of the *i*th sectional geometric genus of polarized varieties, which is an important invariant of polarized varieties (see [2, Definition 3.2]), to the case of polynomial functions. Here we note that if i = 1, then the first sectional geometric genus of any polynomial function in two variables associated with a polynomial function h is equal to the sectional genus of h which was defined by Ooishi [5, Definition 1.3] (see Remark 2). By using this invariant, we proved the following theorem about partially ordered sets (see [1, Theorem 4.1]).

Theorem 1. Let P be a finite partially ordered set, and let i be an integer with $1 \leq i \leq d(P)$. Then $g_i(P) = 0$ if and only if $l(P) \geq d(P) - i$, where $d(P) = \sharp(P)$ and l(P) denotes the length of P (see Definition 6 (3)).

As a corollary, we can get the following result which gives a neccesary and sufficient condition for being totally ordered.

This research was supported by JSPS KAKENHI (grant no. 16K05103). 2020 MSC: 05A10, 05A15, 06A06.

Key words and phrases: partially ordered set, order polynomial, polynomial function, sectional geometric genus.

Corollary 1. Let P be a finite partially ordered set. Then $g_1(P) = 0$ if and only if P is a totally ordered set.

In this paper, by using the sectional geometric genus of a finite partially ordered set P, we will give two criterions about the case in which P has no order (Theorems 5 and 6).

1. Preliminaries

Notation 1. For a real number m and a non-negative integer n, let

$$[m]_n = \begin{cases} m(m-1)\cdots(m-n+1) & \text{if } n \ge 1, \\ 1 & \text{if } n = 0. \end{cases}$$

Then for n fixed, $[t]_n$ is a polynomial in t whose degree is n. For any non-negative integer n,

$$n! := \begin{cases} [n]_n & \text{if } n \ge 1, \\ 1 & \text{if } n = 0. \end{cases}$$

Assume that m and n are non-negative integers. Then we put

$$\binom{m}{n} := \begin{cases} \frac{[m]_n}{n!} & \text{if } m \ge n, \\ 0 & \text{if } m < n. \end{cases}$$

We note that

$$\binom{m}{0} = 1 \quad \text{if } m \ge 0.$$

Definition 1 (see [4, §1]). (1) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function. Then f is called a *polynomial function* if f satisfies the following.

- (A) There exist an integer N_1 and a polynomial $P(n) \in \mathbb{C}[n]$ such that f(n) = P(n) for every integer n with $n > N_1$.
- (B) There exists an integer N_2 such that f(m) = 0 for every integer m with $m < N_2$.

In this case we put $P_f(t) := P(t)$ because P(t) depends on the function f. We call this polynomial $P_f(t)$ the *polynomial associated with* f.

(2) Let $\phi(t) \in \mathbb{C}[t, t^{-1}]$ and we put $\phi(t) = \sum_{i} a_i t^i$. Then we put

$$d(\phi) := \max\{k \mid a_k \neq 0\}$$

(3) Let f be a polynomial function such that $P_f(t) \neq 0_{\mathbb{C}[t]}$. Then we put $d(f) := d(P_f)$.

Remark 1. Let f be a polynomial function. Then $P_f(t) \in \mathbb{Q}[t]$ (see [1, Remark 2.1 (1)]).

Notation 2. (1) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function. We put

$$\nabla f(n) := \sum_{i \leqslant n} f(i)$$
 and $F_f(t) := \sum_{n \in \mathbb{Z}} f(n)t^n$.

(2) \mathcal{PF} denotes the set of polynomial functions, and

$$\mathcal{PF}^{\geq 0} := \{ g(t) \in \mathcal{PF} \mid g(t) = 0 \text{ for } \forall t < 0 \}$$

Notation 3. Let $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a function in two variables. We put $f_1(x) := f(x, 0)$ and $f_2(y) := f(0, y)$.

Definition 2. Let h(x) be a polynomial function in x. Then a function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is called a *polynomial function in two variables associated with* h(x) if the following hold.

- (1) $f_1(x) = h(x)$.
- (2) There exists an integer N such that $f_2(y) = 0$ for every integer y with $y \leq N$.

The following lemma is well-known:

Lemma 1. Let $p(t) \in \mathbb{C}[t]$ be a polynomial in t such that $p(t) \neq 0_{\mathbb{C}[t]}$ and $p(n) \in \mathbb{Z}$ for any integer n, and let k be the degree of p(t). Then for every integer d with $0 \leq k \leq d$ there exists a unique sequence of integers (b_0, b_1, \ldots, b_d) such that the following holds.

$$p(t) = \sum_{j=0}^{d} (-1)^{j} b_{j} \binom{t+d-j}{d-j}.$$

Notation 4. Let $h(t) \in \mathbb{C}[t]$ be a polynomial in t such that $h(t) \neq 0_{\mathbb{C}[t]}$ and $h(n) \in \mathbb{Z}$ for every integer n. We put $k = \deg h(t)$, and let d be an integer with $k \leq d$. Then by Lemma 1, there exists a unique sequence of integers (b_0, b_1, \ldots, b_d) such that the following holds.

$$h(t) = b_0 \binom{t+d}{d} - b_1 \binom{t+d-1}{d-1} + \dots + (-1)^d b_d.$$

Here we put $e_i^{k,d}(h(t)) := b_i$, and if k = d, then we put $e_i(h(t)) := e_i^{d,d}(h(t))$. Here we note that if k < d, then $e_i^{k,d}(h(t)) = 0$ for every integer i with $0 \le i \le d - k - 1$. **Definition 3.** (1) Let $h(t) \in \mathbb{C}[t]$ be a polynomial in t such that $h(t) \neq 0_{\mathbb{C}[t]}$ and $h(n) \in \mathbb{Z}$ for every integer n. We use Notation 4. Then for every integer i with $0 \leq i \leq d(h)$, we define the *i*th sectional *H*-arithmetic genus $\chi_i^H(h)$ of h(t) as follows.

$$\chi_i^H(h) := \sum_{j=0}^i (-1)^j e_j(h(t)).$$

(2) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a polynomial function, and let $P_f(t) \in \mathbb{Q}[t]$ be the polynomial associated with f such that $P_f(t) \neq 0_{\mathbb{Q}[t]}$. Then, for every integer i with $0 \leq i \leq d(f)$, we define the *i*th sectional *H*-arithmetic genus $\chi_i^H(f)$ of f as follows.

$$\chi_i^H(f) := \chi_i^H(P_f).$$

Definition 4. Let h(x) be a polynomial function in x such that $h(x) \neq 0_{\mathbb{Q}[x]}$, and let $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a two variable polynomial function associated with h(x). We use Notations 2 and 3. For every integer i with $0 \leq i \leq d(h)$, the *i*th sectional geometric genus $g_i(f)$ of f is defined by the following:

$$g_i(f) := (-1)^i \left(\chi_i^H(h) - \nabla f_2(0) + \nabla f_2(-i) \right).$$

Remark 2. Let $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be a polynomial function in two variables associated with a polynomial function h(x). If i = 1 and $d(h) \ge 1$, then $g_1(f) = g_s(h)$, that is, $g_1(f)$ is the sectional genus of h (see [1, Remark 3.4 (1)]).

Definition 5. From now on, a partially ordered set is called a *poset* for short in this paper.

(1) Let P be a finite poset. We put

$$d(P) := \sharp(P)$$

and for every $n \in \mathbb{N}$

$$\Omega(P,n) := \sharp \{ \sigma : P \to \{1,\ldots,n\} \mid \sigma(x_i) \leqslant \sigma(x_j) \text{ if } x_i \leqslant x_j. \}.$$

Then $\Omega(P, n)$ is a polynomial in *n* whose degree is d(P) (see [6, 3.12]). This is called the *order polynomial of P*.

(2) Let P be a finite poset and let $\Omega(P, n)$ be the order polynomial of P. We put

$$h_P(x) := \begin{cases} \Omega(P, x) & \text{if } x \in \mathbb{Z} \text{ with } 1 \leqslant x, \\ 0 & \text{otherwise.} \end{cases}$$

Then h_P is a polynomial function, and we define a polynomial function in two variables $f_P(x, y)$ associated with $h_P(x)$ as follows.

$$f_P(x,y) := h_P(x) \cdot \rho(y),$$

where

$$\rho(y) := \begin{cases} 1 & \text{if } y = 0, \\ 0 & \text{otherwise.} \end{cases}$$

We call $f_P(x, y)$ the generalized polynomial function associated with P. We note that $d(P) = d(h_P)$.

(3) For every integer i with $0 \leq i \leq d(P)$ we put $\chi_i^H(P) := \chi_i^H(h_P)$ and $g_i(P) := g_i(f_P)$, which are called the *i*th sectional *H*-arithmetic genus and the *i*th sectional geometric genus of *P* respectively. We note that $g_1(P) = g_s(h_P)$ (see Remark 2).

Definition 6. (1) Let P be a finite poset, and let C be a subset of P. Then C is called a *chain of* P if any two elements of C are comparable.

(2) Let P be a finite poset, and let C be a chain of P. Then we put $l(C) := \sharp(C) - 1$.

(3) Let P be a finite poset. Then we put

$$l(P) := \max\{l(C) \mid C \text{ is a chain of } P\},\$$

which is called the *length* of P.

(4) Let n be a natural number and let Σ_n be the set of all permutations of $\{1, \ldots, n\}$. For $\sigma \in \Sigma_n$ with

$$\sigma = \left(\begin{array}{rrrr} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{array}\right),$$

we put

$$\llbracket a_1, \ldots, a_n \rrbracket := \left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{array} \right).$$

(5) Let P be a finite poset. We put $P = \{x_1, \ldots, x_{d(P)}\}$ and

$$A(P) := \{ \mu : P \to \{1, \dots, d(P)\} |$$

$$\mu \text{ is a bijection such that } \mu(x_i) < \mu(x_j) \text{ if } x_i < x_j \}.$$

(5.1) We fix an element $\mu \in A(P)$. Then we put

$$\mathcal{L}(P;\mu) := \{ \llbracket \mu \circ \sigma^{-1}(1), \dots, \mu \circ \sigma^{-1}(d(P)) \rrbracket \mid \sigma \in A(P) \}.$$

By definition, we get that $\mathcal{L}(P;\mu) \subset \Sigma_{d(P)}$. We call the set $\mathcal{L}(P;\mu)$ the Jordan-Hölder set of P with respect to μ (see [6, 3.13]).

(5.2) For $\pi \in \Sigma_n$ with $\pi = (a_1, \ldots, a_n)$, we put

$$D(\pi) := \{a_i \mid a_i > a_{i+1}\}$$
 and $\delta(\pi) := \sharp D(\pi).$

For a natural number n and a subset $S \subset \{1, \ldots, n-1\}$, we put

$$D_n(S) := \{ \pi \in \Sigma_n \mid S = D(\pi) \}.$$

Let $\mu, \mu' \in A(P)$ with $\mu \neq \mu'$. Then by [6, 3.13.1 Theorem], we obtain the following. For any subset $S \subset \{1, \ldots, d(P) - 1\}, \sharp(D_{d(P)}(S) \cap \mathcal{L}(P;\mu)) = \sharp(D_{d(P)}(S) \cap \mathcal{L}(P;\mu'))$. In particular, we get that for every integer i with $1 \leq i \leq d(P) - 1$

$$\sharp\{\pi \in \mathcal{L}(P;\mu) \mid \delta(\pi) = i\} = \sharp\{\pi \in \mathcal{L}(P;\mu') \mid \delta(\pi) = i\}.$$

So when we use results concerned with $\delta(\pi)$ (for example, Proposition 1 below), we describe the Jordan-Hölder set as $\mathcal{L}(P)$ instead of $\mathcal{L}(P;\mu)$ for $\mu \in A(P)$.

Proposition 1. Let P be a finite poset and let $h_P(x)$ be the following:

$$h_P(x) := \begin{cases} \Omega(P, x) & \text{if } x \ge 1, \\ 0 & \text{otherwise} \end{cases}$$

Then

$$F_{h_P}(t) = \left(\sum_{\pi \in \mathcal{L}(P)} t^{1+\delta(\pi)}\right) (1-t)^{-d(P)-1}.$$

Proof. See [6, 3.15.8 Theorem].

Notation 5. Let P be a finite poset, and let $f_P(x, y)$ be the generalized polynomial function associated with P. By [1, Theorem 2.1 and Remark 2.4] there exists a polynomial $\phi(t) \in \mathbb{Z}[t]$ such that

$$F_{h_P}(t) = \frac{\phi(t)}{(1-t)^d},$$

where $d = d(h_P) + 1$. Here we put $F_{f_P}(t) := F_{h_P}(t), \phi_{f_P}(t) := \phi(t)$, and

$$\phi_{f_P}(t) = \sum_{j=0}^{d(\phi_{f_P})} a_j t^j,$$

where $a_j \in \mathbb{Z}$ for every j. Let $a_j(P) := a_j$.

 \square

Remark 3. We note that $h_P(t) \in \mathcal{PF}^{\geq 0}$, $P_{h_P}(t) \neq 0_{\mathbb{Q}[t]}$, and $f_P(0, m) = f_P(1, m) = 0$ for every integer m with $m \neq 0$. Hence by [1, Theorem 3.2] we get the following:

(1) For every integer *i* with $1 \leq i \leq d(P)$

$$g_i(P) = \begin{cases} \sum_{k=i+1}^{d(\phi_{f_P})} {\binom{k-1}{i}} a_k(P) & \text{if } i+1 \leq d(\phi_{f_P}), \\ 0 & \text{if } d(\phi_{f_P}) \leq i. \end{cases}$$

(2) Since $f_P(x, y)$ satisfies the assumptions in [1, Corollary 3.2], we get $g_i(P) \ge 0$ for every integer *i* with $1 \le i \le d(P)$. Moreover if i = d(P), then $g_{d(P)}(P) = 0$ by Proposition 1 and (1) above.

2. Main results

In this section, by using the sectional geometric genus of a poset P, we are going to give two criterions about the case in which P has no order.

Theorem 2. Let d and k be nonnegative integers and S(a, b) the Stirling number of the second kind, where a and b are nonnegative integers. Then for every integer j with $0 \leq j \leq d$ we have

$$e_j^{k,d}(t^k) = (-1)^{d-k}(d-j)!S(k+1,d+1-j).$$

Proof. By Lemma 1 and Notation 4 we have

$$t^{k} = \sum_{j=0}^{d} (-1)^{j} e_{j}^{k,d}(t^{k}) \binom{t+d-j}{d-j}.$$
 (1)

Using this equation (1), we have

$$\begin{split} (-t)^k &= \sum_{j=0}^d (-1)^j e_j^{k,d}(t^k) \binom{-t+d-j}{d-j} \\ &= \sum_{j=0}^d (-1)^j e_j^{k,d}(t^k) \frac{(-t+d-j)(-t+d-j-1)\cdots(-t+1)}{(d-j)!} \\ &= \sum_{j=0}^d (-1)^j (-1)^{d-j} e_j^{k,d}(t^k) \frac{(t-d+j)(t-d+j+1)\cdots(t-1)}{(d-j)!} \\ &= \sum_{j=0}^d (-1)^d e_j^{k,d}(t^k) \binom{t-1}{d-j}. \end{split}$$

Hence we have

$$(-1)^{d-k}t^{k} = \sum_{j=0}^{d} e_{j}^{k,d}(t^{k}) \binom{t-1}{d-j}.$$
(2)

Moreover by (2) we have

$$\begin{aligned} (-1)^{d-k}t^{k+1} &= \sum_{j=0}^{d} e_{j}^{k,d}(t^{k})t\binom{t-1}{d-j} \\ &= \sum_{j=0}^{d} e_{j}^{k,d}(t^{k})\frac{t(t-1)\cdots(t-d+j)}{(d-j)!} \\ &= \sum_{j=0}^{d} e_{j}^{k,d}(t^{k})\frac{t(t-1)\cdots(t-d+j)}{(d-j+1)!}(d-j+1) \\ &= \sum_{j=0}^{d} (d-j+1)e_{j}^{k,d}(t^{k})\binom{t}{d-j+1} \\ &= \sum_{j=0}^{d} (d-j+1)e_{j}^{k,d}(t^{k})\binom{t}{d-j+1} \\ &= \sum_{j=0}^{k} (k-j+1)e_{d-k+j}^{k,d}(t^{k})\binom{t}{k-j+1}. \end{aligned}$$

On the other hand, by [6, (1.94d)] we get

$$t^{k+1} = \sum_{j=0}^{k+1} (k-j+1)! S(k+1,k+1-j) \binom{t}{k-j+1}$$
$$= \sum_{j=0}^{k} (k-j+1)! S(k+1,k+1-j) \binom{t}{k-j+1}$$

because S(k+1, 0) = 0.

Therefore we get $e_{d-k+j}^{k,d}(t^k) = (-1)^{d-k}(k-j)!S(k+1,k+1-j)$ for every integer j with $0 \leq j \leq k$. Hence we get $e_j^{k,d}(t^k) = (-1)^{d-k}(d-j)!S(k+1,d+1-j)$ for every integer j with $d-k \leq j \leq d$. On the other hand, we have $e_j^{k,d}(t^k) = 0 = (-1)^{d-k}(d-j)!S(k+1,d+1-j)$ for every integer j with $0 \leq j \leq d-k-1$. So we get the assertion. **Corollary 2.** Let d be a nonnegative integer and S(a,b) the Stirling number of the second kind. Then for every integer j with $0 \le j \le d$ we have

$$e_j(t^d) = (d-j)!S(d+1, d+1-j).$$

Theorem 3. Let d be a nonnegative integer and $h(t) \in \mathbb{C}[t]$ be a polynomial $h(t) = \sum_{k=0}^{d} c_k t^k$ in t such that $h(n) \in \mathbb{Z}$ for every integer n, where $c_d \neq 0$. Then for every integer i with $0 \leq i \leq d$ the following equality holds.

$$\chi_i^H(h) = \sum_{l=0}^d (-1)^l c_{d-l} \left\{ \sum_{j=0}^i (-1)^j (d-j)! S(d+1-l,d+1-j) \right\}.$$

Proof. First we note that $t^k = \sum_{j=0}^d (-1)^j e_j^{k,d}(t^k) {\binom{t+d-j}{d-j}}$. Then

$$h(t) = \sum_{k=0}^{d} c_k t^k = \sum_{k=0}^{d} c_k \left\{ \sum_{j=0}^{d} (-1)^j e_j^{k,d}(t^k) \binom{t+d-j}{d-j} \right\}$$
$$= \sum_{j=0}^{d} (-1)^j \left\{ \sum_{k=0}^{d} c_k e_j^{k,d}(t^k) \right\} \binom{t+d-j}{d-j}$$
$$= \sum_{j=0}^{d} (-1)^j \left\{ \sum_{l=0}^{d} c_{d-l} e_j^{d-l,d}(t^{d-l}) \right\} \binom{t+d-j}{d-j}.$$

So we get $e_j(h(t)) = \sum_{l=0}^d c_{d-l} e_j^{d-l,d}(t^{d-l})$ (see Notation 4). Hence

$$\chi_i^H(h) = \sum_{j=0}^i (-1)^j \left\{ \sum_{l=0}^d c_{d-l} e_j^{d-l,d}(t^{d-l}) \right\}.$$

By using Theorem 2 we have

$$\chi_i^H(h) = \sum_{j=0}^i (-1)^j \left\{ \sum_{l=0}^d c_{d-l} (-1)^l (d-j)! S(d-l+1,d+1-j) \right\}$$
$$= \sum_{l=0}^d (-1)^l c_{d-l} \left\{ \sum_{j=0}^i (-1)^j (d-j)! S(d+1-l,d+1-j) \right\}.$$

Therefore we get the assertion.

By Theorem 3 we see that if $h(t) = t^d$, then

$$\chi_i^H(h) = \sum_{j=0}^i (-1)^j (d-j)! S(d+1, d+1-j).$$

In this case, we can also prove the following theorem.

Theorem 4. Let d be a nonnegative integer and S(a, b) the Stirling number of the second kind, where a and b are nonnegative integers. Let $h(t) = t^d$. Then for every integer i with $0 \le i \le d$ we have

$$\chi_i^H(h) = (-1)^i (d-i)! S(d,d-i).$$

Proof. We prove this by induction on i.

(i) If i = 0, then $\chi_0^H(h) = e_0(t^d) = d!S(d+1, d+1) = d!S(d, d)$ and this shows that it is true for the case of i = 0.

(ii) Assume that it is true for the case of i = k - 1. So we have

$$\sum_{j=0}^{k-1} (-1)^j e_j(t^d) = \chi_{k-1}^H(h) = (-1)^{k-1} (d-k+1)! S(d,d-k+1).$$
(3)

Next we consider the case of i = k. Then by Corollary 2, [6, (1.93)] and (3)

$$\begin{split} \chi_k^H(h) &= \sum_{j=0}^k (-1)^j e_j(t^d) = (-1)^k e_k(t^d) + \sum_{j=0}^{k-1} (-1)^j e_j(t^d) \\ &= (-1)^k (d-k)! S(d+1,d+1-k) \\ &+ (-1)^{k-1} (d-k+1)! S(d,d+1-k) \\ &= (-1)^{k-1} (d-k)! \{-S(d+1,d+1-k) \\ &+ (d-k+1)S(d,d+1-k)\} \\ &= (-1)^{k-1} (d-k)! \{-(d+1-k)S(d,d+1-k) \\ &- S(d,d-k) + (d-k+1)S(d,d+1-k)\} \\ &= (-1)^k (d-k)! S(d,d-k). \end{split}$$

So we get the assertion.

The following corollary of Theorem 4 has been proved in [3] by a different method.

Corollary 3 (Kaki). Let P be a poset such that P has no order. Then for every integer i with $0 \le i \le d(P)$ we have

$$g_i(P) = (d(P) - i)!S(d(P), d(P) - i).$$

Proof. Here we note that $h_P(t) = t^{d(P)}$ in this case. By Theorem 4 we have $\chi_i^H(P) = \chi_i^H(h_P) = (-1)^i (d(P) - i)! S(d(P), d(P) - i)$. On the other hand,

$$\nabla f_2(0) = \sum_{y \leqslant 0} f_2(y) = \sum_{y \leqslant 0} h_P(0)\rho(y) = h_P(0)\rho(0) = h_P(0) = 0$$

and

$$\nabla f_2(-i) = \sum_{y \leqslant -i} f_2(y) = \sum_{y \leqslant -i} h_P(0)\rho(y)$$

=
$$\begin{cases} h_P(0)\rho(0), & \text{if } i = 0, \\ 0, & \text{if } i \geqslant 1 \\ = 0. \end{cases}$$

Therefore by Definition 4 we get the assertion.

Theorem 5. Let P be a finite poset. Then the following are equivalent

- each other.
 - (i) P has no order.
 - (ii) $g_{d(P)-1}(P) \neq 0.$
 - (iii) $g_{d(P)-1}(P) = 1.$

Proof. By Theorem 1 we see that $g_{d(P)-1}(P) \neq 0$ if and only if l(P) < d(P) - (d(P) - 1) = 1. Hence $g_{d(P)-1}(P) \neq 0$ if and only if l(P) = 0. So we get the equivalence (i) and (ii) because l(P) = 0 means that P has no order.

On the other hand, by Corollary 3 we see that

$$g_{d(P)-1}(P) = S(d(P), 1) = 1$$

if P has no order. Therefore (i) implies (iii). Since (iii) implies (ii), we get the assertion. $\hfill \Box$

Theorem 6. Let P be a finite poset. Then

$$g_i(P) \leqslant (d(P) - i)! S(d(P), d(P) - i)$$

holds for every integer i with $0 \le i \le d(P) - 1$. Moreover this equality holds for some i with $0 \le i \le d(P) - 1$ if and only if P has no order.

 \square

Proof. Here we note the following

Claim 1. Let P be a finite poset. Then P has an order if and only if $\sigma \notin \mathcal{L}(P)$, where

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & \cdots & d(P) - 1 & d(P) \\ d(P) & d(P) - 1 & \cdots & 2 & 1 \end{array}\right)$$

Proof. First we note that $S_{d(P)} = \mathcal{L}(P)$ if P has no order. Hence $\sigma \in \mathcal{L}(P)$ if P has no order. So it suffices to show that $\sigma \notin \mathcal{L}(P)$ if P has an order. Assume that P has an order. Then there exist elements $x_i, x_j \in P$ such that $x_i < x_j$. For any $\delta \in \mathcal{L}(P)$, there exist $\mu, \pi \in A(P)$ such that $\delta = \pi \circ \mu^{-1}$. On the other hand, we have $\mu(x_i) = a_1 < b_1 = \mu(x_j)$ and $\pi(x_i) = a_2 < b_2 = \pi(x_j)$. Then we have $\delta(a_1) = a_2 < b_2 = \delta(b_1)$. Since σ does not satisfy this property, we see that $\sigma \notin \mathcal{L}(P)$ and we get the assertion of this claim.

Using this claim, we can prove the following.

Claim 2. Let Q and R be finite posets with d(Q) = d(R). Assume that Q has no order and R has an order. Then $g_i(Q) > g_i(R)$ for every integer i with $0 \le i \le d(Q) - 1 = d(R) - 1$.

Proof. We use Notation 5. First of all, we note that $\mathcal{L}(Q) = S_{d(Q)}$. We see from Proposition 1 that $d(\phi_{f_Q}) = d(Q)$. So by Remark 3 (1) we have

$$g_i(Q) = \sum_{k=i+1}^{d(Q)} \binom{k-1}{i} a_k(Q)$$

for every integer *i* with $0 \leq i \leq d(Q) - 1$. We note that $a_{d(Q)}(Q) > 0$ by Proposition 1 and Claim 1.

On the other hand, $\mathcal{L}(R) \subset S_{d(R)} = S_{d(Q)} = \mathcal{L}(Q)$ holds by assumption. We see from Proposition 1 and Claim 1 that $d(\phi_{f_R}) < d(R) = d(Q)$. We note that by Proposition 1 we obtain $a_k(Q) \ge a_k(R)$ for every integer k with $0 \le k \le d(Q) = d(R)$. Hence we see from Proposition 1 that

$$g_i(Q) - g_i(R) = \sum_{k=i+1}^{d(Q)} \binom{k-1}{i} a_k(Q) - \sum_{k=i+1}^{d(\phi_{f_R})} \binom{k-1}{i} a_k(R)$$

$$\ge a_{d(Q)}(Q) > 0.$$

Therefore we get the assertion of Claim 2.

By Claim 2 and Corollary 3, we get the assertion of Theorem 6.

References

- Y. Fukuma, On invariants of polynomial functions, Japan. J. Math 31 (2005), 345–378.
- [2] Y. Fukuma, Topics on invariants of polarized varieties, Sugaku Expositions 25 (2012), 19–45.
- [3] Y. Kaki, Master's thesis, Kochi University, in Japanese (2007).
- [4] A. Ooishi, Genera and arithmetic genera of commutative rings, Hiroshima Math. J. 17 (1987), 47–66.
- [5] A. Ooishi, Δ-genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987), 361–372.
- [6] R. P. Stanley, *Enumerative combinatorics*, Volume 1, Second edition. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 2012.

CONTACT INFORMATION

Yoshiaki Fukuma

Department of Mathematics and Physics, Faculty of Science and Technology, Kochi University, Akebono-cho, Kochi 780-8520, Japan *E-Mail(s)*: fukuma@kochi-u.ac.jp

Received by the editors: 15.01.2019 and in final form 02.06.2020.