
“adm-n1” — 2021/4/10 — 20:38 — page 71 — #75

© Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 31 (2021). Number 1, pp. 71–83
DOI:10.12958/adm1319

On invariants of polynomial functions, II

Y. Fukuma

Communicated by V. A. Artamonov

Abstract. Let P be a finite partially ordered set. In our

previous paper, we defined the sectional geometric genus gi(P ) of P

and studied gi(P ). In this paper, by using this sectional geometric

genus of P , we will give a criterion about the case in which P has

no order.

Introduction

In our previous paper [1], we studied polynomial functions. In par-
ticular, we generalized the notion of the ith sectional geometric genus of
polarized varieties, which is an important invariant of polarized varieties
(see [2, Definition 3.2]), to the case of polynomial functions. Here we note
that if i = 1, then the first sectional geometric genus of any polynomial
function in two variables associated with a polynomial function h is equal
to the sectional genus of h which was defined by Ooishi [5, Definition 1.3]
(see Remark 2). By using this invariant, we proved the following theorem
about partially ordered sets (see [1, Theorem 4.1]).

Theorem 1. Let P be a finite partially ordered set, and let i be an integer
with 1 6 i 6 d(P ). Then gi(P ) = 0 if and only if l(P ) > d(P )− i, where
d(P ) = ♯(P ) and l(P ) denotes the length of P (see Definition 6 (3)).

As a corollary, we can get the following result which gives a neccesary
and sufficient condition for being totally ordered.
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Corollary 1. Let P be a finite partially ordered set. Then g1(P ) = 0 if
and only if P is a totally ordered set.

In this paper, by using the sectional geometric genus of a finite partially
ordered set P , we will give two criterions about the case in which P has
no order (Theorems 5 and 6).

1. Preliminaries

Notation 1. For a real number m and a non-negative integer n, let

[m]n =

{

m(m− 1) · · · (m− n+ 1) if n > 1,

1 if n = 0.

Then for n fixed, [t]n is a polynomial in t whose degree is n.
For any non-negative integer n,

n! :=

{

[n]n if n > 1,

1 if n = 0.

Assume that m and n are non-negative integers. Then we put

(

m

n

)

:=

{

[m]n
n! if m > n,

0 if m < n.

We note that
(

m

0

)

= 1 if m > 0.

Definition 1 (see [4, §1]). (1) Let f : Z → Z be a function. Then f is
called a polynomial function if f satisfies the following.
(A) There exist an integer N1 and a polynomial P (n) ∈ C[n] such that

f(n) = P (n) for every integer n with n > N1.
(B) There exists an integer N2 such that f(m) = 0 for every integer m

with m < N2.
In this case we put Pf (t) := P (t) because P (t) depends on the function f .
We call this polynomial Pf (t) the polynomial associated with f .

(2) Let φ(t) ∈ C[t, t−1] and we put φ(t) =
∑

i ait
i. Then we put

d(φ) := max{k | ak 6= 0}.

(3) Let f be a polynomial function such that Pf (t) 6= 0C[t]. Then we
put d(f) := d(Pf ).
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Remark 1. Let f be a polynomial function. Then Pf (t) ∈ Q[t] (see
[1, Remark 2.1 (1)]).

Notation 2. (1) Let f : Z → Z be a function. We put

∇f(n) :=
∑

i6n

f(i) and Ff (t) :=
∑

n∈Z

f(n)tn.

(2) PF denotes the set of polynomial functions, and

PF>0 := {g(t) ∈ PF | g(t) = 0 for ∀t < 0} .

Notation 3. Let f : Z× Z → Z be a function in two variables. We put
f1(x) := f(x, 0) and f2(y) := f(0, y).

Definition 2. Let h(x) be a polynomial function in x. Then a function
f : Z× Z → Z is called a polynomial function in two variables associated
with h(x) if the following hold.

(1) f1(x) = h(x).
(2) There exists an integer N such that f2(y) = 0 for every integer y

with y 6 N .

The following lemma is well-known:

Lemma 1. Let p(t) ∈ C[t] be a polynomial in t such that p(t) 6= 0C[t]
and p(n) ∈ Z for any integer n, and let k be the degree of p(t). Then for
every integer d with 0 6 k 6 d there exists a unique sequence of integers
(b0, b1, . . . , bd) such that the following holds.

p(t) =
d

∑

j=0

(−1)jbj

(

t+ d− j

d− j

)

.

Notation 4. Let h(t) ∈ C[t] be a polynomial in t such that h(t) 6= 0C[t]
and h(n) ∈ Z for every integer n. We put k = deg h(t), and let d be an
integer with k 6 d. Then by Lemma 1, there exists a unique sequence of
integers (b0, b1, . . . , bd) such that the following holds.

h(t) = b0

(

t+ d

d

)

− b1

(

t+ d− 1

d− 1

)

+ · · ·+ (−1)dbd.

Here we put ek,di (h(t)) := bi, and if k = d, then we put ei(h(t)) := e
d,d
i (h(t)).

Here we note that if k < d, then e
k,d
i (h(t)) = 0 for every integer i with

0 6 i 6 d− k − 1.
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Definition 3. (1) Let h(t) ∈ C[t] be a polynomial in t such that h(t) 6=
0C[t] and h(n) ∈ Z for every integer n. We use Notation 4. Then for every
integer i with 0 6 i 6 d(h), we define the ith sectional H-arithmetic genus
χH
i (h) of h(t) as follows.

χH
i (h) :=

i
∑

j=0

(−1)jej(h(t)).

(2) Let f : Z → Z be a polynomial function, and let Pf (t) ∈ Q[t] be
the polynomial associated with f such that Pf (t) 6= 0Q[t]. Then, for every
integer i with 0 6 i 6 d(f), we define the ith sectional H-arithmetic genus
χH
i (f) of f as follows.

χH
i (f) := χH

i (Pf ).

Definition 4. Let h(x) be a polynomial function in x such that h(x) 6=
0Q[x], and let f : Z × Z → Z be a two variable polynomial function
associated with h(x). We use Notations 2 and 3. For every integer i with
0 6 i 6 d(h), the ith sectional geometric genus gi(f) of f is defined by
the following:

gi(f) := (−1)i
(

χH
i (h)−∇f2(0) +∇f2(−i)

)

.

Remark 2. Let f : Z×Z → Z be a polynomial function in two variables
associated with a polynomial function h(x). If i = 1 and d(h) > 1, then
g1(f) = gs(h), that is, g1(f) is the sectional genus of h (see [1, Remark
3.4 (1)]).

Definition 5. From now on, a partially ordered set is called a poset for
short in this paper.

(1) Let P be a finite poset. We put

d(P ) := ♯(P )

and for every n ∈ N

Ω(P, n) := ♯{σ : P → {1, . . . , n} | σ(xi) 6 σ(xj) if xi 6 xj .}.

Then Ω(P, n) is a polynomial in n whose degree is d(P ) (see [6, 3.12]).
This is called the order polynomial of P .

(2) Let P be a finite poset and let Ω(P, n) be the order polynomial
of P . We put

hP (x) :=

{

Ω(P, x) if x ∈ Z with 1 6 x,

0 otherwise.
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Then hP is a polynomial function, and we define a polynomial function in
two variables fP (x, y) associated with hP (x) as follows.

fP (x, y) := hP (x) · ρ(y),

where

ρ(y) :=

{

1 if y = 0,

0 otherwise.

We call fP (x, y) the generalized polynomial function associated with P .
We note that d(P ) = d(hP ).

(3) For every integer i with 0 6 i 6 d(P ) we put χH
i (P ) := χH

i (hP )
and gi(P ) := gi(fP ), which are called the ith sectional H-arithmetic genus
and the ith sectional geometric genus of P respectively. We note that
g1(P ) = gs(hP ) (see Remark 2).

Definition 6. (1) Let P be a finite poset, and let C be a subset of P .
Then C is called a chain of P if any two elements of C are comparable.

(2) Let P be a finite poset, and let C be a chain of P . Then we put
l(C) := ♯(C)− 1.

(3) Let P be a finite poset. Then we put

l(P ) := max{l(C) | C is a chain of P},

which is called the length of P .
(4) Let n be a natural number and let Σn be the set of all permutations

of {1, . . . , n}. For σ ∈ Σn with

σ =

(

1 2 · · · n

a1 a2 · · · an

)

,

we put

[[a1, . . . , an]] :=

(

1 2 · · · n

a1 a2 · · · an

)

.

(5) Let P be a finite poset. We put P = {x1, . . . , xd(P )} and

A(P ) := {µ : P → {1, . . . , d(P )}|

µ is a bijection such that µ(xi) < µ(xj) if xi < xj}.

(5.1) We fix an element µ ∈ A(P ). Then we put

L(P ;µ) := {[[µ ◦ σ−1(1), . . . , µ ◦ σ−1(d(P ))]] | σ ∈ A(P )}.
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By definition, we get that L(P ;µ) ⊂ Σd(P ). We call the set L(P ;µ) the
Jordan-Hölder set of P with respect to µ (see [6, 3.13]).

(5.2) For π ∈ Σn with π = (a1, . . . , an), we put

D(π) := {ai | ai > ai+1} and δ(π) := ♯D(π).

For a natural number n and a subset S ⊂ {1, . . . , n− 1}, we put

Dn(S) := {π ∈ Σn | S = D(π)}.

Let µ, µ′ ∈ A(P ) with µ 6= µ′. Then by [6, 3.13.1 Theorem], we
obtain the following. For any subset S ⊂ {1, . . . , d(P )− 1}, ♯(Dd(P )(S) ∩
L(P ;µ)) = ♯(Dd(P )(S) ∩ L(P ;µ′)). In particular, we get that for every
integer i with 1 6 i 6 d(P )− 1

♯{π ∈ L(P ;µ) | δ(π) = i} = ♯{π ∈ L(P ;µ′) | δ(π) = i}.

So when we use results concerned with δ(π) (for example, Proposition 1
below), we describe the Jordan-Hölder set as L(P ) instead of L(P ;µ) for
µ ∈ A(P ).

Proposition 1. Let P be a finite poset and let hP (x) be the following:

hP (x) :=

{

Ω(P, x) if x > 1,

0 otherwise.

Then

FhP
(t) =





∑

π∈L(P )

t1+δ(π)



 (1− t)−d(P )−1.

Proof. See [6, 3.15.8 Theorem].

Notation 5. Let P be a finite poset, and let fP (x, y) be the generalized
polynomial function associated with P . By [1, Theorem 2.1 and Remark
2.4] there exists a polynomial φ(t) ∈ Z[t] such that

FhP
(t) =

φ(t)

(1− t)d
,

where d = d(hP ) + 1. Here we put FfP (t) := FhP
(t), φfP (t) := φ(t), and

φfP (t) =

d(φfP
)

∑

j=0

ajt
j ,

where aj ∈ Z for every j. Let aj(P ) := aj .
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Remark 3. We note that hP (t) ∈ PF>0, PhP
(t) 6= 0Q[t], and fP (0,m) =

fP (1,m) = 0 for every integer m with m 6= 0. Hence by [1, Theorem 3.2]
we get the following:

(1) For every integer i with 1 6 i 6 d(P )

gi(P ) =

{

∑d(φfP
)

k=i+1

(

k−1
i

)

ak(P ) if i+ 1 6 d(φfP ),

0 if d(φfP ) 6 i.

(2) Since fP (x, y) satisfies the assumptions in [1, Corollary 3.2], we
get gi(P ) > 0 for every integer i with 1 6 i 6 d(P ). Moreover if
i = d(P ), then gd(P )(P ) = 0 by Proposition 1 and (1) above.

2. Main results

In this section, by using the sectional geometric genus of a poset P , we
are going to give two criterions about the case in which P has no order.

Theorem 2. Let d and k be nonnegative integers and S(a, b) the Stirling
number of the second kind, where a and b are nonnegative integers. Then
for every integer j with 0 6 j 6 d we have

e
k,d
j (tk) = (−1)d−k(d− j)!S(k + 1, d+ 1− j).

Proof. By Lemma 1 and Notation 4 we have

tk =

d
∑

j=0

(−1)jek,dj (tk)

(

t+ d− j

d− j

)

. (1)

Using this equation (1), we have

(−t)k =
d

∑

j=0

(−1)jek,dj (tk)

(

−t+ d− j

d− j

)

=
d

∑

j=0

(−1)jek,dj (tk)
(−t+ d− j)(−t+ d− j − 1) · · · (−t+ 1)

(d− j)!

=
d

∑

j=0

(−1)j(−1)d−je
k,d
j (tk)

(t− d+ j)(t− d+ j + 1) · · · (t− 1)

(d− j)!

=
d

∑

j=0

(−1)dek,dj (tk)

(

t− 1

d− j

)

.
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Hence we have

(−1)d−ktk =
d

∑

j=0

e
k,d
j (tk)

(

t− 1

d− j

)

. (2)

Moreover by (2) we have

(−1)d−ktk+1 =
d

∑

j=0

e
k,d
j (tk)t

(

t− 1

d− j

)

=
d

∑

j=0

e
k,d
j (tk)

t(t− 1) · · · (t− d+ j)

(d− j)!

=
d

∑

j=0

e
k,d
j (tk)

t(t− 1) · · · (t− d+ j)

(d− j + 1)!
(d− j + 1)

=
d

∑

j=0

(d− j + 1)ek,dj (tk)

(

t

d− j + 1

)

=
d

∑

j=d−k

(d− j + 1)ek,dj (tk)

(

t

d− j + 1

)

=
k

∑

j=0

(k − j + 1)ek,dd−k+j(t
k)

(

t

k − j + 1

)

.

On the other hand, by [6, (1.94d)] we get

tk+1 =
k+1
∑

j=0

(k − j + 1)!S(k + 1, k + 1− j)

(

t

k − j + 1

)

=

k
∑

j=0

(k − j + 1)!S(k + 1, k + 1− j)

(

t

k − j + 1

)

because S(k + 1, 0) = 0.

Therefore we get e
k,d
d−k+j(t

k) = (−1)d−k(k − j)!S(k + 1, k + 1− j) for

every integer j with 0 6 j 6 k. Hence we get e
k,d
j (tk) = (−1)d−k(d −

j)!S(k+ 1, d+ 1− j) for every integer j with d− k 6 j 6 d. On the other

hand, we have e
k,d
j (tk) = 0 = (−1)d−k(d− j)!S(k + 1, d+ 1− j) for every

integer j with 0 6 j 6 d− k − 1. So we get the assertion.
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Corollary 2. Let d be a nonnegative integer and S(a, b) the Stirling
number of the second kind. Then for every integer j with 0 6 j 6 d we
have

ej(t
d) = (d− j)!S(d+ 1, d+ 1− j).

Theorem 3. Let d be a nonnegative integer and h(t) ∈ C[t] be a polyno-
mial h(t) =

∑d
k=0 ckt

k in t such that h(n) ∈ Z for every integer n, where
cd 6= 0. Then for every integer i with 0 6 i 6 d the following equality
holds.

χH
i (h) =

d
∑

l=0

(−1)lcd−l







i
∑

j=0

(−1)j(d− j)!S(d+ 1− l, d+ 1− j)







.

Proof. First we note that tk =
∑d

j=0(−1)jek,dj (tk)
(

t+d−j
d−j

)

. Then

h(t) =

d
∑

k=0

ckt
k =

d
∑

k=0

ck







d
∑

j=0

(−1)jek,dj (tk)

(

t+ d− j

d− j

)







=
d

∑

j=0

(−1)j

{

d
∑

k=0

cke
k,d
j (tk)

}

(

t+ d− j

d− j

)

=
d

∑

j=0

(−1)j

{

d
∑

l=0

cd−le
d−l,d
j (td−l)

}

(

t+ d− j

d− j

)

.

So we get ej(h(t)) =
∑d

l=0 cd−le
d−l,d
j (td−l) (see Notation 4). Hence

χH
i (h) =

i
∑

j=0

(−1)j

{

d
∑

l=0

cd−le
d−l,d
j (td−l)

}

.

By using Theorem 2 we have

χH
i (h) =

i
∑

j=0

(−1)j

{

d
∑

l=0

cd−l(−1)l(d− j)!S(d− l + 1, d+ 1− j)

}

=

d
∑

l=0

(−1)lcd−l







i
∑

j=0

(−1)j(d− j)!S(d+ 1− l, d+ 1− j)







.

Therefore we get the assertion.
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By Theorem 3 we see that if h(t) = td, then

χH
i (h) =

i
∑

j=0

(−1)j(d− j)!S(d+ 1, d+ 1− j).

In this case, we can also prove the following theorem.

Theorem 4. Let d be a nonnegative integer and S(a, b) the Stirling number
of the second kind, where a and b are nonnegative integers. Let h(t) = td.
Then for every integer i with 0 6 i 6 d we have

χH
i (h) = (−1)i(d− i)!S(d, d− i).

Proof. We prove this by induction on i.
(i) If i = 0, then χH

0 (h) = e0(t
d) = d!S(d+ 1, d+ 1) = d!S(d, d) and this

shows that it is true for the case of i = 0.
(ii) Assume that it is true for the case of i = k − 1. So we have

k−1
∑

j=0

(−1)jej(t
d) = χH

k−1(h) = (−1)k−1(d− k + 1)!S(d, d− k + 1). (3)

Next we consider the case of i = k. Then by Corollary 2, [6, (1.93)]
and (3)

χH
k (h) =

k
∑

j=0

(−1)jej(t
d) = (−1)kek(t

d) +
k−1
∑

j=0

(−1)jej(t
d)

= (−1)k(d− k)!S(d+ 1, d+ 1− k)

+ (−1)k−1(d− k + 1)!S(d, d+ 1− k)

= (−1)k−1(d− k)! {−S(d+ 1, d+ 1− k)

+(d− k + 1)S(d, d+ 1− k)}

= (−1)k−1(d− k)! {−(d+ 1− k)S(d, d+ 1− k)

−S(d, d− k) + (d− k + 1)S(d, d+ 1− k)}

= (−1)k(d− k)!S(d, d− k).

So we get the assertion.

The following corollary of Theorem 4 has been proved in [3] by a
different method.
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Corollary 3 (Kaki). Let P be a poset such that P has no order. Then
for every integer i with 0 6 i 6 d(P ) we have

gi(P ) = (d(P )− i)!S(d(P ), d(P )− i).

Proof. Here we note that hP (t) = td(P ) in this case. By Theorem 4 we
have χH

i (P ) = χH
i (hP ) = (−1)i(d(P )− i)!S(d(P ), d(P )− i). On the other

hand,

∇f2(0) =
∑

y60

f2(y) =
∑

y60

hP (0)ρ(y) = hP (0)ρ(0) = hP (0) = 0

and

∇f2(−i) =
∑

y6−i

f2(y) =
∑

y6−i

hP (0)ρ(y)

=

{

hP (0)ρ(0), if i = 0,
0, if i > 1

= 0.

Therefore by Definition 4 we get the assertion.

Theorem 5. Let P be a finite poset. Then the following are equivalent
each other.

(i) P has no order.
(ii) gd(P )−1(P ) 6= 0.
(iii) gd(P )−1(P ) = 1.

Proof. By Theorem 1 we see that gd(P )−1(P ) 6= 0 if and only if l(P ) <
d(P )− (d(P )− 1) = 1. Hence gd(P )−1(P ) 6= 0 if and only if l(P ) = 0. So
we get the equivalence (i) and (ii) because l(P ) = 0 means that P has no
order.

On the other hand, by Corollary 3 we see that

gd(P )−1(P ) = S(d(P ), 1) = 1

if P has no order. Therefore (i) implies (iii). Since (iii) implies (ii), we get
the assertion.

Theorem 6. Let P be a finite poset. Then

gi(P ) 6 (d(P )− i)!S(d(P ), d(P )− i)

holds for every integer i with 0 6 i 6 d(P ) − 1. Moreover this equality
holds for some i with 0 6 i 6 d(P )− 1 if and only if P has no order.
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Proof. Here we note the following

Claim 1. Let P be a finite poset. Then P has an order if and only if
σ 6∈ L(P ), where

σ =

(

1 2 · · · d(P )− 1 d(P )
d(P ) d(P )− 1 · · · 2 1

)

Proof. First we note that Sd(P ) = L(P ) if P has no order. Hence σ ∈ L(P )
if P has no order. So it suffices to show that σ 6∈ L(P ) if P has an order.
Assume that P has an order. Then there exist elements xi, xj ∈ P such
that xi < xj . For any δ ∈ L(P ), there exist µ, π ∈ A(P ) such that
δ = π ◦ µ−1. On the other hand, we have µ(xi) = a1 < b1 = µ(xj) and
π(xi) = a2 < b2 = π(xj). Then we have δ(a1) = a2 < b2 = δ(b1). Since
σ does not satisfiy this property, we see that σ 6∈ L(P ) and we get the
assertion of this claim.

Using this claim, we can prove the following.

Claim 2. Let Q and R be finite posets with d(Q) = d(R). Assume that
Q has no order and R has an order. Then gi(Q) > gi(R) for every integer
i with 0 6 i 6 d(Q)− 1 = d(R)− 1.

Proof. We use Notation 5. First of all, we note that L(Q) = Sd(Q). We
see from Proposition 1 that d(φfQ) = d(Q). So by Remark 3 (1) we have

gi(Q) =

d(Q)
∑

k=i+1

(

k − 1

i

)

ak(Q)

for every integer i with 0 6 i 6 d(Q)− 1. We note that ad(Q)(Q) > 0 by
Proposition 1 and Claim 1.

On the other hand,L(R) ⊂ Sd(R) = Sd(Q) = L(Q) holds by assumption.
We see from Proposition 1 and Claim 1 that d(φfR) < d(R) = d(Q). We
note that by Proposition 1 we obtain ak(Q) > ak(R) for every integer k

with 0 6 k 6 d(Q) = d(R). Hence we see from Proposition 1 that

gi(Q)− gi(R) =

d(Q)
∑

k=i+1

(

k − 1

i

)

ak(Q)−

d(φfR
)

∑

k=i+1

(

k − 1

i

)

ak(R)

> ad(Q)(Q) > 0.

Therefore we get the assertion of Claim 2.

By Claim 2 and Corollary 3, we get the assertion of Theorem 6.
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