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Abstract. In this paper, we characterize the minimal prime

ideals of skew PBW extensions over several classes of rings. We unify

different results established in the literature for Ore extensions, and

extend all of them to a several families of noncommutative rings of

polynomial type which cannot be expressed as these extensions.

Introduction

For a ring B, the set of prime ideals of B is denoted by Spec(B), and
the set of minimal prime ideals of B is denoted by MinSpec(B). The lower

nil radical or the prime radical and the set of nilpotent elements of B are
denoted by Nil∗(B) and Nil(B), respectively. We recall that any prime
ideal U of B contains a minimal prime ideal (Goodearl and Warfield [16],
Proposition 3.3). As a matter of fact, if B is a right or left Noetherian
ring, then there exist only finitely many minimal prime ideals, and there is
a finite product of minimal prime ideals (repetitions allowed) that equals
zero ([16], Theorem 3.4).
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Recall that a ring B is said to be 2-primal if and only if Nil∗(B) =
Nil(B), i.e., if the prime radical is completely semiprime (an ideal I of
B is completely semiprime, if a2 ∈ I implies a ∈ I). The importance
of 2-primal rings is that they can be considered as a generalization of
commutative rings and reduced rings (a ring B is reduced, if B has no
nonzero nilpotent elements). Commutative and reduced rings are strictly
contained in 2-primal rings (see Marks [40] for a beautiful and detailed
exposition about the relations between these rings). Several results about
2-primal rings can be found in the literature. For instance, Shin [60],
Proposition 1.11, showed that a ring B is 2-primal if and only if every
minimal prime ideal P of B is completely prime. He also proved that the
minimal prime spectrum of a 2-primal ring is a Hausdorff space with a
basis of clopen sets ([60], Proposition 4.7). Birkenmeier et al., [9] proved
that the 2-primal condition is inherited by ordinary polynomial extensions.

With respect to the well-known Ore extensions (also called skew poly-

nomial rings) defined by Ore [44], objects of interest for us in this paper,
Ferrero and Kishimoto [11], Example 2.1, showed that if B is 2-primal,
the differential polynomial ring B[x; δ] need not to be 2-primal. For a
2-primal ring B, Marks [38] investigated conditions on ideals of B that
ensure that a skew polynomial ring B[x;σ] or a differential polynomial
ring B[x; δ] be 2-primal. On the other hand, Marks [39] considered the
2-primal property of the Ore extension B[x;σ, δ] where B is a local ring
and σ is an automorphism of B. Marks showed that for a local ring with
a nilpotent maximal ideal, the Ore extension B[x;σ, δ] will or will not
be 2-primal depending on the δ-stability of the maximal ideal of B. If
B[x;σ, δ] is 2-primal, it will satisfy an even stronger condition; if B[x;σ, δ]
is not 2-primal, it will fail to satisfy an even weaker condition. In particular,
Marks [39], Example 2.2, showed that Ore extension of automorphism
type B[x;σ] (i.e., σ is an automorphism of B) need not be 2-primal. With
respect to the minimal prime ideals of 2-primal rings, Kim and Kwak [26]
is one of the most important works. Several treatments about minimal
prime ideals of Ore extensions can be found in Gabriel [12], Goodearl and
Letzter [15], Goodearl and Warfield [16], Chapter 3, or McConnell and
Robson [41].

Besides of Ore extensions, another classes of rings are of interest for
us in this paper. These are the following: the σ-rigid rings defined by
Krempa [27], the σ(∗)-rings introduced by Kwak [28] and the weak σ-rigid
rings defined by Ouyang [45]. We will say a few words about each one of
these algebraic structures. Following Krempa [27], an endomorphism σ of
a ring B is called rigid, if aσ(a) = 0 implies a = 0, for a ∈ B. B is called
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σ-rigid, if there exists a rigid endomorphism σ of B. It is easy to see that
any rigid endomorphism of a ring is injective and that σ-rigid rings are
reduced (see [22] for details and [47] for a complete list of works about
these rings). Several properties of σ-rigid rings have been established in
the literature (e.g., [22], [27] and [47]). Now, following Kwak [28], if B is
a ring and σ is an endomorphism of B, then B is said to be a σ(∗)-ring,
if aσ(a) ∈ Nil∗(B) implies a ∈ Nil∗(B), for a ∈ B. Kwak established a
relation between 2-primal rings and σ(∗)-rings. For instance, he proved
that if B is a 2-primal ring and σ is an automorphism of B, then B is a
σ(∗)-ring if and only if σ(P ) = P , for all P ∈ MinSpec(B), and that if B
is a σ(∗)-ring with σ(Nil∗(B)) = Nil∗(B), then B[x;σ] is 2-primal if and
only if Nil∗(B)[x;σ] = Nil∗(B[x;σ]) ([28], Theorems 5 and 12). Finally,
following Ouyang [45], if σ is an endomorphism of a ring B, B is said to
be weak σ-rigid, when aσ(a) ∈ Nil(B) if and only if a ∈ Nil(B). Ouyang
showed that B is σ-rigid if and only if B is weak σ-rigid and reduced ([45],
Proposition 2.2). In this way, weak σ-rigid rings are a generalization of
σ-rigid rings deleting the condition of being reduced.

Relations between the three families of rings described above and the
notion of 2-primal ring have been established by Bhat [5], [6], [7] and [8].
Our objective in this paper is to generalize all results obtained by Bhat in
these four papers in the context of Ore extensions of automorphism type
(i.e., when σ is an automorphism of B), to the setting of skew Poincaré-
Birkhoff-Witt extensions (PBW, for short) of bijective type introduced
by Gallego and Lezama [13], which are strictly more general than Ore
extensions of automorphism type (see [34], Section 3.2; in [58], Example
1, there are remarkable noncommutative rings of skew PBW extensions
which can not be expressed as Ore extensions). Skew PBW extensions
were introduced with the aim of generalizing the PBW extensions defined
by Bell and Goodearl [4]. Some words about the generality of skew PBW
extensions with respect to another families of noncommutative rings are
said in Section 1. Homological and ring-theoretical properties for these
extensions have been investigated by several people (e.g., Artamonov [2],
Hashemi et al., [17], [18], [19], and [20], Lezama et al., [1], [24], [29], [31],
[33], [35], Louzari et al., [37], Tumwesigye et al., [61], Zambrano [62], and
the authors, [42], [43], [48], [51], [52] and [55]). As a matter of fact, a
book containing research results about these extensions has recently been
published, see [10].

It is important to say that this paper continues the study of ideals of
these extensions initiated in [21], [30], [37], [53], [56] and [58]. We remark
that in [37] and [56] the second author considered the question about the
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property of being 2-primal and the minimal prime ideals for skew PBW
extensions by using a different approach to the presented here.

Next, we describe the structure of the article. In Section 1 we esta-
blish some useful results about skew PBW extensions for the rest of the
paper. Section 2 contains the generalization of all the results obtained
by Bhat in [5], [6] and [7], from Ore extensions of automorphism type to
bijective skew PBW extensions. The Σ-rigid rings and the weak Σ-rigid
rings defined by the second author in [47] and [54], respectively, are key in
this generalization (they are the corresponding generalization of σ-rigid
rings and weak σ-rigid rings, respectively). Also, in this section, we define
the Σ(∗)-rings as a natural generalization of σ(∗)-rings. Finally, in Section
3 we generalize the assertions presented by Bhat [8], again, from Ore
extensions of automorphism type to bijective skew PBW extensions. In
Sections 2 and 3 we explicitly write the results we are extending. In [34],
[55], and [58] there are several examples of these extensiones where the
theory developed in both sections can be illustrated. In the last section,
Section 4, we say a few words about the topic of interest in this paper
and a possible future work. The results presented here are new for skew
PBW extensions and can be considered as a contribution to the study of
minimal prime ideals of noncommutative rings of polynomial type.

Throughout the paper, the word ring means an associative ring (not
necessarily commutative) with unity. The symbol k will denote a field.
The set of positive integers is denoted by N.

1. Preliminaries on skew PBW extensions

Skew PBW extensions (also known as σ-PBW extensions) were defined
by Gallego and Lezama with the aim of generalizing the PBW extensions
introduced by Bell and Goodearl [4]. As time went by, we began to realize
that skew PBW extensions generalize important families of noncommuta-
tive rings (not only PBW extensions) appearing in representation theory,
Hopf algebras, quantum groups, noncommutative algebraic geometry and
another algebras of interest in the context of mathematical physics. Some
of these families are the following: Ore extensions of injective type, al-
most normalizing extensions defined by McConnell and Robson in [41],
solvable polynomial rings introduced by Kandri-Rody and Weispfenning
in [25], 3-dimensional skew polynomial algebras considered by Rosenberg
[59], and diffusion algebras defined by Isaev, Pyatov, and Rittenberg [23].
The advantage of skew PBW extensions is that they do not require the
coefficients to commute with the variables and, moreover, the coefficients
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need not come from a field (see Definition 1). In fact, the skew PBW
extensions contain well-known groups of algebras such as some types of
G-algebras in the sense of Apel [3], Auslander-Gorenstein rings, some
Calabi-Yau and skew Calabi-Yau algebras, some Artin-Schelter regular
algebras, some Koszul algebras, quantum polynomials, and some quantum
universal enveloping algebras, see [10] for more details. Of course, from
the definition of skew PBW extensions it is very clear their relation with
quadratic algebras having PBW bases, see [46]. Therefore, as we can see,
skew PBW extensions cover a wide spectrum of noncommutative rings
formulated in the literature.

Next, we recall some results about skew PBW extensions which are
important for the rest of the paper.

Definition 1 ([13], Definition 1). Let R and A be rings. We say that A is
a skew PBW extension of R, which is denoted by A := σ(R)〈x1, . . . , xn〉,
if the following conditions hold:

(i) R is a subring of A sharing the same multiplicative identity element.
(ii) There exist elements x1, . . . , xn ∈ A such that A is a left free R-

module, with basis

Mon(A) := {xα = xα1
1 · · ·xαn

n | α = (α1, . . . , αn) ∈ Nn},

and x01 · · ·x
0
n := 1 ∈ Mon(A).

(iii) For each 1 6 i 6 n and any r ∈ R \ {0}, there exists an element
ci,r ∈ R \ {0} such that xir − ci,rxi ∈ R.

(iv) For any elements 1 6 i, j 6 n, there exists di,j ∈ R \ {0} such that
xjxi − di,jxixj ∈ R + Rx1 + · · · + Rxn (i.e., there exist elements

r
(i,j)
0 , r

(i,j)
1 , . . . , r

(i,j)
n of R with xjxi−di,jxixj = r

(i,j)
0 +

∑n
l=1 r

(i,j)
l xl).

Since Mon(A) is a left R-basis of A, the elements ci,r and di,j are
unique, ([13], Remark 2).

Proposition 1 ([13], Proposition 3). Let A be a skew PBW extension of R.

For each 1 6 i 6 n, there exist an injective endomorphism σi : R → R and

an σi-derivation δi : R → R such that xir = σi(r)xi+δi(r), for each r ∈ R.

From now on, we will write Σ := {σ1, . . . , σn}, and ∆ := {δ1, . . . , δn}.

Definition 2 ([13], Definition 4; [30], Definition 2.3). Let A be a skew
PBW extension of R.

(a) A is called quasi-commutative, if the conditions (iii) and (iv) in
Definition 1 are replaced by the following: (iii’) for each 1 6 i 6 n
and all r ∈ R \ {0}, there exists ci,r ∈ R \ {0} such that xir = ci,rxi;
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(iv’) for any 1 6 i, j 6 n, there exists di,j ∈ R \ {0} such that
xjxi = di,jxixj .

(b) A is called bijective, if σi is bijective for each 1 6 i 6 n, and di,j is
invertible, for any 1 6 i, j 6 n.

(c) A is called of endomorphism type, if δi = 0, for every i. In addition,
if every σi is bijective, A is said to be a skew PBW extension of
automorphism type.

Remark 1 ([13], Section 3). Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW
extension.

(i) Consider the families Σ and ∆ in Proposition 1. Throughout
the paper, for any element α = (α1, . . . , αn) ∈ Nn, we will write σα :=
σα1
1 ◦· · ·◦σαn

n , δα = δα1
1 ◦· · ·◦δαn

n , where ◦ denotes composition, and |α| :=
α1+· · ·+αn. If β = (β1, . . . , βn) ∈ Nn, then α+β := (α1+β1, . . . , αn+βn).

(ii) Given the importance of monomial orders in the proofs of some
results presented in the paper, next we recall some key facts about these
for skew PBW extensions.

Let � be a total order defined on Mon(A). If xα � xβ but xα 6= xβ , we
will write xα ≻ xβ . If f is a nonzero element of A, then f can be expressed
uniquely as f = a0+a1X1+ · · ·+amXm, with ai ∈ R, and Xm ≻ · · · ≻ X1

(eventually, we will use expressions as f = a0 + a1Y1 + · · ·+ amYm, with
ai ∈ R, and Ym ≻ · · · ≻ Y1). With this notation, we define lm(f) := Xm,
the leading monomial of f ; lc(f) := am, the leading coefficient of f ;
lt(f) := amXm, the leading term of f ; exp(f) := exp(Xm), the order of f .
Note that deg(f) := max{deg(Xi)}

m
i=1. Finally, if f = 0, then lm(0) := 0,

lc(0) := 0, lt(0) := 0. We also consider X ≻ 0 for any X ∈ Mon(A). Thus,
we extend � to Mon(A) ∪ {0}.

Following [13], Definition 11, if � is a total order on Mon(A), we say
that � is a monomial order on Mon(A), if the following conditions hold:

• For every xβ , xα, xγ , xλ ∈ Mon(A), xβ � xα ⇒ lm(xγxβxλ) �
lm(xγxαxλ) (the total order is compatible with multiplication).

• xα � 1, for every xα ∈ Mon(A).
• � is degree compatible, i.e., |β| � |α| ⇒ xβ � xα.

Monomial orders are also called admissible orders. The third condition
of the previous definition is needed in the proof of the fact that every
monomial order on Mon(A) is a well order, that is, there are not infinite
decreasing chains in Mon(A) (see [13], Proposition 12). The importance
of considering monomial orders on Mon(A) can be appreciated in [13]
or [24].
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Proposition 2 ([13], Theorem 7). If A is a polynomial ring with coeffi-

cients in R with respect to the set of indeterminates {x1, . . . , xn}, then A
is a skew PBW extension of R if and only if the following conditions hold:

(1) For each xα ∈ Mon(A) and every 0 6= r ∈ R, there exist unique

elements rα := σα(r) ∈ R \ {0}, pα,r ∈ A, such that xαr = rαx
α +

pα,r, where pα,r = 0, or deg(pα,r) < |α| if pα,r 6= 0. If r is left

invertible, so is rα.

(2) For each xα, xβ ∈ Mon(A), there exist unique elements dα,β ∈ R
and pα,β ∈ A such that xαxβ = dα,βx

α+β + pα,β, where dα,β is left

invertible, pα,β = 0, or deg(pα,β) < |α+ β| if pα,β 6= 0.

Remark 2 ([47], Proposition 2.9 and Remark 2.10 (iv)). Let A =
σ(R)〈x1, . . . , xn〉 be a skew PBW extension. Then the following assertions
hold:

(a) If α = (α1, . . . , αn) ∈ Nn and r is an element of R, then

xαr = xα1
1 xα2

2 · · ·x
αn−1

n−1 xαn
n r

= xα1
1 · · ·x

αn−1

n−1

( αn∑

j=1

xαn−j
n δn(σ

j−1
n (r))xj−1

n

)

+ xα1
1 · · ·x

αn−2

n−2

(αn−1∑

j=1

x
αn−1−j
n−1 δn−1(σ

j−1
n−1(σ

αn
n (r)))xj−1

n−1

)
xαn
n

+ xα1
1 · · ·x

αn−3

n−3

(αn−2∑

j=1

x
αn−2−j
n−2 δn−2(σ

j−1
n−2(σ

αn−1

n−1 (σαn
n (r))))xj−1

n−2

)

× x
αn−1

n−1 xαn
n

+ · · ·+ xα1
1

( α2∑

j=1

xα2−j
2 δ2(σ

j−1
2 (σα3

3 (σα4
4 (· · · (σαn

n (r))))))xj−1
2

)

× xα3
3 xα4

4 · · ·x
αn−1

n−1 xαn
n

+ σα1
1 (σα2

2 (· · · (σαn
n (r))))xα1

1 · · ·xαn
n ,

where σ0
j := idR for 1 6 j 6 n.

(b) If Xi := xαi1
1 · · ·xαin

n , Yj := x
βj1

1 · · ·x
βjn
n , and ai, bj are elements of

R, when we compute every summand of aiXibjYj we obtain products of
the coefficient ai with several evaluations of bj in σ’s and δ’s depending
of the coordinates of αi. This assertion follows from the expression:

aiXibjYj = aiσ
αi(bj)x

αixβj + aipαi1,σ
αi2
i2 (···(σ

αin
in (bj)))

xαi2
2 · · ·xαin

n xβj
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+ aix
αi1
1 pαi2,σ

αi3
3 (···(σ

αin
in (bj)))

xαi3
3 · · ·xαin

n xβj

+ aix
αi1
1 xαi2

2 pαi3,σ
αi4
i4 (···(σ

αin
in (bj)))

xαi4
4 · · ·xαin

n xβj

+ · · ·+ aix
αi1
1 xαi2

2 · · ·x
αi(n−2)

i(n−2) pαi(n−1),σ
αin
in (bj)

xαin
n xβj

+ aix
αi1
1 · · ·x

αi(n−1)

i(n−1) pαin,bjx
βj .

2. Skew PBW extensions over weak Σ-rigid rings and

Σ(∗)-rings

In this section, we generalize the results presented by Bhat [5], [6] and
[7], from Ore extensions of automorphism type to skew PBW extensions
where every element σi ∈ Σ is an automorphism.

For a ring B with a ring endomorphism σ : B → B, Krempa [27]
defined σ as a rigid endomorphism, if bσ(b) = 0 implies b = 0, for b ∈ B.
Krempa called B a σ-rigid, if there exists a rigid endomorphism σ of B.
In [27], Theorem 3.3, Krempa proved that if σ is a monomorphism, then
the Ore extension B[x;σ, δ] is reduced if and only if B is reduced and σ is
rigid. In this case, any minimal prime ideal (annihilator) of B[x;σ, δ] is of
the form PB[x;σ, δ], where P is a minimal prime ideal (annihilator) in B.
Now, since Ore extensions of injective type are particular examples of skew
PBW extensions (see [34], Section 3.2), the second author introduced the
following definition with the purpose of studying the notion of rigidness

in this more general setting. Consider the notation in Remark 1 (i).

Definition 3 ([47], Definition 3.2). Let B be a ring and Σ = {σ1, . . . , σn}
a finite family of endomorphisms of B. Σ is called a rigid endomorphisms
family, if rσα(r) = 0 implies r = 0, for every r ∈ B and each α ∈ Nn. A
ring B is said to be Σ-rigid, if there exists a rigid endomorphisms family
Σ of B.

Note that if Σ is a finite rigid endomorphisms family, then every element
σi ∈ Σ is a monomorphism. In fact, Σ-rigid rings are reduced rings: if
B is a Σ-rigid ring and r2 = 0 for r ∈ B, then 0 = rσα(r2)σα(σα(r)) =
rσα(r)σα(r)σα(σα(r)) = rσα(r)σα(rσα(r)), i.e., rσα(r) = 0 and so r =
0, for every α ∈ Nn, that is, B is reduced (note that there exists an
endomorphism of a reduced ring which is not a rigid endomorphism, see
[22], Example 9). With this in mind, we consider the family of injective
endomorphisms Σ and the family ∆ of Σ-derivations in a skew PBW
extension A over a ring R established in Proposition 1. Examples and
some ring theoretical properties of Σ-rigid rings have been established by
the authors, see [43], [50], [55], [56] and [58].
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On the other hand, Kwak [28] introduced the notion of σ(∗)-ring in
the following way: Let B be a ring and σ an endomorphism of B. B is
said to be a σ(∗)-ring, if aσ(a) ∈ Nil∗(B) implies a ∈ Nil∗(B), for a ∈ B.
Motivated by this definition and with the aim of extending in the natural
way to the more general setting of skew PBW extensions, we present
the following definition having in mind the family Σ of endomorphisms
established in Proposition 1.

Definition 4. Let B be a ring with a family Σ = {σ1, . . . , σn} of endo-
morphisms of B. B is said to be a Σ(∗)-ring, if aσi(a) ∈ Nil∗(B) implies
that a ∈ Nil∗(B), for all a ∈ B and every i.

Remark 3. • Kwak [28], Example 2, presented the following noncommu-

tative ring which is a σ(∗)-ring but not σ-rigid. Let B =

(
k k

0 k

)
. Then

Nil∗(B) =

(
0 k

0 0

)
. If σ : B → B is defined by σ

((
a b
0 c

))
=

(
a 0
0 c

)
,

then it can be seen that σ is an endomorphism of B and that B is a
σ(∗)-ring. Nevertheless, B is not σ-rigid, since for any nonzero element
a ∈ k, we have that

(
0 a
0 0

)
σ

((
0 a
0 0

))
=

(
0 0
0 0

)
but

(
0 a
0 0

)
6=

(
0 0
0 0

)
.

• Kwak [28], Example 4, showed an example of a 2-primal ring but
not a σ(∗)-ring. Let us recall it. Let B = k[x] be the polynomial ring
over k. Then B is a domain and hence 2-primal with Nil∗(B) = {0}.
Consider the endomorphism σ : B → B defined by σ(f(x)) = f(0). It is
easy to see that B is not a σ(∗)-ring. For example, take f(x) = ax with
a a nonzero element of k, and note that f(x)σ(f(x)) = 0 ∈ Nil∗(B), but
f(x) /∈ Nil∗(B).

• Kwak [28], Theorem 5, proved that if B is a 2-primal ring and σ is
an automorphism of B, then B is a σ(∗)-ring if and only if σ(P ) = P , for
all P ∈ MinSpec(B). Theorem 12 of Kwak’s paper assert that if B is a
σ(∗)-ring with σ(Nil∗(B)) = Nil∗(B), then B[x;σ] is 2-primal if and only
if Nil∗(B)[x;σ] = Nil∗(B[x;σ]).

All results mentioned in Remark 3 are very important for the assertions
we want to obtain for skew PBW extensions. In Remark 4, we present
some key facts for our purposes.
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Remark 4. The following results are direct consequences of Definition 4
and its relations with the assertions established in [5], Propositions 1, 2,
and Theorem 3; [6], Theorem 1; [7], Proposition 1 and Theorem 1; [8],
Propositions 1 and 2. As a matter of fact, in [5], Proposition 3 or [7],
Proposition 1, there is a little mistake (the condition σδ = δσ was omitted)
which was solved in [8], Proposition 2 and Remark 2. This same mistake
appear in [5], Proposition 4, and it was corrected in [8], Proposition 4.

(1) Let R be a ring with a family Σ = {σ1, . . . , σn} of automorphisms
of R. If R is a Σ(∗)-ring, then Nil∗(R) is completely semiprime
(the converse of this implication is false, as Kwak showed in [28]:
Take R = k× k and consider the automorphism σ of R defined by
σ((a, b)) = (b, a), for any elements a, b ∈ k. Then R is reduced and so
Nil∗(R) = {0} is a completely semiprime ideal. However, the ring R
is not a σ(∗)-ring, since (1, 0)σ((1, 0)) = (0, 0), but (1, 0) /∈ Nil∗(R)).

(2) Let R be a Noetherian ring with a family Σ = {σ1, . . . , σn} of
automorphisms of R. If R is a Σ(∗)-ring, then R is a 2-primal ring.

(3) If R is a Noetherian ring with a family Σ = {σ1, . . . , σn} of automor-
phisms of R, then R is a Σ(∗)-ring if and only if for every minimal
prime ideal U of R, σi(U) = U , for all i, and U is a completely prime
ideal of R.

(4) Let R be a Noetherian ring which is an algebra over Q. Let Σ =
{σ1, . . . , σn} be a family of automorphisms of R such that R is a
Σ(∗)-ring and ∆ = {δ1, . . . , δn} a family of Σ-derivations of R. If
σiδj = δjσi, for all 1 6 i, j 6 n, then δi(U) ⊆ U , for each i and
every U ∈ MinSpec(R).

From now on, for a subset S of R, if A is a skew PBW extension over R,
SA will denote the set {a0 + a1X1 + · · ·+ amXm ∈ A | ai ∈ S, for all i}.

We start with the following result which generalizes Bhat’s Theorem 4
in [5].

Theorem 1. If A is a skew PBW extension over a ring R where every

element of Σ is an automorphism, then:

(1) For every completely prime ideal P of R with δi(P ) ⊆ P and σi(P ) =
P , for each i, PA is a completely prime ideal of A.

(2) For every completely prime ideal U of A, U ∩ R is a completely

prime ideal of R.

Proof. (1) Fix a monomial order on Mon(A). Consider P a completely
prime ideal of R. Let f =

∑m
i=0 aiXi and g =

∑t
j=0 bjYj be elements

of A with fg ∈ PA. Let αl := exp(Xl). Suppose that f /∈ PA. The
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idea is to show that g ∈ PA. We will use induction on m and t. If
m = t = 1, the assertion is clear. Let us see the case m = 2, t = 1. We
have f = a0 + a1X1 + a2X2 and g = b0 + b1Y1. Proposition 2 establishes
that

fg = (a0 + a1X1 + a2X2)(b0 + b1Y1)

= a0b0 + a0b1Y1 + a1X1b0 + a1X1b1Y1 + a2X2b0 + a2X2b1Y1

= a0b0 + a0b1Y1 + a1(σ
α1(b0)X1 + pα1,b0) + a1(σ

α1(b1)X1 + pα1,b1)Y1

+ a2(σ
α2(b0)X2 + pα2,b0) + a2(σ

α2(b1)X2 + pα2,b1)Y1

= a0b0 + a0b1Y1 + a1σ
α1(b0)X1 + a1pα1,b0 + a1σ

α1(b1)X1Y1

+ a1pα1,b1Y1 + a2σ
α2(b0)X2 + a2pα2,b0 + a2σ

α2(b1)X2Y1 + a2pα2,b1Y1.

Since fg ∈ PA and f /∈ PA, we have the following possibilities: (a) a2 /∈ P
(b) a1 /∈ P (c) a0 /∈ P (d) any two of a2, a1, a0 do not belong to P (e) all
the elements a2, a1, a0 do not belong to P . As an illustration, let us see
(a) and (b). (a) a2 /∈ P : Since fg ∈ PA, we have a2σ

α2(b0), a2σ
α2(b1) ∈ P

whence σα2(b0), σ
α2(b1) ∈ P , and using that σi(P ) = P , then b0, b1 ∈ P ,

i.e., g ∈ P . (b) a1 /∈ P : Note that a1σ
α1(b0), a1σ

α1(b1) ∈ P , and so we
have that σα1(b0), σ

α1(b1) ∈ P , that is, b0, b1 ∈ P , and so g ∈ P . The
remaining cases can be treated in a similar way.

Suppose that the assertion is true for k, where m = k > 2 and t = 1.
Let us prove the case m = k + 1. Consider f = a0 + a1X1 + · · ·+ akXk +
ak+1Xk+1 and g = b0 + b1Y1 with fg ∈ PA, but f /∈ PA. As before,
let us see that g ∈ PA. Since f /∈ PA, then ak+1 /∈ P , but note that
ak+1σ

αk+1(b0), ak+1σ
αk+1(b1), and hence b0, b1 ∈ P , i.e., g ∈ PA.

Now, if aj /∈ P , 0 6 j 6 k, then by induction hypothesis, it follows
that g ∈ PA, so the statement is true for every m. By a similar argument,
one can see that the statement is also true for all t.

(2) Let U be a completely prime ideal of A. Let a, b be elements of
R with ab ∈ U ∩R but a /∈ U ∩R. Then a /∈ U , and so ab ∈ U ∩R ⊆ U ,
with a /∈ U , and hence b ∈ U , i.e., b ∈ U ∩R.

The following result extends Bhat [5], Proposition 4.

Proposition 3. If A is a skew PBW extension over a Noetherian Σ(∗)-
ring R which is also an algebra over Q such that σiδj = δjσi, for all

1 6 i, j 6 n, where every σi is bijective, for all i, then U ∈ MinSpec(R)
implies that UA is a completely prime ideal of A.

Proof. From Remark 4 part (1) we know that Nil∗(R) is a completely
semiprime ideal of R. Let U ∈ MinSpec(R). Remark 4 parts (3) and (4)
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show that σi(U) = U , U is completely prime and δi(U) ⊆ U , for every i.
Finally, Theorem 1 implies that UA is a completely prime ideal of A.

With the aim of extending the σ-rigid rings defined by Krempa [27],
Ouyang [45] introduced the weak σ-rigid rings. For the skew PBW exten-
sions, this weak notion of rigidness was considered by the second author
in [54] with the purpose of generalizing the Σ-rigid rings. Let us recall it.
Consider the notation in Remark 1 (i).

Definition 5 ([54], Definition 3.2). Let Σ = {σ1, . . . , σn} and ∆ =
{δ1, . . . , δn} be a family of endomorphisms and Σ-derivations of a ring R,
respectively. R is called a weak Σ-rigid ring, when aσθ(a) ∈ Nil(R) if and
only if a ∈ Nil(R), for each element a ∈ R and every θ ∈ Nn.

Remark 5. It is clear that Σ-rigid rings are weak Σ-rigid. However, the
converse is false as we can appreciated in the following example taken
from [45], Example 2.1. Let σ be an endomorphism of a ring R which is
an σ-rigid ring. Consider the ring

R3 :=

{

a b c
0 a d
0 0 a


 | a, b, c ∈ R

}
.

If we extend the endomorphism σ of R to the endomorphism σ : R3 → R3

defined by σ(aij) = (σ(aij)), then R3 is a weak σ-rigid ring but R3 is not
σ-rigid. Therefore, weak Σ-rigid rings are a generalization of Σ-rigid rings
to the case where the ring of coefficients is not assumed to be reduced
(note that the ring R3 is not reduced). Nevertheless, from [54], Theorem
3.4, we know that if Σ = {σ1, . . . , σn} and ∆ = {δ1, . . . , δn} are families
of endomorphisms and Σ-derivations of R, respectively, then R is Σ-rigid
if and only if R is weak Σ-rigid and reduced (this result extends [45],
Proposition 2.2).

The next assertion establishes a relation between Σ(∗)-rings and weak
Σ-rigid rings. This result generalizes [5], Theorem 5; [6], Theorem 2; [8],
Proposition 3 (in the formulation of [6], Theorem 2, there is a little mistake:
it says endomorphism but actually is automorphism).

Theorem 2. If R is a Noetherian ring and Σ is a family of automorphisms

of R such that R is a Σ(∗)-ring, then R is a weak Σ-rigid ring. Conversely,

every 2-primal weak Σ-rigid ring R is a Σ(∗)-ring.
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Proof. Suppose that Σ is a family of automorphisms of R such that R is
a Σ(∗)-ring. From Remark 4 part (2) we know that R is 2-primal, that is,
Nil∗(R) = Nil(R), whence aσθ(a) ∈ Nil(R) = Nil∗(R), for every θ ∈ Nn,
implies that a ∈ Nil∗(R) = Nil(R), for each θ ∈ Nn. This proves that R is
a weak Σ-rigid ring.

Now, suppose that R is a 2-primal weak Σ-rigid ring. It is clear that
Nil(R) = Nil∗(R) and that aσθ(a) ∈ Nil(R) implies a ∈ Nil(R), for every
θ ∈ Nn. Hence, aσθ(a) ∈ Nil∗(R) implies a ∈ Nil∗(R), for all θ ∈ Nn, that
is, R is a Σ(∗)-ring.

The following theorem extends [5], Theorem 6 and [6], Proposition 3.

Theorem 3. If R is a Noetherian ring with a family of automorphisms

Σ such that R is weak Σ-rigid, then Nil(R) is completely semiprime.

Proof. It is easy to see that σi(Nil(R)) = Nil(R), for every i. Let R
be a weak Σ-rigid ring and consider a ∈ R with a2 ∈ Nil(R). Since
aσθ(a)σθ(aσθ(a)) = aσθ(a)σθ(a)σθ(σθ(a)) ∈ σθ(Nil(R)) = Nil(R), for all
θ ∈ Nn, then aσθ(a) ∈ Nil(R) implies that a ∈ Nil(R), for every θ ∈ Nn,
which means that Nil(R) is completely semiprime.

Remark 4 part (3) and Theorem 3 imply the following result.

Corollary 1. If R is a Noetherian ring with Σ a family of automorphisms

of R, then R is a 2-primal weak Σ-rigid ring if and only if for every

minimal prime ideal U of R, σi(U) = U , for every i, and U is a completely

prime ideal of R.

The following proposition generalizes [5], Proposition 5.

Proposition 4. If A is a skew PBW extension over a commutative

Noetherian Σ(∗)-ring R, where Σ is a family of automorphisms of R, then

Nil(R)A = Nil(A).

Proof. Remark 4 part (2) shows that R is 2-primal. It is easy to see that
Nil(R)A ⊆ Nil(A), so we will only prove that Nil(A) ⊆ Nil(R)A. Fix a
monomial order on Mon(A). Let f =

∑m
i=0 aiXi be an element of Nil(A)

(with X1 ≺ X2 ≺ · · · ≺ Xm), and let Xm := xαm = xαm1
1 · · ·xαmn

n . Note
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that

f2 = (amXm + · · ·+ a1x1 + a0)(amXm + · · ·+ a1x1 + a0)

= amXmamXm + other terms less than exp(Xm)

= am[σαm(am)Xm + pαm,am ]Xm + other terms less than exp(Xm)

= amσαm(am)XmXm + ampαm,amXm + other terms less than exp(Xm)

= amσαm(am)[dαm,αmx
2αm + pαm,αm ] + ampαm,amXm

+ other terms less than exp(Xm)

= amσαm(am)dαm,αmx
2αm + other terms less than exp(x2αm),

and hence,

f3 = (amσαm(am)dαm,αmx
2αm + other terms less than exp(x2αm))

× (amXm + · · ·+ a1x1 + a0)

= amσαm(am)dαm,αmx
2αmamXm + other terms less than exp(x3αm)

= amσαm(am)dαm,αm [σ
2αm(am)x2αm + p2αm,am ]Xm

+ other terms less than exp(x3αm)

= amσαm(am)dαm,αmσ
2αm(am)x2αmXm

+ other terms less than exp(x3αm)

= amσαm(am)dαm,αmσ
2αm(am)[d2αm,αmx

3αm + p2αm,αm ]

= amσαm(am)dαm,αmσ
2αm(am)d2αm,αmx

3αm

+ other terms less than exp(x3αm).

Continuing in this way, one can show that for fk,

fk = am

k−1∏

l=1

σlαm(am)dlαm,αm
xkαm + other terms less than exp(xkαm),

whence 0 = lc(fk) = am
∏k−1

l=1 σlαm(am)dlαm,αm
, and since the elements

d’s are central in R and left invertible (Proposition 2), we have 0 = lc(fk) =
am

∏k−1
l=1 σlαm(am). Since 0 ⊆ P , for all P ∈ MinSpec(R), then for some

1 6 j 6 k − 1, amσjαm(am) ∈ P , for all P ∈ MinSpec(R). Using that R
is a Σ(∗)-ring, one can see that am ∈ P , for all P ∈ MinSpec(R), and so
am ∈ Nil∗(R). Now, having in mind that R is 2-primal, we obtain that am ∈
Nil(R), which means that amXm ∈ Nil(R)A ⊆ Nil(A), i.e.,

∑m−1
i=0 aiXi ∈

Nil(A). Repeating this process one can see that ai ∈ Nil∗(R) = Nil(R),
for every 0 6 i 6 m − 1, which implies that f ∈ Nil(R)A. Therefore,
Nil(A) ⊆ Nil(R)A.
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With the purpose of establishing Theorem 4 (which extends [5], The-
orem 7), we need the following preliminary result which says us how to
extend the families of functions Σ and ∆ from R to a families Σ and ∆ of
a skew PBW extension A over R.

Proposition 5 ([52], Theorem 5.1). Let A be a skew PBW extension of a

ring R. Suppose that σiδj = δjσi, δiδj = δjδi, and δk(di,j) = δk(r
(i,j)
l ) = 0,

for 1 6 i, j, k, l 6 n, where di,j and r
(i,j)
l are the elements established in

Definition 1. If σk : A → A and δk : A → A are the functions given

by σk(f) := σk(a0) + σk(a1)X1 + · · ·+ σk(am)Xm and δk(f) := δk(a0) +
δk(a1)X1 + · · ·+ δk(am)Xm, for every f = a0 + a1X1 + · · ·+ amXm ∈ A,

respectively, and σk(r) := σi(k), for every 1 6 i 6 n, then σk is an injective

endomorphism of A and δk is a σk-derivation of A, for all k.

Theorem 4. Let A be a skew PBW extension over a 2-primal commutative

Noetherian ring R. Suppose that we have the conditions established in

Proposition 5. If R is a weak Σ-rigid ring, then A is a weak Σ-rigid ring.

Proof. Suppose that R is a weak Σ-rigid ring. From Theorem 2 we know
that R is a Σ(∗)-ring, and by Proposition 4, Nil(R)A = Nil(A). Again, fix
a monomial order on Mon(A). Consider f ∈ A given by f =

∑m
i=0 aiXi

such that fσθ(f) ∈ Nil(A). We will use induction on m with the aim

of proving the assertion. If m = 1, then f = a0 + a1X1. But fσθ(f) ∈
Nil(A) implies that (a0 + a1X1)(σ

θ(a0) + σθ(a1)X1) ∈ Nil(A) = Nil(R)A,
that is, a0σ

θ(a0) + a0σ
θ(a1)X1 + a1X1σ

θ(a0) + a1X1σ
θ(a1)X1, or what

is the same, a0σ
θ(a0) + a0σ

θ(a1)X1 + a1(σ
α1(σθ(a0))X1 + pα1,σθ(a0)) +

a1(σ
α1(σθ(a1))X1 + pα1,σθ(a0))X1 belongs to Nil(A), from which we ob-

tain that a0σ
θ(a0), a1σ

α1(σθ(a1)) ∈ Nil(A), and using that σi(Nil(R)) =
Nil(R), for each i (Corollary 1), we obtain that a0, a1 ∈ Nil(R), and so
f ∈ Nil(R)A = Nil(A). An argument by induction gives us the result.

The following theorem generalizes [7], Theorem 2.

Theorem 5. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over

a Noetherian ring R which is an algebra over Q. Suppose that every

element of Σ = {σ1, . . . , σn} is an automorphism and that the conditions

established in Proposition 5 hold. If R is a Σ(∗)-ring, then A is a Noetherian

Σ(∗)-ring.

Proof. From [34], Corollary 2.4, we know that A is Noetherian. Let us
prove that A is a Σ(∗)-ring. With this aim, we will show that every minimal
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prime ideal P of A is completely prime and σi(P ) = P , for every i. It
is easy to see that P ∩ R ∈ MinSpec(R). Since R is a Σ(∗)-ring, then
σi(P ∩R) = P ∩R, and by Remark 4 part (4), P ∩R is a completely prime
ideal of R. Now, Remark 4 part (3) guarantees that δi(P ∩R) ⊆ P ∩R,
for every i. We can check that (P ∩ R)A is a completely prime ideal
of A. Hence, (P ∩ R)A ⊆ P implies that (P ∩ R) = P because P is
minimal. Therefore, using that σi(P ∩R) = P ∩R, for each i, it follows
that σi(P ) = P , for all i. The assertion follows from Remark 4, (4).

The following result extends [7], Theorem 3.

Theorem 6. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over

a right Noetherian ring and Σ(∗)-ring R which is an algebra over Q.

Suppose that we have the conditions established in Proposition 5. We have

the following assertions:

1. If U is a minimal prime ideal of R, then UA is a minimal prime

ideal of A and UA ∩R = U .

2. If P is a minimal prime ideal of A, then P ∩R is a minimal prime

ideal of R.

Proof. 1. From Remark 4 parts (3) and (4), we know that σi(U) = U
and δi(U) ⊆ U , for every i = 1, . . . , n. It is clear that UA ∈ Spec(A) and
UA ∩R = U .

2. By Theorem 5, A is a Noetherian Σ(∗)-ring. Remark 4 parts (3)
and (4) show that σi(P ) = P and δi(P ) = P , for every i. In this way,
σi(P ∩ R) = P ∩ R and δi(P ∩ R) ⊆ P ∩ R, for all i. It is easy to
see that P ∩ R ∈ Spec(R), whence (P ∩ R)A ∈ Spec(A). Finally, since
(P ∩R)A ⊆ P , it follows that (P ∩R)A = P .

3. 2-primal skew PBW extensions over Noetherian weak

Σ-rigid rings

In this section, we extend the results presented in [8], from Ore exten-
sions of automorphism type to skew PBW extensions where every element
σi of Σ is an automorphism.

We start with the following theorem which is the analogue to the result
formulated in [8], Theorem 1.

Theorem 7. If R is a commutative Noetherian ring and Σ is the family

of automorphisms {σ1, . . . , σn} of R, then R is a weak Σ-rigid ring if and

only if Nil(R) is a completely semiprime ideal of R.
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Proof. We follow the ideas presented in [8]. First of all, note that Nil(R)
is an ideal of R due to the commutativity of R. Second of all, let us
show that σi(Nil(R)) = Nil(R), for every i. We fix i. Since σi(Nil(R))
is a nilpotent ideal of R, then σi(Nil(R)) ⊆ Nil(R), and having in mind
that every σi is an automorphism, for every element r ∈ Nil(R), there
exists an unique element s ∈ R such that σi(s) = r. Consider the set
J := σ−1

i (Nil(R)) = {s ∈ R | σi(s) = r}. It is clear that J is an ideal
of R, and as a matter of fact, J is nilpotent, whence J ⊆ Nil(R) and so
Nil(R) ⊆ σi(Nil(R)). Hence σi(Nil(R)) = Nil(R), for all i.

Suppose that R is a weak Σ-rigid ring. Let a ∈ R with a2 ∈ Nil(R).
Having in mind that aσθ(a)σθ(aσθ(a)) = aσθ(a)σθ(a)σθ(σθ(a)) =
aσθ(a2)σθ(σθ(a)) ∈ σθ(Nil(R)) = Nil(R), for all θ ∈ Nn, it follows that
aσθ(a) ∈ Nil(R), whence a ∈ Nil(R), which means that Nil(R) is com-
pletely semiprime.

Conversely, suppose that Nil(R) is completely semiprime. Consider an
element r ∈ R such that aσθ(a) ∈ Nil(R), for all θ = (θ1, θ2, . . . , θn) ∈ Nn.
Since aσθ(a)σ−θop(aσθ(a)) ∈ Nil(R), where −θop := (−θn, . . . ,−θ1) (see
[51], Remark 4.2), it follows that a2 ∈ Nil(R), and so a ∈ Nil(R). Therefore,
R is a weak Σ-rigid ring.

For the next result, Proposition 7, which generalizes [8], Proposition 4,
we need some preliminary facts and a proposition (Proposition 6) about
quotients of skew PBW extensions: consider A = σ(R)〈x1, . . . , xn〉 a skew
PBW extension of a ring R. Let Σ := {σ1, . . . , σn} and ∆ := {δ1, . . . , δn}
such as in Proposition 1. Following Lezama et. al. [30], Definition 2.1, if
I is an ideal of R, I is called Σ-invariant (∆-invariant), if it is invariant
under each injective endomorphism σi (σi-derivation δi) of Σ (∆), that is,
σi(I) ⊆ I (δi(I) ⊆ I), for 1 6 i 6 n. If I is both Σ and ∆-invariant ideal,
then we say that I is (Σ,∆)-invariant.

Proposition 6 ([30], Proposition 2.6). If A = σ(R)〈x1, . . . , xn〉 is a skew

PBW extension of R and I is a (Σ,∆)-invariant ideal of R, then the

following statements hold:

(i) IA is an ideal of A and IA∩R = I. IA is a proper ideal of A if and

only if I is proper in R. Moreover, if σi is bijective and σi(I) = I,
for every i, then IA = AI.

(ii) If I is proper and σi(I) = I, for every 1 6 i 6 n, then A/IA is

a skew PBW extension of R/I. In fact, if I is proper and A is

bijective, then A/IA is a bijective skew PBW extension of R/I, that

is, A/IA = σ̂(R/IR)〈x1, . . . , xn〉.
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From Proposition 6, we can see that if I is (Σ,∆)-invariant, then over
R/I it is induced a system (Σ̂, ∆̂) of endomorphisms Σ̂ and Σ̂-derivations
∆̂, defined by σ̂i(r+ I) = σi(r)+ I and δ̂i(r+ I) = δi(r)+ I, for 1 6 i 6 n,
and every r ∈ R. We keep the variables x1, . . . , xn of extension A to the
extension A/IA if no confusion arises.

Proposition 7. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension

over a Noetherian ring R which is an algebra over Q. If R is a Σ(∗)-
ring and δi(σi(r)) = σi(δi(r)), for every i and each r ∈ R, then for each

P ∈ MinSpec(R) we have that PA is a completely prime ideal of A.

Proof. Consider P ∈ MinSpec(R). Remark 4 parts (2), (3) and (4) im-
ply that R is 2-primal, σi(P ) = P and δi(P ) = P , for every i, and P is
completely prime. Having in mind the families of functions Σ̂ and ∆̂ formu-
lated in Proposition 6, it is easy to see that A/PA ∼= σ̂(R/P )〈x1, . . . , xn〉,
which shows that PA is a completely prime ideal of A.

The next theorem extends [8], Theorem 3.

Theorem 8. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over

a Noetherian ring R which is an algebra over Q. If R is a Σ(∗)-ring

and δi(σi(r)) = σi(δi(r)), for every i and each r ∈ R, then for each

P ∈ MinSpec(R) we have that PA ∈ MinSpec(A).

Proof. Consider P ∈ MinSpec(R). Remark 4 parts (3) and (4) imply
that σi(P ) = P and δi(P ) ⊆ P , for every i. If PA /∈ MinSpec(A), let
P1 ∈ MinSpec(A) such that P1 ⊂ PA. Then P1 = (P1 ∩ R)A ⊂ PA ∈
MinSpec(R), whence P1∩R ⊂ P , a contradiction, since P1∩R ∈ Spec(R).
Therefore, PA ∈ MinSpec(A).

The next theorem generalizes [8], Theorem 4.

Theorem 9. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over a

Noetherian ring R which is an algebra over Q. If R is a Σ(∗)-ring and

δi(σi(r)) = σi(δi(r)), for every i and each r ∈ R, then A is 2-primal if

and only if Nil∗(R)A = Nil∗(A).

Proof. Consider A a 2-primal ring. By Theorem 8, Nil∗(A) ⊆ Nil∗(R)A.
Consider an element f =

∑m
i=0 aiXi of Nil∗(R)A. Note that R is a 2-

primal ring (Remark 4, part (2)). Hence, every element ai is nilpotent,
and so ai ∈ Nil(A) = Nil∗(A), for every i, whence f ∈ Nil∗(A), and so
Nil∗(R)A = Nil∗(A).
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Conversely, suppose that Nil∗(R)A = Nil∗(A) with a fixed monomial
order on Mon(A). Let g =

∑t
j=0 bjYj ∈ A with g2 ∈ Nil∗(A) = Nil∗(R)A.

The idea is to show that g ∈ Nil∗(A). With this aim, note that lc(g2) ∈
Nil∗(R) ⊆ P , for every P ∈ MinSpec(R), and since σi(P ) = P and
P is completely prime (Theorem 8), it follows that bt ∈ P , for each
P ∈ MinSpec(R), i.e., bt ∈ Nil∗(R). Now, Remark 4 part (4) guarantees
that δi(P ) ⊆ P , for all i and every P ∈ MinSpec(R), whence we can assert

that

(∑t−1
j=0 bjYj

)
∈ Nil∗(A) = Nil∗(R)A, and as before, bt−1 ∈ Nil∗(R).

If we repeat this argument, we can see that bj ∈ Nil∗(R), for all j, and
so g ∈ Nil∗(R)A = Nil∗(A). Therefore, Nil∗(A) is a completely semiprime
ideal, that is, A is 2-primal.

The next theorem extends [8], Proposition 5.

Proposition 8. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over

a Noetherian ring R which is 2-primal and an algebra over Q. If R is a

Σ(∗)-ring and δi(σi(r)) = σi(δi(r)), for every i = 1, . . . , n and each r ∈ R,

then Nil(R)A = Nil(A).

Proof. The arguments in the proof are completely similar to those used
in the proof of Proposition 4. We only take R to be 2-primal instead of
commutative.

Our Theorem 10 generalizes [8], Theorem 5.

Theorem 10. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension over

a Noetherian 2-primal weak Σ-rigid ring R which is an algebra over Q,

where every σi ∈ Σ is an automorphism. If the conditions established in

Proposition 5 hold, then A is a 2-primal Noetherian weak Σ-rigid ring.

Proof. From [34], Corollary 2.4, we know that A is a Noetherian ring. By
assumption, R is 2-primal weak Σ-rigid, so Theorem 2 implies that R is
a Σ(∗)-ring. Now, Theorem 6 guarantees that if P ∈ MinSpec(A), then
P ∩R ∈ MinSpec(R). Theorem 8 shows that Nil∗(R)A = Nil∗(A), whence
A is 2-primal by Theorem 9. Finally, Theorem 4 implies that A is a weak
Σ-rigid ring. Therefore, A is a 2-primal Noetherian weak Σ-rigid ring.

4. Conclusions and future work

As we said in the Introduction, in [36] and [56] the second author con-
sidered the question about the property of being 2-primal and the minimal
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prime ideals for skew PBW extensions by using a different approach to the
established in this paper. More exactly, there, the notions of compatible
ring, skew Armendariz ring (see [49], [52] and [53] for more details) and
the ascending chain condition on right annihilators (see [58]) on the ring
of coefficients were key in the characterization of minimal prime ideals of
these extensions. Therefore, the results obtained in this paper are another
approach to the study of these ideals of skew PBW extensions.

Last, but not least, we consider as a possible future work to investigate
minimal prime ideals and the 2-primal property in a more general context
of noncommutative rings than skew PBW extensions such as for example
the semi-graded rings introduced by Lezama [33] (see also [29] and [32]),
or maybe considering a weak notion of compatibility following the ideas
presented recently by the second author [57], and of course, in the setting
of modules over these extensions, see [36], [42], and [48].
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