A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra

C. Choi, S. Kim, and H. Seo

Communicated by A. P. Petravchuk

Abstract. We first present a filtration on the ring L_{n} of Laurent polynomials such that the direct sum decomposition of its associated graded ring $g r L_{n}$ agrees with the direct sum decomposition of $\operatorname{gr} L_{n}$, as a module over the complex general linear Lie algebra $\mathfrak{g l}(n)$, into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring $g r L_{n}$, we give some explicit constructions of weight multiplicity-free irreducible representations of $\mathfrak{g l}(n)$.

1. Introduction

In this section, we give a brief summary of our results.

1.1. The ring of polynomials

The ring $P_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ of polynomials in n indeterminates over the complex numbers \mathbb{C} is a \mathbb{Z}-graded algebra

$$
\begin{equation*}
P_{n}=\bigoplus_{m \in \mathbb{Z}} P_{n}^{(m)} \tag{1.1}
\end{equation*}
$$

[^0]where $P_{n}^{(m)}$ is the space of homogeneous polynomials of degree m. As a vector space, P_{n} becomes a module over the complex general linear Lie algebra $\mathfrak{g l}(n)=\mathfrak{g l}_{n}(\mathbb{C})$ under the action
\[

$$
\begin{equation*}
A \cdot f=\sum_{i j} a_{i j} x_{i} \frac{\partial f}{\partial x_{j}} \quad \text { for } A=\left(a_{i j}\right) \in \mathfrak{g l}(n) \text { and } f \in P_{n} \tag{1.2}
\end{equation*}
$$

\]

Then, the direct sum decomposition (1.1) of P_{n} as a graded ring agrees with the decomposition of P_{n} as a $\mathfrak{g l}(n)$-module into its simple submodules $P_{n}^{(m)}$. They are the finite dimensional representations of $\mathfrak{g l}(n)$ labeled by Young diagrams with single rows.

1.2. The ring of Laurent polynomials

The first goal of this paper is to obtain an analogous result of the above observation for the ring of Laurent polynomials

$$
L_{n}=\mathbb{C}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

It turns out that a filtration and its associated graded structure give us an answer. Note that (1.1) can be seen as the graded ring associated with the \mathbb{Z}-filtration of P_{n} given by degree.

We will define a filtration on L_{n} by a partially ordered monoid constructed from integers and subsets of $\{1,2, \ldots, n\}$

$$
L_{n}=\bigcup_{(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}} L_{n}^{\leqslant(m, J)}
$$

and show that the direct sum decomposition of its associated graded ring

$$
g r L_{n}=\bigoplus_{(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}} L_{n}^{\leqslant(m, J)} / L_{n}^{<(m, J)}
$$

provides the decomposition of $g r L_{n}$, as a $\mathfrak{g l}(n)$-module, into its simple submodules.

Extending the space with the action (1.2) of $\mathfrak{g l}(n)$ from P_{n} to L_{n}, we identify Laurent monomials $\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$ with integral points $\mathbf{k}=\left(k_{1}, k_{2} \ldots, k_{n}\right)$ in \mathbb{R}^{n}. Note that they are weight vectors with respect to the Cartan subalgebra of $\mathfrak{g l}(n)$ consisting of diagonal matrices. Since this action preserves the degree of monomials, we can focus on integral points on the hyperplane $k_{1}+\cdots+k_{n}=m$ for each $m \in \mathbb{Z}$.

One of main difficulties in studying the $\mathfrak{g l}(n)$-module structure of L_{n} is that the symmetric behavior of raising and lowering operators we had

Figure 1. The action of $\mathfrak{g l}(2)$ on $x_{1}^{k_{1}} x_{2}^{k_{2}}$ with $k_{1}+k_{2}=1$.
when working with P_{n} is not trivial anymore. For example, when $n=2$ as in Figure 1,

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \cdot x_{1}^{k_{1}} x_{2}^{m-k_{1}}=k_{1} x_{1}^{k_{1}-1} x_{2}^{m+1-k_{1}}} \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \cdot x_{1}^{m-k_{2}} x_{2}^{k_{2}}=k_{2} x_{1}^{m+1-k_{2}} x_{2}^{k_{2}-1}}
\end{aligned}
$$

The cases $k_{1}=0$ and $k_{2}=0$ divide the line $k_{1}+k_{2}=m$ into three parts. The monomials with $k_{1} \geqslant 0$ and $k_{2} \geqslant 0$ can be obtained by applying some elements of $\mathfrak{g l}(2)$ to monomials with $k_{1} k_{2}<0$. However, monomials with $k_{1} k_{2}<0$ cannot be obtained from the ones with $k_{1} \geqslant 0$ and $k_{2} \geqslant 0$.

More generally, the planes $k_{j}=0$ divide the hyperplane $k_{1}+k_{2}+\cdots+$ $k_{n}=m$ into regions labeled by the signs of the coordinates k_{i}. Then, for each i, we can obtain weight vectors $\mathbf{x}^{\mathbf{k}}$ with $k_{i} \geqslant 0$ starting from the ones with $k_{i}<0$ by successively applying some elements of $\mathfrak{g l}(n)$, but the opposite way is not possible. See Figure 2.

Therefore, our indecomposable submodules in L_{n} and simple modules obtained from their quotients are labeled by degree m of $\mathbf{x}^{\mathbf{k}}$ and subsets J of $\{1,2, \ldots, n\}$ indicating the position of possible negative components

Figure 2. The action of $\mathfrak{g l}(3)$ on $x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}}$ with $k_{1}+k_{2}+k_{3}=m(m>0)$.
in \mathbf{k}. Their structures depend heavily on m and the cardinality of J. We will give a clear case-by-case analysis of them.

1.3. Representations of the general linear Lie algebra

Our next goal is to provide explicit constructions of weight multiplicityfree irreducible representations of $\mathfrak{g l}(n)$ obtained by twisting the action (1.2). For a general theory on weight multiplicity-free representations of simple Lie algebras, see [1] and references therein.

Motivated by works on weight modules of the Lie algebra of diffeomorphisms of the n-dimensional torus (see, for example, $[3,4,6]$), for each $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n}$, we will define a representation $L_{n}^{\boldsymbol{\alpha}}$ of $\mathfrak{g l}(n)$ on the vector space L_{n} (see Definition 3.2). Then, we investigate two families of its submodules, $L_{n}^{\alpha}(m, j)$ and $V_{n}^{\alpha}(m, J)$, parameterized by integers m, j, and subsets J of $\left\{i: \alpha_{i}=0\right\}$. We can obtain explicit simple $\mathfrak{g l}(n)$-modules from the decomposition of the quotient modules

$$
L_{n}^{\boldsymbol{\alpha}}(m, j) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)=\bigoplus_{J:|J|=j} W_{n}^{\boldsymbol{\alpha}}(m, J)
$$

where $W_{n}^{\boldsymbol{\alpha}}(m, J)$ are simple modules defined by

$$
W_{n}^{\boldsymbol{\alpha}}(m, J)=\left(V_{n}^{\boldsymbol{\alpha}}(m, J)+L_{n}^{\boldsymbol{\alpha}}(m, j-1)\right) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)
$$

Among these simple modules, there are highest weight modules with highest weights of the form $\psi^{\lambda} \in \mathfrak{h}^{*}$ where

$$
\lambda=(-1, \ldots,-1, z, 0, \ldots, 0) \in \mathbb{C}^{n}
$$

including the finite dimensional ones having integral dominant weights with $\lambda=(k, 0, \ldots, 0)$ and $(-1, \ldots,-1, \ell)$ for $k \geqslant 0$ and $\ell \leqslant-1$.

2. A filtration on L_{n} and simple modules in $g r L_{n}$

In this section, we impose a filtration on the ring

$$
L_{n}=\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

of Laurent polynomials in n indeterminates over the complex numbers \mathbb{C}, and then show that the graded structure of its associated graded ring is compatible with the module structure of L_{n} over the complex general linear Lie algebra $\mathfrak{g l}(n)=\mathfrak{g l}_{n}(\mathbb{C})$.

Recall that $\mathfrak{g l}(n)$ is the Lie algebra of $n \times n$ complex matrices with the usual matrix addition and the Lie bracket given by the commutator of two matrices. We will write $\mathcal{U}_{n}=\mathcal{U}(\mathfrak{g l}(n))$ for the universal enveloping algebra of $\mathfrak{g l}(n)$.

2.1. Submodules of L_{n}

The complex vector space L_{n} is spanned by monomials

$$
\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}
$$

for $\mathbf{k}=\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$. We define some subspaces of L_{n}.
Definition 2.1. Let m be an integer, j be an integer with $0 \leqslant j \leqslant n$, and J be a subset of $\{1,2, \ldots, n\}$.

1) Let $V_{n}(m, J)$ be the subspace of L_{n} spanned by all the monomials $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$ such that

$$
\sum_{i=1}^{n} k_{i}=m \quad \text { and } \quad\left\{i: k_{i}<0\right\} \subseteq J
$$

2) Let $L_{n}(m, j)$ be the sum of the subspaces $V_{n}(m, J)$ of L_{n}

$$
L_{n}(m, j)=\sum_{J:|J|=j} V_{n}(m, J)
$$

over all subsets J of $\{1,2, \ldots, n\}$ having j elements.

It follows directly from the definition that

$$
V_{n}\left(m, J_{1}\right) \subseteq V_{n}\left(m, J_{2}\right) \quad \text { for all } J_{1} \subseteq J_{2}
$$

Then, we have

$$
L_{n}(m, j-1) \subseteq L_{n}(m, j)
$$

and their quotient can be expressed as

$$
\begin{aligned}
L_{n}(m, j) / L_{n}(m, j-1) & =\left(\sum_{J:|J|=j} V_{n}(m, J)\right) / L_{n}(m, j-1) \\
& =\sum_{J:|J|=j}\left(V_{n}(m, J)+L_{n}(m, j-1)\right) / L_{n}(m, j-1)
\end{aligned}
$$

Definition 2.2. For an integer m and a subset J of $\{1,2, \ldots, n\}$ having j elements, we let $W_{n}(m, J)$ denote the subspace

$$
W_{n}(m, J)=\left(V_{n}(m, J)+L_{n}(m, j-1)\right) / L_{n}(m, j-1)
$$

of the quotient space $L_{n}(m, j) / L_{n}(m, j-1)$.
The spaces $V_{n}(m, J), L_{n}(m, j)$, and $W_{n}(m, J)$ are special cases of the ones defined in Definition 3.5 and Definition 6.1 with $\boldsymbol{\alpha}=\mathbf{0}$ and $I_{\boldsymbol{\alpha}}=\{1,2, \ldots, n\}$, and they are modules over \mathcal{U}_{n} with respect to

$$
A \cdot f=\sum_{i j} a_{i j} x_{i} \frac{\partial f}{\partial x_{j}}
$$

for $A=\left(a_{i j}\right) \in \mathfrak{g l}(n)$ and $f \in L_{n}$. See Theorems 4.4, 4.5, 5.4, and 5.5. Moreover, $W_{n}(m, J)$ are simple modules. See Theorem 6.2.
Lemma 2.3. For $m \in \mathbb{Z}$ and a subset J of $\{1,2, \ldots, n\}$ having j elements, as a \mathcal{U}_{n}-module,

$$
W_{n}(m, J) \cong V_{n}(m, J) / \sum_{J^{\prime}} V_{n}\left(m, J^{\prime}\right)
$$

where the summation is over all subsets J^{\prime} of J having $j-1$ elements Proof. Note that

$$
\begin{aligned}
W_{n}(m, J) & =\left(V_{n}(m, J)+L_{n}(m, j-1)\right) / L_{n}(m, j-1) \\
& \cong V_{n}(m, J) /\left(V_{n}(m, J) \cap L_{n}(m, j-1)\right) .
\end{aligned}
$$

Then, the statement follows from the following observation

$$
V_{n}(m, J) \cap L_{n}(m, j-1)=\sum_{J^{\prime}} V_{n}\left(m, J^{\prime}\right)
$$

where the sum is over all subsets J^{\prime} of J having $j-1$ elements.

2.2. Filtration by a partially ordered monoid

Let \mathscr{P}_{n} be the set of all subsets of $\{1,2, \ldots, n\}$. On the set $\mathbb{Z} \times \mathscr{P}_{n}$, we define the partial order $\left(m_{1}, J_{1}\right) \leqslant\left(m_{2}, J_{2}\right)$ if $m_{1} \leqslant m_{2}$ and $J_{1} \subseteq J_{2}$, and the multiplication

$$
\left(m_{1}, J_{1}\right) *\left(m_{2}, J_{2}\right)=\left(m_{1}+m_{2}, J_{1} \cup J_{2}\right)
$$

With \leqslant and $*, \mathbb{Z} \times \mathscr{P}_{n}$ becomes a partially ordered monoid with the identity $(0, \varnothing)$, and using this monoid we want to impose a filtration on L_{n}. For basic properties of a filtration of a ring given by a partially ordered monoid, we refer to [2, §I.12].

Definition 2.4. For each $(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}$, we define

$$
L_{n}^{\leqslant(m, J)}=\sum_{\left(m_{1}, J_{1}\right)} V_{n}\left(m_{1}, J_{1}\right) \quad \text { and } \quad L_{n}^{<(m, J)}=\sum_{\left(m_{2}, J_{2}\right)} V_{n}\left(m_{2}, J_{2}\right)
$$

where the first summation is over all $\left(m_{1}, J_{1}\right)$ such that

$$
\left(m_{1}, J_{1}\right) \leqslant(m, J)
$$

and the second summation is over all $\left(m_{2}, J_{2}\right)$ such that

$$
\left(m_{2}, J_{2}\right) \leqslant(m, J) \text { but }\left(m_{2}, J_{2}\right) \neq(m, J)
$$

Proposition 2.5. The family $\left\{L_{n}^{\lessgtr(m, J)}:(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}\right\}$ of subspace of L_{n} defines a filtration on L_{n} by the partially ordered monoid $\mathbb{Z} \times \mathscr{P}_{n}$.

Proof. We need to check the following conditions (see [2, §I.12]).

1) $1 \in L_{n}^{\leqslant(0, \varnothing)}$,
$2)$ for all $\left(m_{1}, J_{1}\right) \leqslant\left(m_{2}, J_{2}\right)$,

$$
L_{n}^{\leqslant\left(m_{1}, J_{1}\right)} \subseteq L_{n}^{\leqslant\left(m_{2}, J_{2}\right)}
$$

3) for all $\left(m_{1}, J_{1}\right)$ and $\left(m_{2}, J_{2}\right)$,

$$
L_{n}^{\leqslant\left(m_{1}, J_{1}\right)} L_{n}^{\leqslant\left(m_{2}, J_{2}\right)} \subseteq L_{n}^{\leqslant\left(m_{1}, J_{1}\right) *\left(m_{2}, J_{2}\right)}
$$

4) the union of all such subspaces is equal to L_{n}

$$
\bigcup_{(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}} L_{n}^{\leqslant(m, J)}=L_{n}
$$

All of them follow directly from the definitions of $L_{n}^{\leqslant(m, J)}$ and $V_{n}(m, J)$.

For $\left(m_{1}, J_{1}\right)$ and $\left(m_{2}, J_{2}\right)$ in $\mathbb{Z} \times \mathscr{P}_{n}$, we have

$$
L_{n}^{\leqslant\left(m_{1}, J_{1}\right)} L_{n}^{<\left(m_{2}, J_{2}\right)}+L_{n}^{<\left(m_{1}, J_{1}\right)} L_{n}^{\leqslant\left(m_{2}, J_{2}\right)} \subseteq L_{n}^{<\left(m_{1}, J_{1}\right) *\left(m_{2}, J_{2}\right)}
$$

and therefore the quotient spaces $L_{n}^{\leqslant(m, J)} / L_{n}^{<(m, J)}$ form the homogeneous components of the associated graded ring of L_{n}.
Theorem 2.6. With the filtration $\left\{L_{n}^{\leqslant(m, J)}:(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}\right\}$ imposed on L_{n}, the direct sum decomposition of the associated graded ring

$$
g r L_{n}=\bigoplus_{(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}} L_{n}^{\leqslant(m, J)} / L_{n}^{<(m, J)}
$$

agrees with the decomposition of $g r L_{n}$ into its simple submodules over \mathcal{U}_{n}. In particular, for each $(m, J) \in \mathbb{Z} \times \mathscr{P}_{n}$, as a \mathcal{U}_{n}-module,

$$
L_{n}^{\leqslant(m, J)} / L_{n}^{<(m, J)} \cong W_{n}(m, J)
$$

Proof. For an integer m and a subset J of $\{1,2, \ldots, n\}$ having j elements, let us define

$$
S=V_{n}(m, J) \quad \text { and } \quad T=\sum_{J_{1} \subset J} V_{n}\left(m, J_{1}\right)+\sum_{m_{1}<m} V_{n}\left(m_{1}, J\right)
$$

where the first summation for T is over all proper subsets J_{1} of J, and the second summation is over all m_{1} strictly less than m. Then, we have

$$
\begin{aligned}
S \cap T & =V_{n}(m, J) \cap\left(\sum_{J_{1} \subset J} V_{n}\left(m, J_{1}\right)+\sum_{m_{1}<m} V_{n}\left(m_{1}, J\right)\right) \\
& =V_{n}(m, J) \cap\left(\sum_{J_{1} \subset J} V_{n}\left(m, J_{1}\right)\right) \\
& =\sum_{J^{\prime}} V_{n}\left(m, J^{\prime}\right)
\end{aligned}
$$

where the last summation is over all subsets J^{\prime} of J having $j-1$ elements. Note that

$$
S+T=L_{n}^{\leqslant(m, J)} \quad \text { and } \quad T=L_{n}^{<(m, J)}
$$

and then, by the usual module isomorphism theorem $(S+T) / T \cong S /(S \cap$ T), we obtain

$$
\begin{equation*}
L_{n}^{\leqslant(m, J)} / L_{n}^{<(m, J)} \cong V_{n}(m, J) / \sum_{J^{\prime}} V_{n}\left(m, J^{\prime}\right) \tag{2.1}
\end{equation*}
$$

where the summation is over all subsets J^{\prime} of J having $j-1$ elements. Now, using the realization of $W_{n}(m, J)$ given in Lemma 2.3, we have

$$
L_{n}^{\leqslant(m, J)} / L_{n}^{<(m, J)} \cong W_{n}(m, J)
$$

In $\S 6$, we will investigate the simple modules $W_{n}(m, J)$ in a more general setting.

3. Modules $L_{n}^{\alpha}(m, j)$ and $V_{n}^{\alpha}(m, J)$

In this section, generalizing $L_{n}(m, J)$ and $V_{n}(m, J)$ discussed in the previous section, we define some submodules of L_{n} over the universal enveloping algebra \mathcal{U}_{n} of $\mathfrak{g l}(n)$ parameterized by $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n}$.

Notation 3.1. 1) For a finite set S, we will write $|S|$ for the cardinality of S.
2) For $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{C}^{n}$, we write $\boldsymbol{\alpha}[\ell]$ for the ℓ th component α_{ℓ} of $\boldsymbol{\alpha}$. Then, for $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{C}^{n}$, we let $\boldsymbol{\alpha} \pm \boldsymbol{\beta}$ be the elements in \mathbb{C}^{n} such that

$$
(\boldsymbol{\alpha} \pm \boldsymbol{\beta})[\ell]=\boldsymbol{\alpha}[\ell] \pm \boldsymbol{\beta}[\ell] \quad \text { for } 1 \leqslant \ell \leqslant n
$$

3) We write \mathbf{e}_{j} for the element in \mathbb{Z}^{n} whose j th entry is one and all the other entries are zero.

$$
\mathbf{e}_{j}[\ell]= \begin{cases}1 & \text { if } \ell=j \\ 0 & \text { otherwise }\end{cases}
$$

4) For $\mathbf{k} \in \mathbb{Z}^{n}$, let $\mathbf{x}^{\mathbf{k}}$ be the monomial

$$
\mathbf{x}^{\mathbf{k}}=x_{1}^{\mathbf{k}[1]} x_{2}^{\mathbf{k}[2]} \cdots x_{n}^{\mathbf{k}[n]}
$$

in L_{n}. In this setting, we denote the negative part of \mathbf{k} by

$$
\mathbf{k}^{n e g}=\{\ell: \mathbf{k}[\ell]<0\} .
$$

We let $E_{a b} \in \mathfrak{g l}(n)$ be the $n \times n$ matrix with one in (a, b) and zero elsewhere.

Definition 3.2. For each $\boldsymbol{\alpha} \in \mathbb{C}^{n}, E_{a b}$ acts on the monomials $\mathbf{x}^{\mathbf{k}}$ in the algebra L_{n} of Laurent polynomials as

$$
E_{a b} \cdot \mathbf{x}^{\mathbf{k}}=(\mathbf{k}[b]+\boldsymbol{\alpha}[b]) \mathbf{x}^{\mathbf{k}+\mathbf{e}_{a}-\mathbf{e}_{b}} \quad \text { for } 1 \leqslant a, b \leqslant n
$$

With this action, the space L_{n} gives rise to a \mathcal{U}_{n}-module, which we will denote by L_{n}^{α}, and for $f \in L_{n}$ we write $\langle f\rangle$ for the cyclic submodule of L_{n}^{α} generated by f.

Informally, we may think of the above action as

$$
E_{a b} \cdot f=\mathbf{x}^{-\alpha} x_{a} \frac{\partial}{\partial x_{b}} \mathbf{x}^{\alpha} f \quad \text { for } f \in L_{n}
$$

and then the action in the definition can be considered a generalization of the action (1.2) of $\mathfrak{g l}(n)$ on the polynomial ring which provides all the finite dimensional representations of $\mathfrak{g l}(n)$ labeled by Young diagrams with single rows. See Theorem 5.4 (2).

Lemma 3.3. For $\boldsymbol{\alpha}$ and $\boldsymbol{\beta} \in \mathbb{C}^{n}$, if $\boldsymbol{\alpha}-\boldsymbol{\beta} \in \mathbb{Z}^{n}$ then, as a \mathcal{U}_{n}-module, $L_{n}^{\boldsymbol{\alpha}}$ is isomorphic to $L_{n}^{\boldsymbol{\beta}}$.

Proof. It is enough to show that the linear map ψ from L_{n} to L_{n} sending $\mathbf{x}^{\mathbf{k}}$ to $\mathrm{x}^{\mathbf{k}+\boldsymbol{\alpha}-\boldsymbol{\beta}}$ for $\mathbf{k} \in \mathbb{Z}^{n}$ gives a \mathcal{U}_{n}-module map from L_{n}^{α} to $L_{n}^{\boldsymbol{\beta}}$. It follows from

$$
\begin{aligned}
\psi\left(E_{a b} \cdot \mathbf{x}^{\mathbf{k}}\right) & =(\mathbf{k}[b]+\boldsymbol{\alpha}[b]) \mathbf{x}^{\mathbf{k}+\mathbf{e}_{a}-\mathbf{e}_{b}} \times \mathbf{x}^{\boldsymbol{\alpha}-\boldsymbol{\beta}} \\
& =\{(\mathbf{k}+\boldsymbol{\alpha}-\boldsymbol{\beta})[b]+\boldsymbol{\beta}[b]\} \mathbf{x}^{(\mathbf{k}+\boldsymbol{\alpha}-\boldsymbol{\beta})+\mathbf{e}_{a}-\mathbf{e}_{b}} \\
& =E_{a b} \cdot \mathbf{x}^{(\mathbf{k}+\boldsymbol{\alpha}-\boldsymbol{\beta})}=E_{a b} \cdot \psi\left(\mathbf{x}^{\mathbf{k}}\right)
\end{aligned}
$$

for all $1 \leqslant a, b \leqslant n$.
With this lemma, we can focus on the following choice of $\boldsymbol{\alpha}$.
Notation 3.4. Once and for all, we fix $\boldsymbol{\alpha} \in \mathbb{C}^{n}$ the entries of whose real parts satisfy

$$
0 \leqslant \operatorname{Re}(\boldsymbol{\alpha}[\ell])<1 \quad \text { for all } 1 \leqslant \ell \leqslant n
$$

and the following subset of $\{1,2, \ldots, n\}$

$$
I_{\boldsymbol{\alpha}}=\{\ell: \boldsymbol{\alpha}[\ell]=0\}
$$

With this choice of $\boldsymbol{\alpha}$, we note that for $\mathbf{k} \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
\mathbf{k}[\ell]+\boldsymbol{\alpha}[\ell]=0 \quad \text { for some } \ell \tag{3.1}
\end{equation*}
$$

only when $\mathbf{k}[\ell]=\boldsymbol{\alpha}[\ell]=0$.
Definition 3.5 (Submodules $L_{n}^{\boldsymbol{\alpha}}(m, j)$ and $\left.V_{n}^{\boldsymbol{\alpha}}(m, J)\right)$.

1) For integers m and j with $0 \leqslant j \leqslant\left|I_{\boldsymbol{\alpha}}\right|$, we let $L_{n}^{\alpha}(m, j)$ be the subspace of L_{n}^{α} spanned by all the monomials $\mathbf{x}^{\mathbf{k}}$ such that

$$
\sum_{\ell=1}^{n} \mathbf{k}[\ell]=m \quad \text { and } \quad\left|\mathbf{k}^{n e g} \cap I_{\boldsymbol{\alpha}}\right| \leqslant j
$$

2) For a subset J of $I_{\boldsymbol{\alpha}}$ with $|J|=j$, we let $V_{n}^{\boldsymbol{\alpha}}(m, J)$ be the subspace of $L_{n}^{\boldsymbol{\alpha}}(m, j)$ spanned by all the monomials $\mathbf{x}^{\mathbf{k}}$ in $L_{n}^{\boldsymbol{\alpha}}(m, j)$ such that

$$
\left(\mathbf{k}^{n e g} \cap I_{\boldsymbol{\alpha}}\right) \subseteq J
$$

Example 3.6. Let $n=4, \boldsymbol{\alpha}=(0,1 / 2,0,0)$, and therefore $I_{\boldsymbol{\alpha}}=\{1,3,4\}$.

1) Let $j=2$. From the condition $\left|\mathbf{k}^{n e g} \cap\{1,3,4\}\right| \leqslant 2$, the space $L_{n}^{\boldsymbol{\alpha}}(m, j)$ is spanned by all the monomials $\mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}} x_{4}^{k_{4}}$ in L_{n} such that
i) $k_{1}+k_{2}+k_{3}+k_{4}=m$ and $\left.i i\right) k_{1} \geqslant 0$ or $k_{3} \geqslant 0$ or $k_{4} \geqslant 0$.
2) Let $J=\{1,4\}$. From the condition $\left(\mathbf{k}^{\text {neg }} \cap\{1,3,4\}\right) \subset\{1,4\}$, $V_{n}^{\boldsymbol{\alpha}}(m, J)$ is the subspace of $L_{n}^{\boldsymbol{\alpha}}(m, j)$ spanned by all the monomials of degree m with $k_{3} \geqslant 0$.

See more examples in Example 4.2. The following is easy to check.
Lemma 3.7. If $J=\varnothing$ (therefore $j=0$) or $J=I_{\boldsymbol{\alpha}}$ (therefore $\left.j=\left|I_{\boldsymbol{\alpha}}\right|\right)$, then

$$
V_{n}^{\boldsymbol{\alpha}}(m, J)=L_{n}^{\boldsymbol{\alpha}}(m, j)
$$

From Definition 3.5, it immediately follows that

$$
\begin{equation*}
L_{n}^{\boldsymbol{\alpha}}(m, j-1) \subseteq L_{n}^{\boldsymbol{\alpha}}(m, j) \quad \text { and } \quad L_{n}^{\boldsymbol{\alpha}}(m, j)=\sum_{J:|J|=j} V_{n}^{\boldsymbol{\alpha}}(m, J) \tag{3.2}
\end{equation*}
$$

where the summation runs over all subsets J of $I_{\boldsymbol{\alpha}}$ with $|J|=j$. Also, for two subsets J_{1} and J_{2} of $I_{\boldsymbol{\alpha}}$, we have

$$
\begin{align*}
& V_{n}^{\alpha}\left(m, J_{1}\right) \subset V_{n}^{\alpha}\left(m, J_{2}\right) \quad \text { for } J_{1} \subset J_{2} \tag{3.3}\\
& V_{n}^{\alpha}\left(m, J_{1} \cap J_{2}\right)=V_{n}^{\alpha}\left(m, J_{1}\right) \cap V_{n}^{\alpha}\left(m, J_{2}\right)
\end{align*}
$$

Now we show that $V_{n}^{\boldsymbol{\alpha}}(m, J)$ and $L_{n}^{\boldsymbol{\alpha}}(m, j)$ are indeed modules over \mathcal{U}_{n}.

Proposition 3.8. $V_{n}^{\boldsymbol{\alpha}}(m, J)$ and $L_{n}^{\boldsymbol{\alpha}}(m, j)$ are \mathcal{U}_{n}-submodules of $L_{n}^{\boldsymbol{\alpha}}$.
Proof. For a monomial $\mathbf{x}^{\mathbf{p}} \in V_{n}^{\boldsymbol{\alpha}}(m, J)$, we need to show

$$
E_{a b} \cdot \mathbf{x}^{\mathbf{p}}=(\mathbf{p}[b]+\boldsymbol{\alpha}[b]) \mathbf{x}^{\mathbf{p}+\mathbf{e}_{a}-\mathbf{e}_{b}}
$$

are in $V_{n}^{\boldsymbol{\alpha}}(m, J)$ for all $1 \leqslant a, b \leqslant n$. Since the action of $E_{a b}$ preserves the degree of monomials, writing $\mathbf{q}=\left(\mathbf{p}+\mathbf{e}_{a}-\mathbf{e}_{b}\right)$, it is enough to show
that for $a \neq b$ if $\left(\mathbf{p}^{n e g} \cap I_{\boldsymbol{\alpha}}\right) \subseteq J$, then $\left(\mathbf{q}^{n e g} \cap I_{\boldsymbol{\alpha}}\right) \subseteq J$ or the coefficient $(\mathbf{p}[b]+\boldsymbol{\alpha}[b])$ is zero.

For this, because the only element which is not in $\mathbf{p}^{\text {neg }}$ but can possibly appear in $\mathbf{q}^{\text {neg }}$ is b, it is enough to consider the case

$$
b \notin \mathbf{p}^{n e g} \cap I_{\boldsymbol{\alpha}} \quad \text { and } \quad b \in \mathbf{q}^{n e g} \cap I_{\boldsymbol{\alpha}}
$$

This happens only when $\mathbf{p}[b]=0$ and in this case, since $b \in I_{\boldsymbol{\alpha}}$, we have $\boldsymbol{\alpha}[b]=0$. Therefore, the coefficient $(\mathbf{p}[b]+\boldsymbol{\alpha}[b])$ is zero. Consequently, we have $E_{a b} \cdot \mathbf{x}^{\mathbf{p}} \in V_{n}^{\alpha}(m, J)$ for all $1 \leqslant a, b \leqslant n$, and $V_{n}^{\alpha}(m, J)$ is a submodule of L_{n}^{α}. Now from (3.2), $L_{n}^{\alpha}(m, j)$ is a submodule of L_{n}^{α}.

4. Structure of $V_{n}^{\alpha}(m, J)$

In this section, we investigate the structure of $V_{n}^{\boldsymbol{\alpha}}(m, J)$. We first give a technical lemma.

Lemma 4.1. For two distinct monomials $\mathbf{x}^{\mathbf{p}}$ and $\mathbf{x}^{\mathbf{q}}$ in $L_{n}^{\alpha}(m, j)$ such that

$$
\left(\mathbf{q}^{n e g} \cap I_{\boldsymbol{\alpha}}\right) \subseteq\left(\mathbf{p}^{n e g} \cap I_{\boldsymbol{\alpha}}\right)
$$

there exists $X \in \mathcal{U}_{n}$ such that $X \cdot \mathbf{x}^{\mathbf{p}}=\mathbf{x}^{\mathbf{q}}$.

Proof. For simplicity, we let $\mathbf{p}[\ell]=p_{\ell}, \mathbf{q}[\ell]=q_{\ell}$, and $\boldsymbol{\alpha}[\ell]=\alpha_{\ell}$ for all ℓ. Consider the difference $\mathbf{p}-\mathbf{q}=\left(p_{1}-q_{1}, \ldots, p_{n}-q_{n}\right) \in \mathbb{Z}^{n}$. Since $\mathbf{x}^{\mathbf{p}}$ and $\mathbf{x}^{\mathbf{q}}$ have the same degree m, we have $\sum_{\ell=1}^{n}\left(p_{\ell}-q_{\ell}\right)=0$ and therefore we can separate the positive and negative parts of $\mathbf{p}-\mathbf{q}$

$$
r=\sum_{\ell: p_{\ell}-q_{\ell}>0}\left(p_{\ell}-q_{\ell}\right)=\sum_{\ell: p_{\ell}-q_{\ell}<0}\left(q_{\ell}-p_{\ell}\right) .
$$

With Notation 3.1, we define $1 \leqslant s_{1} \leqslant s_{2} \leqslant \cdots \leqslant s_{r} \leqslant n$ and $1 \leqslant t_{1} \leqslant$ $t_{2} \leqslant \cdots \leqslant t_{r} \leqslant n$ so that

$$
\sum_{k=1}^{r} \mathbf{e}_{s_{k}}=\sum_{\ell: p_{\ell}-q_{\ell}>0}\left(p_{\ell}-q_{\ell}\right) \mathbf{e}_{\ell} \quad \text { and } \quad \sum_{k=1}^{r} \mathbf{e}_{t_{k}}=\sum_{\ell: p_{\ell}-q_{\ell}<0}\left(q_{\ell}-p_{\ell}\right) \mathbf{e}_{\ell}
$$

where the summations are over ℓ such that $p_{\ell}-q_{\ell}>0$ and $p_{\ell}-q_{\ell}<0$ respectively.

Setting $\mathbf{p}_{0}=\mathbf{p}$ and $\mathbf{p}_{k}=\mathbf{p}_{k-1}+\mathbf{e}_{t_{k}}-\mathbf{e}_{s_{k}}$ for $1 \leqslant k \leqslant r$, we have $E_{t_{k} s_{k}} \cdot \mathbf{x}^{\mathbf{p}_{k-1}}=w_{k} \mathbf{x}^{\mathbf{p}_{k}}$. Furthermore, from

$$
\begin{aligned}
\mathbf{p}_{r} & =\mathbf{p}_{0}+\sum_{k=1}^{r}\left(\mathbf{e}_{t_{k}}-\mathbf{e}_{s_{k}}\right) \\
& =\mathbf{p}_{0}+\sum_{\ell: p_{\ell}-q_{\ell}<0}\left(q_{\ell}-p_{\ell}\right) \mathbf{e}_{\ell}-\sum_{\ell: p_{\ell}-q_{\ell}>0}\left(p_{\ell}-q_{\ell}\right) \mathbf{e}_{\ell} \\
& =\mathbf{p}_{0}+(\mathbf{q}-\mathbf{p})=\mathbf{q}
\end{aligned}
$$

by setting $Y=\prod_{k=1}^{r} E_{t_{k} s_{k}} \in \mathcal{U}_{n}$, we obtain

$$
\begin{aligned}
Y \cdot \mathbf{x}^{\mathbf{p}} & =\mathbf{x}^{\mathbf{p}}\left(w_{1} x_{t_{1}} x_{s_{1}}^{-1}\right)\left(w_{2} x_{t_{2}} x_{s_{2}}^{-1}\right) \cdots\left(w_{r} x_{t_{r}} x_{s_{r}}^{-1}\right) \\
& =\left(\prod_{k=1}^{r} w_{k}\right) \mathbf{x}^{\mathbf{p}} \mathbf{x}^{\mathbf{q}-\mathbf{p}}=\left(\prod_{k=1}^{r} w_{k}\right) \mathbf{x}^{\mathbf{q}}
\end{aligned}
$$

where the coefficient is

$$
\prod_{k=1}^{r} w_{k}=\prod_{\ell: p_{\ell}-q_{\ell}>0}\left(p_{\ell}+\alpha_{\ell}\right)\left(p_{\ell}-1+\alpha_{\ell}\right) \cdots\left(p_{\ell}-\left(p_{\ell}-q_{\ell}-1\right)+\alpha_{\ell}\right)
$$

For each ℓ in the above product, if $\ell \notin I_{\alpha}$ then $\alpha_{\ell} \neq 0$, and therefore the corresponding factor is not zero by (3.1). Now let $\ell \in I_{\boldsymbol{\alpha}}$ and therefore $\alpha_{\ell}=0$. To derive a contradiction, suppose $\left(p_{\ell}-c\right)$ in the ℓ th factor of the above product is zero for some $0 \leqslant c \leqslant\left(p_{\ell}-q_{\ell}-1\right)$. Then, from $p_{\ell}=c$, we have

$$
\begin{equation*}
0 \leqslant p_{\ell} \leqslant\left(p_{\ell}-q_{\ell}-1\right) \tag{4.1}
\end{equation*}
$$

and therefore $q_{\ell} \leqslant-1$. On the other hand, from the given hypothesis $\left(\mathbf{q}^{\text {neg }} \cap I_{\boldsymbol{\alpha}}\right) \subseteq\left(\mathbf{p}^{\text {neg }} \cap I_{\boldsymbol{\alpha}}\right)$, we know that $p_{\ell}<0$ whenever $q_{\ell}<0$, which contradicts to (4.1). Therefore, we have $\prod_{k=1}^{r} w_{k} \neq 0$ and with the element

$$
X=\prod_{k=1}^{r} w_{k}^{-1} E_{t_{k} s_{k}}
$$

we see that $X \cdot \mathrm{x}^{\mathbf{p}}=\mathrm{x}^{\mathbf{q}}$.
Example 4.2.1) Let $\boldsymbol{\alpha}=(1 / 2, i, 0), I_{\boldsymbol{\alpha}}=\{3\}$, and $J=\varnothing$. If $m=4$ then from the condition

$$
\mathbf{k}^{n e g} \cap\{3\} \subseteq \varnothing
$$

$V_{n}^{\boldsymbol{\alpha}}(m, J)$ is spanned by all the monomials $x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}}$ of degree 4 with $k_{3} \geqslant 0$.

Note that $\mathbf{x}^{\mathbf{p}}=x_{1}^{4}$ and $\mathbf{x}^{\mathbf{q}}=x_{1} x_{2}^{-2} x_{3}^{5}$ in $V_{n}^{\boldsymbol{\alpha}}(m, J)$ satisfy the condition in Lemma 4.1. From

$$
\mathbf{p}-\mathbf{q}=(3,2,-5)=(3,2,0)+(0,0,-5)
$$

we define the element $Y=E_{31} \cdot E_{31} \cdot E_{31} \cdot E_{32} \cdot E_{32} \in \mathcal{U}_{n}$ to obtain

$$
Y \cdot \mathbf{x}^{\mathbf{p}}=(2+1 / 2)(3+1 / 2)(4+1 / 2)(-1+i)(0+i) \mathbf{x}^{\mathbf{q}}
$$

Therefore there is $X \in \mathcal{U}_{n}$ such that $X \cdot \mathrm{x}^{\mathbf{p}}=\mathrm{x}^{\mathbf{q}}$.
2) Let $\alpha=(0,0,0), I_{\boldsymbol{\alpha}}=\{1,2,3\}$, and $J=\{1,3\}$. If $m=-2$ then from the condition

$$
\mathbf{k}^{n e g} \cap\{1,2,3\} \subseteq\{1,3\}
$$

$V_{n}^{\boldsymbol{\alpha}}(m, J)$ is spanned by all the monomials $x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}}$ of degree -2 with $k_{2} \geqslant 0$.

Note that $\mathbf{x}^{\mathbf{p}}=x_{1}^{-1} x_{3}^{-1}$ and $\mathbf{x}^{\mathbf{q}}=x_{1} x_{2}^{2} x_{3}^{-5}$ in $V_{n}^{\boldsymbol{\alpha}}(m, J)$ satisfy the condition in Lemma 4.1. From

$$
\mathbf{p}-\mathbf{q}=(-2,-2,4)=(0,0,4)+(-2,-2,0)
$$

we define $Y=E_{13} \cdot E_{13} \cdot E_{23} \cdot E_{23} \in \mathcal{U}_{n}$ to obtain

$$
Y \cdot \mathbf{x}^{\mathbf{p}}=(-4+0)(-3+0)(-2+0)(-1+0) \mathbf{x}^{\mathbf{q}}
$$

Therefore, there is $X \in \mathcal{U}_{n}$ such that $X \cdot \mathbf{x}^{\mathbf{p}}=\mathrm{x}^{\mathbf{q}}$.
Now we investigate the structure of $V_{n}^{\boldsymbol{\alpha}}(m, J)$ for $\boldsymbol{\alpha} \neq \mathbf{0}$.
Theorem 4.3 (Structure of $V_{n}^{\alpha}(m, J)$ with nonzero $\left.\boldsymbol{\alpha}\right)$.
Let $\boldsymbol{\alpha} \neq \mathbf{0}$ and $J=\left\{\ell_{1}, \ldots, \ell_{j}\right\} \subseteq I_{\boldsymbol{\alpha}}$. Then, $V_{n}^{\boldsymbol{\alpha}}(m, J)$ is the cyclic submodule of L_{n}^{α} generated by

$$
\mathbf{x}_{J, t}=x_{\ell_{1}}^{-1} x_{\ell_{2}}^{-1} \cdots x_{\ell_{j}}^{-1} x_{t}^{m+j} \quad \text { for some } t \in\{1,2, \ldots, n\} \backslash I_{\boldsymbol{\alpha}}
$$

Proof. Since $\boldsymbol{\alpha} \neq \mathbf{0}$, there exists t such that $\boldsymbol{\alpha}[t] \neq 0$. Write $\mathbf{x}^{\mathbf{p}}$ for $\mathbf{x}_{J, t}$ and let $\mathbf{x}^{\mathbf{q}}$ be an arbitrary monomial in $V_{n}^{\boldsymbol{\alpha}}(m, J)$. Since $\left(\mathbf{q}^{n e g} \cap I_{\boldsymbol{\alpha}}\right) \subseteq$ $\left(\mathbf{p}^{n e g} \cap I_{\boldsymbol{\alpha}}\right)=J$, we can apply Lemma 4.1 to obtain $X \in \mathcal{U}_{n}$ such that $X \cdot \mathbf{x}^{\mathbf{p}}=\mathbf{x}^{\mathbf{q}}$. Therefore, $\mathbf{x}^{\mathbf{p}}$ generates the module $V_{n}^{\boldsymbol{\alpha}}(m, J)$.

Next we consider the other cases with $\boldsymbol{\alpha}=\mathbf{0}$. Let us fix

$$
J=\left\{\ell_{1}, \ldots, \ell_{j}\right\} \subseteq I_{\boldsymbol{\alpha}}=\{1,2, \ldots, n\}
$$

Theorem 4.4 (Structure of $V_{n}^{0}(m, J)$ with nonnegative degree m).

1) If $m \geqslant 0$ and $0 \leqslant j \leqslant n-1$, then $V_{n}^{\mathbf{0}}(m, J)$ is the cyclic submodule of $L_{n}^{0}(m, j)$ generated by

$$
\mathbf{x}_{J, t}=x_{\ell_{1}}^{-1} x_{\ell_{2}}^{-1} \cdots x_{\ell_{j}}^{-1} x_{t}^{m+j} \quad \text { for some } t \in\{1,2, \ldots, n\} \backslash J
$$

2) If $m \geqslant 0$ and $j=n$ (therefore, $J=\{1,2, \ldots, n\}$), then

$$
\begin{aligned}
V_{n}^{\mathbf{0}}(m,\{1,2, \ldots, n\}) & =L_{n}^{\mathbf{0}}(m, n)=L_{n}^{\mathbf{0}}(m, n-1) \\
& =\sum_{J^{\prime}} V_{n}^{\mathbf{0}}\left(m, J^{\prime}\right)
\end{aligned}
$$

where the summation is over all the subsets J^{\prime} of $\{1,2, \ldots, n\}$ with $\left|J^{\prime}\right|=n-1$.

Proof. For Statement (1), we first note that $\mathbf{x}_{J, t} \in V_{n}^{\mathbf{0}}(m, J)$. Write $\mathbf{x}^{\mathbf{p}}$ for $\mathbf{x}_{J, t}$ and let $\mathbf{x}^{\mathbf{q}}$ be an arbitrary monomial in $V_{n}^{\mathbf{0}}(m, J)$. Since $\mathbf{q}^{\text {neg }} \subseteq$ $\mathbf{p}^{\text {neg }}=J$, applying Lemma 4.1, we see that there exists $X \in \mathcal{U}_{n}$ such that $X \cdot \mathbf{x}^{\mathbf{p}}=\mathbf{x}^{\mathbf{q}}$. Therefore, $\mathbf{x}^{\mathbf{q}}$ belongs to the module generated by $\mathbf{x}_{J, t}$ and we have $V_{n}^{\mathbf{0}}(m, J)=\left\langle\mathbf{x}_{J, t}\right\rangle$.

For Statement (2), if $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$ is a monomial in $L_{n}^{0}(m, n)$, then not all k_{j} 's can be negative, because the degree m is nonnegative. Therefore, $L_{n}^{\mathbf{0}}(m, n)=L_{n}^{\mathbf{0}}(m, n-1)$. The other equalities follow from Lemma 3.7 and (3.2).

Theorem 4.5 (Structure of $V_{n}^{0}(-m, J)$ with negative degree $\left.-m\right)$.
Let $1 \leqslant m<n$.
1a) If $j=0$ (therefore, $J=\varnothing$), then

$$
V_{n}^{\mathbf{0}}(-m, \varnothing)=L_{n}^{\mathbf{0}}(-m, 0)=\{0\}
$$

1b) If $1 \leqslant j \leqslant m$, then $V_{n}^{\mathbf{0}}(-m, J)$ is the cyclic submodule of $L_{n}^{\mathbf{0}}(-m, j)$ generated by

$$
\mathbf{x}_{J}=x_{\ell_{1}}^{-1} x_{\ell_{2}}^{-1} \cdots x_{\ell_{j-1}}^{-1} x_{\ell_{j}}^{j-1-m}
$$

1c) If $m+1 \leqslant j \leqslant n-1$, then $V_{n}^{0}(-m, J)$ is the cyclic submodule of $L_{n}^{0}(-m, j)$ generated by

$$
\mathbf{x}_{J, t}=x_{\ell_{1}}^{-1} x_{\ell_{2}}^{-1} \cdots x_{\ell_{j-1}}^{-1} x_{\ell_{j}}^{-1} x_{t}^{j-m} \quad \text { for some } t \in\{1,2, \ldots, n\} \backslash J
$$

1d) If $j=n$ (therefore, $J=\{1,2, \ldots, n\}$), then

$$
\begin{aligned}
V_{n}^{0}(-m,\{1,2, \ldots, n\}) & =L_{n}^{\mathbf{0}}(-m, n)=L_{n}^{\mathbf{0}}(-m, n-1) \\
& =\sum_{J^{\prime}} V_{n}^{\mathbf{0}}\left(-m, J^{\prime}\right)
\end{aligned}
$$

where the summation is over all $J^{\prime} \subset\{1,2, \ldots, n\}$ with $\left|J^{\prime}\right|=n-1$.
Now let $m \geqslant n$.
2a) If $j=0$ (therefore, $J=\varnothing$), then

$$
V_{n}^{\mathbf{0}}(-m, \varnothing)=L_{n}^{\mathbf{0}}(-m, 0)=\{0\}
$$

2b) If $1 \leqslant j \leqslant n$, then $V_{n}^{\mathbf{0}}(-m, J)$ is the cyclic submodule of $L_{n}^{\mathbf{0}}(-m, j)$ generated by

$$
\mathbf{x}_{J}=x_{\ell_{1}}^{-1} x_{\ell_{2}}^{-1} \cdots x_{\ell_{j-1}}^{-1} x_{\ell_{j}}^{j-1-m}
$$

Proof. Statements 1a) and 2a) follow directly from Definition 3.5. For Statement 1d), note that if $\mathbf{x}^{\mathbf{k}} \in L_{n}^{\mathbf{0}}(-m, n)$ then $\sum_{\ell} \mathbf{k}[\ell]=-m>-n$ and therefore there should be at least one ℓ with $\mathbf{k}[\ell] \geqslant 0$. This implies that $L_{n}^{\mathbf{0}}(-m, n)=L_{n}^{\mathbf{0}}(-m, n-1)$. Now the statements follows from Lemma 3.7 and (3.2). The other statements can be shown similarly to Theorem 4.3 and Theorem 4.4 (1).

Remark 4.6. Let $\mathbf{x}^{\mathbf{p}}$ be the generators \mathbf{x}_{J} or $\mathbf{x}_{J, t}$ of the cyclic modules $V_{n}^{\boldsymbol{\alpha}}(m, J)$ given in Theorem 4.3, Theorem 4.4, and Theorem 4.5. We remark that these generators are not unique. This is because, when applying Lemma 4.1, if

$$
\begin{equation*}
\left(\mathbf{q}^{n e g} \cap I_{\boldsymbol{\alpha}}\right)=\left(\mathbf{p}^{n e g} \cap I_{\boldsymbol{\alpha}}\right), \tag{4.2}
\end{equation*}
$$

then we can exchange the roles of $\mathbf{x}^{\mathbf{p}}$ and $\mathbf{x}^{\mathbf{q}}$. Therefore, every monomial $\mathbf{x}^{\mathbf{q}} \in V_{n}^{\boldsymbol{\alpha}}(m, J)$ satisfying (4.2) can also generate the module $V_{n}^{\boldsymbol{\alpha}}(m, J)$.

5. Structure of $L_{n}^{\alpha}(m, j)$

In this section, we investigate the structure of $L_{n}^{\alpha}(m, j)$. Let us begin with another technical lemma.

Lemma 5.1. For an element $f=\sum_{i=1}^{r} c_{i} \mathbf{x}^{\mathbf{k}_{i}}$ of L_{n}^{α} with distinct monomials and nonzero coefficients, the cyclic module generated by f includes the cyclic modules generated by the terms of f

$$
\left\langle\mathbf{x}^{\mathbf{k}_{i}}\right\rangle \subseteq\langle f\rangle \quad \text { for all } i
$$

Proof. We want to prove the statement by induction on the number r of the terms of f. If $r=1$ then we have nothing to prove. Suppose $r \geqslant 2$. We first note that, since $\mathbf{x}^{\mathbf{k}_{i}}$ are distinct, they are weight vectors with different weights under the action of the Cartan subalgebra \mathfrak{h} of $\mathfrak{g l}(n)$ spanned by $E_{a a}$ for $1 \leqslant a \leqslant n$. Let w_{i} be the weight for the monomial $\mathbf{x}^{\mathbf{k}_{i}}$. Then, there is an element $H \in \mathfrak{h}$ such that

$$
g=w_{1}(H) f-H \cdot f=\sum_{i: w_{i}(H) \neq w_{1}(H)}\left(w_{1}(H)-w_{i}(H)\right) c_{i} \mathbf{x}^{\mathbf{k}_{i}}
$$

is a non-zero element in $\langle f\rangle$. Also, since the number of terms in g is less than r, by the induction hypothesis the cyclic modules generated by the terms of g are included in $\langle g\rangle$. This shows that for i with $w_{i}(H) \neq w_{1}(H)$ we have $\left\langle\mathbf{x}^{\mathbf{k}_{i}}\right\rangle \subseteq\langle f\rangle$.

Now we note that

$$
h=f-\sum_{i: w_{i}(H) \neq w_{1}(H)} c_{i} \mathbf{x}^{\mathbf{k}_{i}}=\sum_{i: w_{i}(H)=w_{1}(H)} c_{i} \mathbf{x}^{\mathbf{k}_{i}}
$$

is a nonzero element in $\langle f\rangle$. Since the number of the terms of h is less than r, again by the induction hypothesis, the cyclic modules generated by the terms of h are included in $\langle h\rangle$. Therefore, $\langle f\rangle$ contains $\left\langle\mathbf{x}^{\mathbf{k}_{i}}\right\rangle$ for i with $w_{i}(H)=w_{1}(H)$ as well.

As an immediate consequence of the above lemma, we obtain the following result for the special case of Theorem 4.5 with $J=\{\ell\}$ for $1 \leqslant \ell \leqslant n$.
Proposition 5.2. For $m \geqslant 1$ and $1 \leqslant \ell \leqslant n, V_{n}^{0}(-m,\{\ell\})$ is a simple submodule of $L_{n}^{0}(-m, 1)$ generated by x_{ℓ}^{-m}.
Proof. From Theorem $4.5 \mathrm{1b}$) and 2 b),

$$
V_{n}^{\mathbf{0}}(-m, J)=\left\langle x_{\ell}^{-m}\right\rangle \subseteq L_{n}^{\mathbf{0}}(-m, 1)
$$

For a nonzero $f \in V_{n}^{\mathbf{0}}(-m, J)$, writing $f=\sum_{i} c_{i} \mathbf{x}^{\mathbf{k}_{i}}$, let us consider the submodule of $V_{n}^{\mathbf{0}}(-m, J)$ generated by f. By Lemma 5.1, it contains the cyclic submodules generated by $\mathbf{x}^{\mathbf{k}_{i}}$.

$$
\left\langle\mathbf{x}^{\mathbf{k}_{i}}\right\rangle \subseteq\langle f\rangle \subseteq V_{n}^{\mathbf{0}}(-m, J)
$$

On the other hand, for each i, since $\left(\mathbf{k}_{i}^{n e g} \cap\{1,2, \ldots, n\}\right) \subseteq\{\ell\}$ and the degree of $\mathbf{x}^{\mathbf{k}_{i}}$ should be $-m<0$, we have $\mathbf{k}_{i}[\ell]<0$ and $\mathbf{k}_{i}\left[\ell^{\prime}\right] \geqslant 0$ for $\ell^{\prime} \neq \ell$. By Remark 4.6, each of these monomials can generate the whole module $V_{n}^{\mathbf{0}}(-m, J)$. Therefore, we have $\langle f\rangle=V_{n}^{\mathbf{0}}(-m, J)$ and conclude that $V_{n}^{\mathbf{0}}(-m,\{\ell\})$ has no nonzero proper submodules.

Now, we investigate the structure of $L_{n}^{\boldsymbol{\alpha}}(m, j)$ for $\boldsymbol{\alpha} \neq \mathbf{0}$.
Theorem 5.3 (Structure of $L_{n}^{\alpha}(m, j)$ with nonzero $\left.\boldsymbol{\alpha}\right)$.

1) If $\boldsymbol{\alpha} \neq \mathbf{0}$ and $0 \leqslant j \leqslant\left|I_{\boldsymbol{\alpha}}\right|$, then $L_{n}^{\boldsymbol{\alpha}}(m, j)$ is indecomposable.
2) In particular, if $\boldsymbol{\alpha} \neq \mathbf{0}$ and $j=0$, then $L_{n}^{\boldsymbol{\alpha}}(m, 0)=V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)$ is a nonzero simple module over \mathcal{U}_{n}.

Proof. For Statement (2), from Lemma 3.7, $L_{n}^{\boldsymbol{\alpha}}(m, 0)=V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)$, and by Theorem 4.3 it is generated by $\mathbf{x}_{\varnothing, t}=x_{t}^{m}$ for some $t \in\{1,2, \ldots, n\} \backslash I_{\boldsymbol{\alpha}}$. Let f be a nonzero element of $V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)$, then we can write $f=\sum_{i=1}^{r} c_{i} \mathbf{x}^{\mathbf{k}_{i}}$ with nonzero coefficients such that $\mathbf{k}_{i}^{\text {neg }} \cap I_{\boldsymbol{\alpha}}=\varnothing$ for all i. By Lemma 5.1, the monomials $\mathbf{x}^{\mathbf{k}_{i}}$ belong to $\langle f\rangle$. On the other hand, by Remark 4.6, each of these monomials generates $V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)$. Therefore, $\langle f\rangle=V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)$. This shows that $L_{n}^{\boldsymbol{\alpha}}(m, 0)=V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)$ is simple.

For Statement (1), we will show that every nonzero submodule M of $L_{n}^{\boldsymbol{\alpha}}(m, j)$ contains $V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)$, which is nonzero by Statement (2). For a nonzero $f \in M$, let $c \mathbf{x}^{\mathbf{p}}$ be a nonzero term of f. Then, by Lemma 5.1, $\langle f\rangle$ includes $\left\langle\mathbf{x}^{\mathbf{p}}\right\rangle$. On the other hand, since every monomial $\mathbf{x}^{\mathbf{q}}=x_{t}^{m}$ for $t \notin I_{\boldsymbol{\alpha}}$ satisfies the condition

$$
\varnothing=\left(\mathbf{q}^{n e g} \cap I_{\boldsymbol{\alpha}}\right) \subseteq\left(\mathbf{p}^{n e g} \cap I_{\boldsymbol{\alpha}}\right)
$$

we can apply Lemma 4.1 to obtain $X \in \mathcal{U}_{n}$ such that $X \cdot \mathbf{x}^{\mathbf{p}}=\mathbf{x}^{\mathbf{q}}$. Therefore, we have $\mathbf{x}^{\mathbf{q}} \in\left\langle\mathbf{x}^{\mathbf{p}}\right\rangle \subseteq\langle f\rangle \subseteq M$, and therefore $V_{n}^{\boldsymbol{\alpha}}(m, \varnothing) \subseteq M$. This shows that $L_{n}^{\alpha}(m, j)$ cannot be written as a direct sum of its proper nonzero submodules.

Next, we consider the other cases with $\boldsymbol{\alpha}=\mathbf{0}$.
Theorem 5.4 (Structure of $L_{n}^{\mathbf{0}}(m, j)$ with nonnegative degree m).

1) If $m \geqslant 0$ and $1 \leqslant j \leqslant n$, then $L_{n}^{0}(m, j)$ is indecomposable.
2) In particular, if $m \geqslant 0$ and $j=0$, then $L_{n}^{\mathbf{0}}(m, 0)=V_{n}^{\mathbf{0}}(m, \varnothing)$ is the cyclic module generated by

$$
\mathbf{x}_{\varnothing, 1}=x_{1}^{m}
$$

It is a finite dimensional simple module over $\mathfrak{g l}(n)$ of dimension $(m+1)$.

Proof. For Statement (2), observe that for $m \geqslant 0, L_{n}^{\mathbf{0}}(m, 0)$ is the space of homogeneous polynomials of degree m,

$$
L_{n}^{0}(m, 0) \cong \operatorname{Sym}^{m}\left(\mathbb{C}^{n}\right)
$$

and that x_{1}^{m} is the highest weight vector with respect to the standard Borel subalgebra of upper triangular matrices in $\mathfrak{g l}(n)$.

For Statement (1), if $j=n$, then $L_{n}^{\mathbf{0}}(m, n)=L_{n}^{\mathbf{0}}(m, n-1)$ by Theorem $4.4(2)$ and therefore we can assume $0 \leqslant j \leqslant n-1$. This case can be shown similarly to Theorem 5.3 (1).

Theorem 5.5 (Structure of $L_{n}^{0}(-m, j)$ with negative degree $\left.-m\right)$.

1) If $m \geqslant 1$ and $j=0$, then $L_{n}^{\mathbf{0}}(-m, j)=V_{n}^{\mathbf{0}}(-m, \varnothing)=\{0\}$.
2) If $m \geqslant 1$ and $j=1$, then $L_{n}^{0}(-m, j)$ decomposes into simple submodules

$$
L_{n}^{\mathbf{0}}(-m, 1)=\bigoplus_{\ell=1}^{n} V_{n}^{\mathbf{0}}(-m,\{\ell\})
$$

3) If $m \geqslant 1$ and $2 \leqslant j \leqslant n$, then $L_{n}^{0}(-m, j)$ is indecomposable.

Proof. Statement (1) is straightforward to check. For Statement (2), from (3.2) and Theorem $4.5 \mathrm{1b}$) and 2 b), the module $L_{n}^{\mathbf{0}}(-m, 1)$ is the sum of the cyclic modules $V_{n}^{0}(-m,\{\ell\})=\left\langle x_{\ell}^{-m}\right\rangle$, which are simple by Proposition 5.2. Also, for $\ell \neq \ell^{\prime}$, by (3.3),

$$
V_{n}^{\mathbf{0}}(-m,\{\ell\}) \cap V_{n}^{\mathbf{0}}\left(-m,\left\{\ell^{\prime}\right\}\right)=V_{n}^{\mathbf{0}}\left(-m,\{\ell\} \cap\left\{\ell^{\prime}\right\}\right)
$$

which is $V_{n}^{\mathbf{0}}(-m, \varnothing)=\{0\}$ by Statement (1). Hence we obtain the direct sum expression.

For Statement (3), we first consider the case $2 \leqslant j \leqslant n-1$. In order to derive a contradiction, suppose $L_{n}^{0}(-m, j)=M \bigoplus N$ for some submodules M and N. From (3.2), $L_{n}^{0}(-m, j)$ is generated by the generators of $V_{n}^{\mathbf{0}}(-m, J)$ given in Theorem 4.5. We denote these generators \mathbf{x}_{J} or $\mathbf{x}_{J, t}$ by g_{J}. For each of these monomials $g_{J} \in L_{n}^{\mathbf{0}}(-m, j)$, if $g_{J}=h_{1}+h_{2}$ with $h_{1} \in M$ and $h_{2} \in N$, then g_{J} appears in h_{1} or h_{2}. Therefore, by Lemma 5.1, g_{J} belongs to $\left\langle h_{1}\right\rangle \subseteq M$ or $\left\langle h_{2}\right\rangle \subseteq N$.

If all these g_{J} are in $M($ or $N)$, then $L_{n}^{\mathbf{0}}(-m, j)=M$ (or $\left.N\right)$. If some of them are in M and some of them are in N, then we claim that there are J and J^{\prime} such that g_{J} is an element in $M, g_{J^{\prime}}$ is an element in N, and $J \cap J^{\prime} \neq \varnothing$. Suppose there are not such J and J^{\prime}. Then we can partition $\{1,2, \ldots, n\}$ into two nontrivial parts S_{M} and S_{N} with n_{1} elements and n_{2} elements such that we have the disjoint union

$$
\{J \subset\{1,2, \ldots, n\}:|J|=j\}=\left\{J \subset S_{M}:|J|=j\right\} \cup\left\{J \subset S_{N}:|J|=j\right\}
$$

where $J \subset S_{M}$ if and only if g_{J} belongs to $M ; J \subset S_{N}$ if and only if g_{J} belongs to N. Note that it contradicts to $\binom{n}{j}>\binom{n_{1}}{j}+\binom{n_{2}}{j}$ for
$2 \leqslant j \leqslant n-1$. Therefore, we conclude that there are J and J^{\prime} such that $J \cap J^{\prime} \neq \varnothing$. Now from (3.3) we have

$$
V_{n}^{\mathbf{0}}\left(-m, J \cap J^{\prime}\right) \subset V_{n}^{\mathbf{0}}(-m, J) \subset M
$$

and

$$
V_{n}^{\mathbf{0}}\left(-m, J \cap J^{\prime}\right) \subset V_{n}^{\mathbf{0}}\left(-m, J^{\prime}\right) \subset N
$$

Therefore, $V_{n}^{\mathbf{0}}\left(-m, J \cap J^{\prime}\right) \neq\{0\}$ and $M \cap N$ contains a non-trivial element. Hence, $L_{n}^{\mathbf{0}}(-m, j)$ is indecomposable.

Next, let us consider the case $j=n$. First, if $1 \leqslant m<n$ then from Theorem 4.51 d$)$ we have $L_{n}^{\mathbf{0}}(-m, n)=L_{n}^{0}(-m, n-1)$ and therefore it goes back to the previous case. Second, if $m \geqslant n$ then $L_{n}^{0}(-m, n)=$ $V_{n}^{\mathbf{0}}(-m,\{1,2, \ldots, n\})$ by Lemma 3.7 and its generator is $\mathbf{x}_{\{1,2, \ldots, n\}}=$ $x_{1}^{-1} \cdots x_{n-1}^{-1} x_{n}^{n-1-m}$ by Theorem 4.52 b$)$. If $L_{n}^{\mathbf{0}}(-m, n)=M \oplus N$, then $\mathbf{x}_{\{1,2, \ldots, n\}}=h_{1}+h_{2}$ for some $h_{1} \in M$ and $h_{2} \in N$, and the monomial $\mathbf{x}_{\{1,2, \ldots, n\}}$ appears in h_{1} or h_{2}. By Lemma 5.1, $\left\langle\mathbf{x}_{\{1,2, \ldots, n\}}\right\rangle \subseteq\left\langle h_{1}\right\rangle \subseteq M$ or $\left\langle\mathbf{x}_{\{1,2, \ldots, n\}}\right\rangle \subseteq\left\langle h_{2}\right\rangle \subseteq N$. This shows that M or N should be equal to $L_{n}^{\mathbf{0}}(-m, n)$. Therefore, $L_{n}^{\mathbf{0}}(-m, j)$ is indecomposable.

6. Simple modules $W_{n}^{\alpha}(m, J)$

In this section, we investigate some submodules of the quotients

$$
L_{n}^{\alpha}(m, j) / L_{n}^{\alpha}(m, j-1)
$$

We will assume $L_{n}^{\boldsymbol{\alpha}}(m, j)=\{0\}$ for $j \leqslant-1$.
Definition 6.1. For $m \in \mathbb{Z}$ and a subset J of $I_{\boldsymbol{\alpha}}$ with cardinality j, we define the following submodule of the quotient $L_{n}^{\boldsymbol{\alpha}}(m, j) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)$

$$
W_{n}^{\boldsymbol{\alpha}}(m, J)=\left(V_{n}^{\boldsymbol{\alpha}}(m, J)+L_{n}^{\boldsymbol{\alpha}}(m, j-1)\right) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)
$$

We note that

$$
W_{n}^{\boldsymbol{\alpha}}(m, J) \cong V_{n}^{\boldsymbol{\alpha}}(m, J) /\left(V_{n}^{\boldsymbol{\alpha}}(m, J) \cap L_{n}^{\boldsymbol{\alpha}}(m, j-1)\right)
$$

and

$$
V_{n}^{\boldsymbol{\alpha}}(m, J) \cap L_{n}^{\boldsymbol{\alpha}}(m, j-1)=\sum_{J^{\prime}} V_{n}^{\boldsymbol{\alpha}}\left(m, J^{\prime}\right)
$$

where the summation runs over all $J^{\prime} \subset J$ with $\left|J^{\prime}\right|=j-1$.

In § 5, we saw that nontrivial modules

$$
L_{n}^{\boldsymbol{\alpha}}(m, 0) / L_{n}^{\boldsymbol{\alpha}}(m,-1) \cong L_{n}^{\boldsymbol{\alpha}}(m, 0)=V_{n}^{\boldsymbol{\alpha}}(m, \varnothing)
$$

are simple, and that for $m \geqslant 1$ the following quotient decomposes into simple submodules:

$$
L_{n}^{\mathbf{0}}(-m, 1) / L_{n}^{\mathbf{0}}(-m, 0) \cong \bigoplus_{\ell=1}^{n} V_{n}^{\mathbf{0}}(-m,\{\ell\})
$$

Let us generalize these observations.
Theorem 6.2. Let $m \in \mathbb{Z}$.

1) For $J \subset I_{\boldsymbol{\alpha}}$, the module $W_{n}^{\boldsymbol{\alpha}}(m, J)$ is simple.
2) For $1 \leqslant j \leqslant\left|I_{\boldsymbol{\alpha}}\right|$, the quotient module $L_{n}^{\boldsymbol{\alpha}}(m, j) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)$ decomposes as

$$
L_{n}^{\boldsymbol{\alpha}}(m, j) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)=\bigoplus_{J:|J|=j} W_{n}^{\boldsymbol{\alpha}}(m, J)
$$

where the direct sum is taken over all subsets J of I_{α} with cardinality j.
Proof. For Statement (1), for any nonzero element $\bar{f} \in W_{n}^{\boldsymbol{\alpha}}(m, J)$, we want to show that $\langle\bar{f}\rangle=W_{n}^{\boldsymbol{\alpha}}(m, J)$. From the definition of $W_{n}^{\boldsymbol{\alpha}}(m, J)$, we can assume that

$$
\bar{f}=f+L_{n}^{\alpha}(m, j-1)
$$

where $f=\sum_{i=1}^{r} c_{i} \mathbf{x}^{\mathbf{k}_{i}} \in V_{n}^{\boldsymbol{\alpha}}(m, J)$ having distinct monomials $\mathbf{x}^{\mathbf{k}_{i}}$ in $V_{n}^{\alpha}(m, J)$ with $\mathbf{k}_{i}^{\text {neg }} \cap I_{\boldsymbol{\alpha}}=J$. From Lemma $5.1,\langle f\rangle$ includes the cyclic modules $\left\langle\mathbf{x}^{\mathbf{k}_{i}}\right\rangle$. On the other hand, by Theorem 4.3, Theorem 4.4, Theorem 4.5, and Remark 4.6, each $\mathbf{x}^{\mathbf{k}_{i}}$ generates the module $V_{n}^{\boldsymbol{\alpha}}(m, J)$. This shows that $\langle\bar{f}\rangle=W_{n}^{\boldsymbol{\alpha}}(m, J)$.

For Statement (2), with (3.2) we see that

$$
\begin{gathered}
L_{n}^{\boldsymbol{\alpha}}(m, j) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)=\left(\sum_{J:|J|=j} V_{n}^{\boldsymbol{\alpha}}(m, J)\right) / L_{n}^{\boldsymbol{\alpha}}(m, j-1) \\
=\left(\sum_{J:|J|=j} V_{n}^{\boldsymbol{\alpha}}(m, J)+L_{n}^{\boldsymbol{\alpha}}(m, j-1)\right) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)
\end{gathered}
$$

Therefore, we have

$$
L_{n}^{\boldsymbol{\alpha}}(m, j) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)=\sum_{J:|J|=j} W_{n}^{\boldsymbol{\alpha}}(m, J)
$$

where the summation is over $J \subset I_{\boldsymbol{\alpha}}$ with $|J|=j$. Now, suppose we have

$$
\bar{f} \in W_{n}^{\boldsymbol{\alpha}}\left(m, J_{1}\right) \cap W_{n}^{\boldsymbol{\alpha}}\left(m, J_{2}\right)
$$

with distinct subsets J_{1} and J_{2} of $I_{\boldsymbol{\alpha}}$. Then, we can assume that $\bar{f}=$ $f+L_{n}^{\boldsymbol{\alpha}}(m, j-1)$ where $f=\sum_{i=1}^{r} c_{i} \mathbf{x}^{\mathbf{k}_{i}}$ with distinct monomials $\mathbf{x}^{\mathbf{k}_{i}}$ such that $\mathbf{k}_{i}^{\text {neg }} \cap I_{\boldsymbol{\alpha}} \subseteq J_{1} \cap J_{2}$ for all i. Since $\left|J_{1} \cap J_{2}\right|<j$, this shows that $f \in$ $L_{n}^{\boldsymbol{\alpha}}(m, j-1)$ and therefore \bar{f} is zero in the quotient $L_{n}^{\boldsymbol{\alpha}}(m, j) / L_{n}^{\boldsymbol{\alpha}}(m, j-1)$. Therefore, we obtain the direct sum expression in the statement.

Next we investigate the cases when $W_{n}^{\boldsymbol{\alpha}}(m, J)$ are highest weight modules.

Theorem 6.3 (Highest weight vector in $W_{n}^{\boldsymbol{\alpha}}(m, J)$).

1) For an integer $1 \leqslant \ell \leqslant n$, if $\boldsymbol{\alpha} \in \mathbb{C}^{n}$ is such that $\boldsymbol{\alpha}[\ell]=c$ is nonzero and $\boldsymbol{\alpha}\left[\ell^{\prime}\right]=0$ for all $\ell^{\prime} \neq \ell$ and $J=\{1,2, \ldots, \ell-1\} \subseteq I_{\boldsymbol{\alpha}}$, then for every $m \in \mathbb{Z}$ the module $W_{n}^{\boldsymbol{\alpha}}(m, J)$ is a highest weight module having a highest weight vector

$$
\left(x_{1}^{-1} x_{2}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)+L_{n}^{\alpha}(m, \ell-2)
$$

with highest weight

$$
(-1,-1, \ldots,-1, m+\ell-1+c, 0, \ldots, 0)
$$

2) Let $\boldsymbol{\alpha}=\mathbf{0}$ and therefore $I_{\boldsymbol{\alpha}}=\{1,2, \ldots, n\}$. For $1 \leqslant \ell \leqslant n$, if $J=\{1,2, \ldots, \ell-1\}$ then for $m \in \mathbb{Z}$ such that $m+\ell-1 \geqslant 0$ the module $W_{n}^{0}(m, J)$ is a highest weight module having a highest weight vector

$$
\left(x_{1}^{-1} x_{2}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)+L_{n}^{\mathbf{0}}(m, \ell-2)
$$

with highest weight

$$
(-1,-1, \ldots,-1, m+\ell-1,0, \ldots, 0)
$$

In particular, if $\ell=1$ and $J=\varnothing$ then for $m \geqslant 0$, the module $W_{n}^{\mathbf{0}}(m, \varnothing)$ is a $(m+1)$-dimensional module with highest weight $(m, 0, \ldots, 0)$.
3) Let $\boldsymbol{\alpha}=\mathbf{0}$ and therefore $I_{\boldsymbol{\alpha}}=\{1,2, \ldots, n\}$. For $1 \leqslant \ell \leqslant n$, if $J=\{1,2, \cdots, \ell\}$ then for $m \in \mathbb{Z}$ such that $m+\ell-1<0$ the module $W_{n}^{\mathbf{0}}(m, J)$ is a highest weight module having a highest weight vector

$$
\left(x_{1}^{-1} x_{2}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)+L_{n}^{0}(m, \ell-1)
$$

with highest weight

$$
(-1,-1, \ldots,-1, m+\ell-1,0, \ldots, 0)
$$

In particular, if $\ell=n$ and $J=\{1,2, \ldots, n\}$, then for $m \leqslant-n$ the module $W_{n}^{\mathbf{0}}(m,\{1,2, \ldots, n\})$ is a finite dimensional module with highest weight

$$
(-1,-1, \ldots,-1, m+n-1)
$$

Proof. We first notice that the given elements $\mathbf{x}^{\mathbf{k}}+L_{n}^{\alpha}(m, j-1)$ generate $W_{n}^{\boldsymbol{\alpha}}(m, J)$ where $j=|J|$ (see Theorem 4.3, Theorem 4.4, and Theorem 4.5). It is straightforward to verify their weights under the action of the Cartan subalgebra of $\mathfrak{g l}(n)$ generated by $E_{a a}$ for $1 \leqslant a \leqslant n$. Therefore, now it is enough to show that

$$
\begin{align*}
E_{a b} \cdot\left(\mathbf{x}^{\mathbf{k}}+L_{n}^{\boldsymbol{\alpha}}(m, j-1)\right) & =(\mathbf{k}[b]+\boldsymbol{\alpha}[b])\left(x_{a} x_{b}^{-1}\right) \mathbf{x}^{\mathbf{k}}+L_{n}^{\boldsymbol{\alpha}}(m, j-1) \\
& =L_{n}^{\alpha}(m, j-1) \tag{6.1}
\end{align*}
$$

in $W_{n}^{\boldsymbol{\alpha}}(m, J)$ for all $1 \leqslant a<b \leqslant n$.
For Statement (1), if $a<b$ and $b \geqslant \ell+1$, then since $\mathbf{k}[b]=\boldsymbol{\alpha}[b]=0$ we have

$$
E_{a b} \cdot\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)=(0+0)\left(x_{a}^{1} x_{b}^{-1}\right)\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)=0
$$

If $a<b$ and $b \leqslant \ell$, then $a \leqslant \ell-1$ and

$$
E_{a b} \cdot\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)=(\mathbf{k}[b]+\boldsymbol{\alpha}[b])\left(x_{a}^{1} x_{b}^{-1}\right)\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)
$$

where $\mathbf{k}[b]=-1$ and $\boldsymbol{\alpha}[b]=0$ if $b \leqslant \ell-1$; and $\mathbf{k}[b]=m+\ell-1$ and $\boldsymbol{\alpha}[b]=c$ if $b=\ell$. Writing $\mathbf{x}^{\mathbf{q}}$ for the monomial in the right hand side, we see that $\mathbf{q}[a]=0$ because $a \leqslant \ell-1$ and therefore $\left|\mathbf{q}^{n e g} \cap I_{\boldsymbol{\alpha}}\right|<\ell-1$. This shows that $\mathbf{x}^{\mathbf{q}} \in L_{n}^{\alpha}(m, \ell-2)$ and therefore (6.1) is true.

For Statement (2), the first part can be shown similarly to the previous case. The second part with the conditions $\ell=1$ and $J=\varnothing$ follows directly from Definition 6.1 with $L_{n}^{\mathbf{0}}(m,-1)=\{0\}$ and Theorem 5.4 (2).

For Statement (3), if $a<b$ and $b \geqslant \ell+1$, then since $\mathbf{k}[b]=\boldsymbol{\alpha}[b]=0$ we have
$E_{a b} \cdot\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)=(0+0)\left(x_{a}^{1} x_{b}^{-1}\right)\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1} x_{b}^{-1}\right)=0$.
If $a<b$ and $b \leqslant \ell$, then since $\boldsymbol{\alpha}[b]=0$ we have

$$
E_{a b} \cdot\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)=\mathbf{k}[b]\left(x_{a}^{1} x_{b}^{-1}\right)\left(x_{1}^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}\right)
$$

where $\mathbf{k}[b]=-1$ if $b \leqslant \ell-1$ and $\mathbf{k}[b]=m+\ell-1$ if $b=\ell$. Again, by denoting the monomial in the right hand side by $\mathrm{x}^{\mathbf{q}}$, we see that $\mathbf{q}[a]=0$ because $a \leqslant \ell-1$, and therefore $\left|\mathbf{q}^{\text {neg }} \cap I_{\boldsymbol{\alpha}}\right|<\ell$. This shows that $\mathbf{x}^{\mathbf{q}} \in L_{n}^{\alpha}(m, \ell-1)$ and therefore (6.1) is true.

We note that the highest weights of $W_{n}^{\boldsymbol{\alpha}}(m, J)$ given in Theorem 6.3 are integral dominant (see, for example, [5, §3]) only when
i) $\boldsymbol{\alpha}=\mathbf{0}, J=\varnothing$, and $m \geqslant 0$;
ii) $\boldsymbol{\alpha}=\mathbf{0}, J=\{1,2, \ldots, n\}$, and $m \leqslant-n$.

Indeed, one can easily check that these are the only cases when the modules $W_{n}^{\boldsymbol{\alpha}}(m, J)$ are finite dimensional.

References

[1] D. J. Britten and F. W. Lemire, A classification of simple Lie modules having a 1-dimensional weight space. Trans. Amer. Math. Soc. 299 (1987), no. 2, 683-697.
[2] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2002.
[3] S. Eswara Rao, Representations of Witt algebras. Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 191-201.
[4] S. Eswara Rao, Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus. J. Algebra 182 (1996), no. 2, 401-421.
[5] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants. Graduate Texts in Mathematics, 255. Springer, Dordrecht, 2009.
[6] X. Guo and K. Zhao, Irreducible weight modules over Witt algebras. Proc. Amer. Math. Soc. 139 (2011), no. 7, 2367-2373.

Contact information

Received by the editors: 13.12.2018
and in final form 24.02.2021.

[^0]: 2020 MSC: 16S34, 16W70, 17B10, 17B45.
 Key words and phrases: Laurent polynomial, filtration, general linear Lie algebra, weight module.

