© Algebra and Discrete Mathematics Volume **32** (2021). Number 1, pp. 9–32 DOI:10.12958/adm1304

A filtration on the ring of Laurent polynomials and representations of the general linear Lie algebra

C. Choi, S. Kim, and H. Seo

Communicated by A. P. Petravchuk

ABSTRACT. We first present a filtration on the ring L_n of Laurent polynomials such that the direct sum decomposition of its associated graded ring grL_n agrees with the direct sum decomposition of grL_n , as a module over the complex general linear Lie algebra $\mathfrak{gl}(n)$, into its simple submodules. Next, generalizing the simple modules occurring in the associated graded ring grL_n , we give some explicit constructions of weight multiplicity-free irreducible representations of $\mathfrak{gl}(n)$.

1. Introduction

In this section, we give a brief summary of our results.

1.1. The ring of polynomials

The ring $P_n = \mathbb{C}[x_1, \ldots, x_n]$ of polynomials in *n* indeterminates over the complex numbers \mathbb{C} is a \mathbb{Z} -graded algebra

$$P_n = \bigoplus_{m \in \mathbb{Z}} P_n^{(m)} \tag{1.1}$$

²⁰²⁰ MSC: 16S34, 16W70, 17B10, 17B45.

Key words and phrases: Laurent polynomial, filtration, general linear Lie algebra, weight module.

where $P_n^{(m)}$ is the space of homogeneous polynomials of degree m. As a vector space, P_n becomes a module over the complex general linear Lie algebra $\mathfrak{gl}(n) = \mathfrak{gl}_n(\mathbb{C})$ under the action

$$A \cdot f = \sum_{ij} a_{ij} x_i \frac{\partial f}{\partial x_j} \quad \text{for } A = (a_{ij}) \in \mathfrak{gl}(n) \text{ and } f \in P_n.$$
(1.2)

Then, the direct sum decomposition (1.1) of P_n as a graded ring agrees with the decomposition of P_n as a $\mathfrak{gl}(n)$ -module into its simple submodules $P_n^{(m)}$. They are the finite dimensional representations of $\mathfrak{gl}(n)$ labeled by Young diagrams with single rows.

1.2. The ring of Laurent polynomials

The first goal of this paper is to obtain an analogous result of the above observation for the ring of Laurent polynomials

$$L_n = \mathbb{C}[x_1^{\pm 1}, x_2^{\pm 1}, \dots, x_n^{\pm 1}].$$

It turns out that a filtration and its associated graded structure give us an answer. Note that (1.1) can be seen as the graded ring associated with the \mathbb{Z} -filtration of P_n given by degree.

We will define a filtration on L_n by a partially ordered monoid constructed from integers and subsets of $\{1, 2, ..., n\}$

$$L_n = \bigcup_{(m,J)\in\mathbb{Z}\times\mathscr{P}_n} L_n^{\leqslant(m,J)}$$

and show that the direct sum decomposition of its associated graded ring

$$grL_n = \bigoplus_{(m,J) \in \mathbb{Z} \times \mathcal{P}_n} L_n^{\leqslant (m,J)} / L_n^{<(m,J)}$$

provides the decomposition of grL_n , as a $\mathfrak{gl}(n)$ -module, into its simple submodules.

Extending the space with the action (1.2) of $\mathfrak{gl}(n)$ from P_n to L_n , we identify Laurent monomials $\mathbf{x}^{\mathbf{k}} = x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ with integral points $\mathbf{k} = (k_1, k_2 \dots, k_n)$ in \mathbb{R}^n . Note that they are weight vectors with respect to the Cartan subalgebra of $\mathfrak{gl}(n)$ consisting of diagonal matrices. Since this action preserves the degree of monomials, we can focus on integral points on the hyperplane $k_1 + \cdots + k_n = m$ for each $m \in \mathbb{Z}$.

One of main difficulties in studying the $\mathfrak{gl}(n)$ -module structure of L_n is that the symmetric behavior of raising and lowering operators we had

FIGURE 1. The action of $\mathfrak{gl}(2)$ on $x_1^{k_1}x_2^{k_2}$ with $k_1 + k_2 = 1$.

when working with P_n is not trivial anymore. For example, when n = 2 as in Figure 1,

$$\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \cdot x_1^{k_1} x_2^{m-k_1} = k_1 x_1^{k_1-1} x_2^{m+1-k_1},$$
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot x_1^{m-k_2} x_2^{k_2} = k_2 x_1^{m+1-k_2} x_2^{k_2-1}.$$

The cases $k_1 = 0$ and $k_2 = 0$ divide the line $k_1 + k_2 = m$ into three parts. The monomials with $k_1 \ge 0$ and $k_2 \ge 0$ can be obtained by applying some elements of $\mathfrak{gl}(2)$ to monomials with $k_1k_2 < 0$. However, monomials with $k_1k_2 < 0$ cannot be obtained from the ones with $k_1 \ge 0$ and $k_2 \ge 0$.

More generally, the planes $k_j = 0$ divide the hyperplane $k_1 + k_2 + \cdots + k_n = m$ into regions labeled by the signs of the coordinates k_i . Then, for each *i*, we can obtain weight vectors \mathbf{x}^k with $k_i \ge 0$ starting from the ones with $k_i < 0$ by successively applying some elements of $\mathfrak{gl}(n)$, but the opposite way is not possible. See Figure 2.

Therefore, our indecomposable submodules in L_n and simple modules obtained from their quotients are labeled by degree m of \mathbf{x}^k and subsets J of $\{1, 2, \ldots, n\}$ indicating the position of possible negative components

FIGURE 2. The action of $\mathfrak{gl}(3)$ on $x_1^{k_1} x_2^{k_2} x_3^{k_3}$ with $k_1 + k_2 + k_3 = m \ (m > 0)$.

in **k**. Their structures depend heavily on m and the cardinality of J. We will give a clear case-by-case analysis of them.

1.3. Representations of the general linear Lie algebra

Our next goal is to provide explicit constructions of weight multiplicityfree irreducible representations of $\mathfrak{gl}(n)$ obtained by twisting the action (1.2). For a general theory on weight multiplicity-free representations of simple Lie algebras, see [1] and references therein.

Motivated by works on weight modules of the Lie algebra of diffeomorphisms of the *n*-dimensional torus (see, for example, [3, 4, 6]), for each $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$, we will define a representation $L_n^{\boldsymbol{\alpha}}$ of $\mathfrak{gl}(n)$ on the vector space L_n (see Definition 3.2). Then, we investigate two families of its submodules, $L_n^{\boldsymbol{\alpha}}(m, j)$ and $V_n^{\boldsymbol{\alpha}}(m, J)$, parameterized by integers m, j, and subsets J of $\{i : \alpha_i = 0\}$. We can obtain explicit simple $\mathfrak{gl}(n)$ -modules from the decomposition of the quotient modules

$$L_n^{\boldsymbol{\alpha}}(m,j)/L_n^{\boldsymbol{\alpha}}(m,j-1) = \bigoplus_{J:|J|=j} W_n^{\boldsymbol{\alpha}}(m,J)$$

where $W_n^{\alpha}(m, J)$ are simple modules defined by

$$W_n^{\alpha}(m,J) = \left(V_n^{\alpha}(m,J) + L_n^{\alpha}(m,j-1)\right) / L_n^{\alpha}(m,j-1).$$

Among these simple modules, there are highest weight modules with highest weights of the form $\psi^{\lambda} \in \mathfrak{h}^*$ where

$$\lambda = (-1, \dots, -1, z, 0, \dots, 0) \in \mathbb{C}^n$$

including the finite dimensional ones having integral dominant weights with $\lambda = (k, 0, ..., 0)$ and $(-1, ..., -1, \ell)$ for $k \ge 0$ and $\ell \le -1$.

2. A filtration on L_n and simple modules in grL_n

In this section, we impose a filtration on the ring

$$L_n = \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$

of Laurent polynomials in n indeterminates over the complex numbers \mathbb{C} , and then show that the graded structure of its associated graded ring is compatible with the module structure of L_n over the complex general linear Lie algebra $\mathfrak{gl}(n) = \mathfrak{gl}_n(\mathbb{C})$.

Recall that $\mathfrak{gl}(n)$ is the Lie algebra of $n \times n$ complex matrices with the usual matrix addition and the Lie bracket given by the commutator of two matrices. We will write $\mathcal{U}_n = \mathcal{U}(\mathfrak{gl}(n))$ for the universal enveloping algebra of $\mathfrak{gl}(n)$.

2.1. Submodules of L_n

The complex vector space L_n is spanned by monomials

$$\mathbf{x}^{\mathbf{k}} = x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$$

for $\mathbf{k} = (k_1, k_2, \dots, k_n) \in \mathbb{Z}^n$. We define some subspaces of L_n .

Definition 2.1. Let *m* be an integer, *j* be an integer with $0 \le j \le n$, and *J* be a subset of $\{1, 2, ..., n\}$.

1) Let $V_n(m, J)$ be the subspace of L_n spanned by all the monomials $x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ such that

$$\sum_{i=1}^{n} k_i = m \quad \text{and} \quad \{i : k_i < 0\} \subseteq J.$$

2) Let $L_n(m, j)$ be the sum of the subspaces $V_n(m, J)$ of L_n

$$L_n(m,j) = \sum_{J:|J|=j} V_n(m,J)$$

over all subsets J of $\{1, 2, \ldots, n\}$ having j elements.

It follows directly from the definition that

$$V_n(m, J_1) \subseteq V_n(m, J_2)$$
 for all $J_1 \subseteq J_2$.

Then, we have

$$L_n(m, j-1) \subseteq L_n(m, j)$$

and their quotient can be expressed as

$$L_n(m,j)/L_n(m,j-1) = \left(\sum_{J:|J|=j} V_n(m,J)\right)/L_n(m,j-1)$$
$$= \sum_{J:|J|=j} (V_n(m,J) + L_n(m,j-1))/L_n(m,j-1).$$

Definition 2.2. For an integer m and a subset J of $\{1, 2, ..., n\}$ having j elements, we let $W_n(m, J)$ denote the subspace

$$W_n(m, J) = (V_n(m, J) + L_n(m, j-1)) / L_n(m, j-1)$$

of the quotient space $L_n(m, j)/L_n(m, j-1)$.

The spaces $V_n(m, J)$, $L_n(m, j)$, and $W_n(m, J)$ are special cases of the ones defined in Definition 3.5 and Definition 6.1 with $\boldsymbol{\alpha} = \mathbf{0}$ and $I_{\boldsymbol{\alpha}} = \{1, 2, \dots, n\}$, and they are modules over \mathcal{U}_n with respect to

$$A \cdot f = \sum_{ij} a_{ij} x_i \frac{\partial f}{\partial x_j}$$

for $A = (a_{ij}) \in \mathfrak{gl}(n)$ and $f \in L_n$. See Theorems 4.4, 4.5, 5.4, and 5.5. Moreover, $W_n(m, J)$ are simple modules. See Theorem 6.2.

Lemma 2.3. For $m \in \mathbb{Z}$ and a subset J of $\{1, 2, ..., n\}$ having j elements, as a \mathcal{U}_n -module,

$$W_n(m,J) \cong V_n(m,J) / \sum_{J'} V_n(m,J')$$

where the summation is over all subsets J' of J having j - 1 elements *Proof.* Note that

$$W_n(m, J) = (V_n(m, J) + L_n(m, j-1)) / L_n(m, j-1)$$

$$\cong V_n(m, J) / (V_n(m, J) \cap L_n(m, j-1)).$$

Then, the statement follows from the following observation

$$V_n(m,J) \cap L_n(m,j-1) = \sum_{J'} V_n(m,J')$$

where the sum is over all subsets J' of J having j-1 elements.

2.2. Filtration by a partially ordered monoid

Let \mathscr{P}_n be the set of all subsets of $\{1, 2, \ldots, n\}$. On the set $\mathbb{Z} \times \mathscr{P}_n$, we define the partial order $(m_1, J_1) \leq (m_2, J_2)$ if $m_1 \leq m_2$ and $J_1 \subseteq J_2$, and the multiplication

$$(m_1, J_1) * (m_2, J_2) = (m_1 + m_2, J_1 \cup J_2).$$

With \leq and *, $\mathbb{Z} \times \mathscr{P}_n$ becomes a partially ordered monoid with the identity $(0, \emptyset)$, and using this monoid we want to impose a filtration on L_n . For basic properties of a filtration of a ring given by a partially ordered monoid, we refer to [2, §I.12].

Definition 2.4. For each $(m, J) \in \mathbb{Z} \times \mathcal{P}_n$, we define

$$L_n^{\leq (m,J)} = \sum_{(m_1,J_1)} V_n(m_1,J_1) \text{ and } L_n^{<(m,J)} = \sum_{(m_2,J_2)} V_n(m_2,J_2)$$

where the first summation is over all (m_1, J_1) such that

$$(m_1, J_1) \leqslant (m, J),$$

and the second summation is over all (m_2, J_2) such that

$$(m_2, J_2) \leq (m, J)$$
 but $(m_2, J_2) \neq (m, J)$.

Proposition 2.5. The family $\{L_n^{\leq (m,J)} : (m,J) \in \mathbb{Z} \times \mathcal{P}_n\}$ of subspace of L_n defines a filtration on L_n by the partially ordered monoid $\mathbb{Z} \times \mathcal{P}_n$.

Proof. We need to check the following conditions (see $[2, \S I.12]$).

- 1) $1 \in L_n^{\leq (0,\emptyset)}$,
- 2) for all $(m_1, J_1) \leq (m_2, J_2)$,

$$L_n^{\leqslant (m_1,J_1)} \subseteq L_n^{\leqslant (m_2,J_2)},$$

3) for all (m_1, J_1) and (m_2, J_2) ,

$$L_n^{\leqslant (m_1,J_1)} L_n^{\leqslant (m_2,J_2)} \subseteq L_n^{\leqslant (m_1,J_1)*(m_2,J_2)},$$

4) the union of all such subspaces is equal to L_n

$$\bigcup_{(m,J)\in\mathbb{Z}\times\mathscr{P}_n}L_n^{\leqslant(m,J)}=L_n.$$

All of them follow directly from the definitions of $L_n^{\leq (m,J)}$ and $V_n(m,J)$.

For (m_1, J_1) and (m_2, J_2) in $\mathbb{Z} \times \mathcal{P}_n$, we have

$$L_n^{\leqslant (m_1,J_1)} L_n^{<(m_2,J_2)} + L_n^{<(m_1,J_1)} L_n^{\leqslant (m_2,J_2)} \subseteq L_n^{<(m_1,J_1)*(m_2,J_2)}$$

and therefore the quotient spaces $L_n^{\leq (m,J)}/L_n^{<(m,J)}$ form the homogeneous components of the associated graded ring of L_n .

Theorem 2.6. With the filtration $\{L_n^{\leq (m,J)} : (m,J) \in \mathbb{Z} \times \mathcal{P}_n\}$ imposed on L_n , the direct sum decomposition of the associated graded ring

$$grL_n = \bigoplus_{(m,J) \in \mathbb{Z} \times \mathcal{P}_n} L_n^{\leqslant (m,J)} / L_n^{<(m,J)}$$

agrees with the decomposition of grL_n into its simple submodules over \mathcal{U}_n . In particular, for each $(m, J) \in \mathbb{Z} \times \mathcal{P}_n$, as a \mathcal{U}_n -module,

$$L_n^{\leqslant (m,J)}/L_n^{<(m,J)} \cong W_n(m,J).$$

Proof. For an integer m and a subset J of $\{1, 2, ..., n\}$ having j elements, let us define

$$S = V_n(m, J)$$
 and $T = \sum_{J_1 \subset J} V_n(m, J_1) + \sum_{m_1 < m} V_n(m_1, J)$

where the first summation for T is over all proper subsets J_1 of J, and the second summation is over all m_1 strictly less than m. Then, we have

$$S \cap T = V_n(m, J) \cap \left(\sum_{J_1 \subset J} V_n(m, J_1) + \sum_{m_1 < m} V_n(m_1, J)\right)$$
$$= V_n(m, J) \cap \left(\sum_{J_1 \subset J} V_n(m, J_1)\right)$$
$$= \sum_{J'} V_n(m, J')$$

where the last summation is over all subsets J^\prime of J having j-1 elements. Note that

 $S+T=L_n^{\leqslant (m,J)} \quad \text{and} \quad T=L_n^{<(m,J)}$

and then, by the usual module isomorphism theorem $(S+T)/T \cong S/(S \cap T)$, we obtain

$$L_n^{\leq (m,J)} / L_n^{<(m,J)} \cong V_n(m,J) / \sum_{J'} V_n(m,J')$$
 (2.1)

where the summation is over all subsets J' of J having j-1 elements. Now, using the realization of $W_n(m, J)$ given in Lemma 2.3, we have

$$L_n^{\leqslant (m,J)}/L_n^{<(m,J)} \cong W_n(m,J).$$

In § 6, we will investigate the simple modules $W_n(m, J)$ in a more general setting.

3. Modules $L_n^{\alpha}(m,j)$ and $V_n^{\alpha}(m,J)$

In this section, generalizing $L_n(m, J)$ and $V_n(m, J)$ discussed in the previous section, we define some submodules of L_n over the universal enveloping algebra \mathcal{U}_n of $\mathfrak{gl}(n)$ parameterized by $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$.

Notation 3.1. 1) For a finite set S, we will write |S| for the cardinality of S.

2) For $\boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$, we write $\boldsymbol{\alpha}[\ell]$ for the ℓ th component α_ℓ of $\boldsymbol{\alpha}$. Then, for $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{C}^n$, we let $\boldsymbol{\alpha} \pm \boldsymbol{\beta}$ be the elements in \mathbb{C}^n such that

$$(\boldsymbol{\alpha} \pm \boldsymbol{\beta})[\ell] = \boldsymbol{\alpha}[\ell] \pm \boldsymbol{\beta}[\ell] \quad \text{for } 1 \leq \ell \leq n.$$

3) We write \mathbf{e}_j for the element in \mathbb{Z}^n whose *j*th entry is one and all the other entries are zero.

$$\mathbf{e}_{j}[\ell] = \begin{cases} 1 & \text{if } \ell = j, \\ 0 & \text{otherwise.} \end{cases}$$

4) For $\mathbf{k} \in \mathbb{Z}^n$, let \mathbf{x}^k be the monomial

$$\mathbf{x}^{\mathbf{k}} = x_1^{\mathbf{k}[1]} x_2^{\mathbf{k}[2]} \cdots x_n^{\mathbf{k}[n]}$$

in L_n . In this setting, we denote the negative part of **k** by

$$\mathbf{k}^{neg} = \{\ell : \mathbf{k}[\ell] < 0\}.$$

We let $E_{ab} \in \mathfrak{gl}(n)$ be the $n \times n$ matrix with one in (a, b) and zero elsewhere.

Definition 3.2. For each $\alpha \in \mathbb{C}^n$, E_{ab} acts on the monomials \mathbf{x}^k in the algebra L_n of Laurent polynomials as

$$E_{ab} \cdot \mathbf{x}^{\mathbf{k}} = (\mathbf{k}[b] + \boldsymbol{\alpha}[b]) \mathbf{x}^{\mathbf{k} + \mathbf{e}_a - \mathbf{e}_b} \quad \text{for } 1 \leq a, b \leq n.$$

With this action, the space L_n gives rise to a \mathcal{U}_n -module, which we will denote by L_n^{α} , and for $f \in L_n$ we write $\langle f \rangle$ for the cyclic submodule of L_n^{α} generated by f.

Informally, we may think of the above action as

$$E_{ab} \cdot f = \mathbf{x}^{-\boldsymbol{\alpha}} x_a \frac{\partial}{\partial x_b} \mathbf{x}^{\boldsymbol{\alpha}} f \text{ for } f \in L_n$$

and then the action in the definition can be considered a generalization of the action (1.2) of $\mathfrak{gl}(n)$ on the polynomial ring which provides all the finite dimensional representations of $\mathfrak{gl}(n)$ labeled by Young diagrams with single rows. See Theorem 5.4 (2).

Lemma 3.3. For α and $\beta \in \mathbb{C}^n$, if $\alpha - \beta \in \mathbb{Z}^n$ then, as a \mathcal{U}_n -module, L_n^{α} is isomorphic to L_n^{β} .

Proof. It is enough to show that the linear map ψ from L_n to L_n sending $\mathbf{x}^{\mathbf{k}}$ to $\mathbf{x}^{\mathbf{k}+\boldsymbol{\alpha}-\boldsymbol{\beta}}$ for $\mathbf{k} \in \mathbb{Z}^n$ gives a \mathcal{U}_n -module map from $L_n^{\boldsymbol{\alpha}}$ to $L_n^{\boldsymbol{\beta}}$. It follows from

$$\psi(E_{ab} \cdot \mathbf{x}^{\mathbf{k}}) = (\mathbf{k}[b] + \boldsymbol{\alpha}[b]) \, \mathbf{x}^{\mathbf{k} + \mathbf{e}_a - \mathbf{e}_b} \times \mathbf{x}^{\boldsymbol{\alpha} - \boldsymbol{\beta}}$$
$$= \{ (\mathbf{k} + \boldsymbol{\alpha} - \boldsymbol{\beta})[b] + \boldsymbol{\beta}[b] \} \, \mathbf{x}^{(\mathbf{k} + \boldsymbol{\alpha} - \boldsymbol{\beta}) + \mathbf{e}_a - \mathbf{e}_b}$$
$$= E_{ab} \cdot \mathbf{x}^{(\mathbf{k} + \boldsymbol{\alpha} - \boldsymbol{\beta})} = E_{ab} \cdot \psi(\mathbf{x}^{\mathbf{k}})$$

for all $1 \leq a, b \leq n$.

With this lemma, we can focus on the following choice of α .

Notation 3.4. Once and for all, we fix $\alpha \in \mathbb{C}^n$ the entries of whose real parts satisfy

 $0 \leq \operatorname{Re}(\boldsymbol{\alpha}[\ell]) < 1$ for all $1 \leq \ell \leq n$,

and the following subset of $\{1, 2, \ldots, n\}$

$$I_{\alpha} = \{\ell : \alpha[\ell] = 0\}.$$

With this choice of $\boldsymbol{\alpha}$, we note that for $\mathbf{k} \in \mathbb{Z}^n$,

$$\mathbf{k}[\ell] + \boldsymbol{\alpha}[\ell] = 0 \quad \text{for some } \ell \tag{3.1}$$

only when $\mathbf{k}[\ell] = \boldsymbol{\alpha}[\ell] = 0$.

Definition 3.5 (Submodules $L_n^{\alpha}(m, j)$ and $V_n^{\alpha}(m, J)$).

1) For integers m and j with $0 \leq j \leq |I_{\alpha}|$, we let $L_n^{\alpha}(m, j)$ be the subspace of L_n^{α} spanned by all the monomials $\mathbf{x}^{\mathbf{k}}$ such that

$$\sum_{\ell=1}^{n} \mathbf{k}[\ell] = m \quad \text{and} \quad |\mathbf{k}^{neg} \cap I_{\alpha}| \leq j.$$

2) For a subset J of I_{α} with |J| = j, we let $V_n^{\alpha}(m, J)$ be the subspace of $L_n^{\alpha}(m, j)$ spanned by all the monomials $\mathbf{x}^{\mathbf{k}}$ in $L_n^{\alpha}(m, j)$ such that

$$(\mathbf{k}^{neg} \cap I_{\boldsymbol{\alpha}}) \subseteq J.$$

Example 3.6. Let n = 4, $\alpha = (0, 1/2, 0, 0)$, and therefore $I_{\alpha} = \{1, 3, 4\}$.

1) Let j = 2. From the condition $|\mathbf{k}^{neg} \cap \{1, 3, 4\}| \leq 2$, the space $L_n^{\alpha}(m, j)$ is spanned by all the monomials $\mathbf{x}^{\mathbf{k}} = x_1^{k_1} x_2^{k_2} x_3^{k_3} x_4^{k_4}$ in L_n such that

i)
$$k_1 + k_2 + k_3 + k_4 = m$$
 and *ii*) $k_1 \ge 0$ or $k_3 \ge 0$ or $k_4 \ge 0$.

2) Let $J = \{1, 4\}$. From the condition $(\mathbf{k}^{neg} \cap \{1, 3, 4\}) \subset \{1, 4\}, V_n^{\boldsymbol{\alpha}}(m, J)$ is the subspace of $L_n^{\boldsymbol{\alpha}}(m, j)$ spanned by all the monomials of degree m with $k_3 \ge 0$.

See more examples in Example 4.2. The following is easy to check.

Lemma 3.7. If $J = \emptyset$ (therefore j = 0) or $J = I_{\alpha}$ (therefore $j = |I_{\alpha}|$), then

$$V_n^{\alpha}(m,J) = L_n^{\alpha}(m,j).$$

From Definition 3.5, it immediately follows that

$$L_n^{\boldsymbol{\alpha}}(m,j-1) \subseteq L_n^{\boldsymbol{\alpha}}(m,j) \quad \text{and} \quad L_n^{\boldsymbol{\alpha}}(m,j) = \sum_{J:|J|=j} V_n^{\boldsymbol{\alpha}}(m,J) \quad (3.2)$$

where the summation runs over all subsets J of I_{α} with |J| = j. Also, for two subsets J_1 and J_2 of I_{α} , we have

$$V_n^{\boldsymbol{\alpha}}(m, J_1) \subset V_n^{\boldsymbol{\alpha}}(m, J_2) \quad \text{for } J_1 \subset J_2;$$

$$V_n^{\boldsymbol{\alpha}}(m, J_1 \cap J_2) = V_n^{\boldsymbol{\alpha}}(m, J_1) \cap V_n^{\boldsymbol{\alpha}}(m, J_2).$$
(3.3)

Now we show that $V_n^{\alpha}(m, J)$ and $L_n^{\alpha}(m, j)$ are indeed modules over \mathcal{U}_n .

Proposition 3.8. $V_n^{\alpha}(m, J)$ and $L_n^{\alpha}(m, j)$ are \mathcal{U}_n -submodules of L_n^{α} .

Proof. For a monomial $\mathbf{x}^{\mathbf{p}} \in V_n^{\boldsymbol{\alpha}}(m, J)$, we need to show

$$E_{ab} \cdot \mathbf{x}^{\mathbf{p}} = (\mathbf{p}[b] + \boldsymbol{\alpha}[b]) \, \mathbf{x}^{\mathbf{p} + \mathbf{e}_a - \mathbf{e}_b}$$

are in $V_n^{\alpha}(m, J)$ for all $1 \leq a, b \leq n$. Since the action of E_{ab} preserves the degree of monomials, writing $\mathbf{q} = (\mathbf{p} + \mathbf{e}_a - \mathbf{e}_b)$, it is enough to show that for $a \neq b$ if $(\mathbf{p}^{neg} \cap I_{\alpha}) \subseteq J$, then $(\mathbf{q}^{neg} \cap I_{\alpha}) \subseteq J$ or the coefficient $(\mathbf{p}[b] + \alpha[b])$ is zero.

For this, because the only element which is not in \mathbf{p}^{neg} but can possibly appear in \mathbf{q}^{neg} is b, it is enough to consider the case

$$b \notin \mathbf{p}^{neg} \cap I_{\boldsymbol{\alpha}}$$
 and $b \in \mathbf{q}^{neg} \cap I_{\boldsymbol{\alpha}}$.

This happens only when $\mathbf{p}[b] = 0$ and in this case, since $b \in I_{\alpha}$, we have $\alpha[b] = 0$. Therefore, the coefficient $(\mathbf{p}[b] + \alpha[b])$ is zero. Consequently, we have $E_{ab} \cdot \mathbf{x}^{\mathbf{p}} \in V_n^{\alpha}(m, J)$ for all $1 \leq a, b \leq n$, and $V_n^{\alpha}(m, J)$ is a submodule of L_n^{α} . Now from (3.2), $L_n^{\alpha}(m, j)$ is a submodule of L_n^{α} . \Box

4. Structure of $V_n^{\alpha}(m, J)$

In this section, we investigate the structure of $V_n^{\alpha}(m, J)$. We first give a technical lemma.

Lemma 4.1. For two distinct monomials $\mathbf{x}^{\mathbf{p}}$ and $\mathbf{x}^{\mathbf{q}}$ in $L_n^{\boldsymbol{\alpha}}(m, j)$ such that

$$(\mathbf{q}^{neg} \cap I_{\boldsymbol{\alpha}}) \subseteq (\mathbf{p}^{neg} \cap I_{\boldsymbol{\alpha}}),$$

there exists $X \in \mathcal{U}_n$ such that $X \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{q}}$.

Proof. For simplicity, we let $\mathbf{p}[\ell] = p_{\ell}$, $\mathbf{q}[\ell] = q_{\ell}$, and $\boldsymbol{\alpha}[\ell] = \alpha_{\ell}$ for all ℓ . Consider the difference $\mathbf{p} - \mathbf{q} = (p_1 - q_1, \dots, p_n - q_n) \in \mathbb{Z}^n$. Since $\mathbf{x}^{\mathbf{p}}$ and $\mathbf{x}^{\mathbf{q}}$ have the same degree m, we have $\sum_{\ell=1}^n (p_{\ell} - q_{\ell}) = 0$ and therefore we can separate the positive and negative parts of $\mathbf{p} - \mathbf{q}$

$$r = \sum_{\ell: p_{\ell} - q_{\ell} > 0} (p_{\ell} - q_{\ell}) = \sum_{\ell: p_{\ell} - q_{\ell} < 0} (q_{\ell} - p_{\ell}).$$

With Notation 3.1, we define $1 \leq s_1 \leq s_2 \leq \cdots \leq s_r \leq n$ and $1 \leq t_1 \leq t_2 \leq \cdots \leq t_r \leq n$ so that

$$\sum_{k=1}^{r} \mathbf{e}_{s_{k}} = \sum_{\ell: p_{\ell} - q_{\ell} > 0} (p_{\ell} - q_{\ell}) \mathbf{e}_{\ell} \quad \text{and} \quad \sum_{k=1}^{r} \mathbf{e}_{t_{k}} = \sum_{\ell: p_{\ell} - q_{\ell} < 0} (q_{\ell} - p_{\ell}) \mathbf{e}_{\ell}$$

where the summations are over ℓ such that $p_{\ell} - q_{\ell} > 0$ and $p_{\ell} - q_{\ell} < 0$ respectively.

Setting $\mathbf{p}_0 = \mathbf{p}$ and $\mathbf{p}_k = \mathbf{p}_{k-1} + \mathbf{e}_{t_k} - \mathbf{e}_{s_k}$ for $1 \leq k \leq r$, we have $E_{t_k s_k} \cdot \mathbf{x}^{\mathbf{p}_{k-1}} = w_k \mathbf{x}^{\mathbf{p}_k}$. Furthermore, from

$$\mathbf{p}_r = \mathbf{p}_0 + \sum_{k=1}^r (\mathbf{e}_{t_k} - \mathbf{e}_{s_k})$$
$$= \mathbf{p}_0 + \sum_{\ell: p_\ell - q_\ell < 0} (q_\ell - p_\ell) \mathbf{e}_\ell - \sum_{\ell: p_\ell - q_\ell > 0} (p_\ell - q_\ell) \mathbf{e}_\ell$$
$$= \mathbf{p}_0 + (\mathbf{q} - \mathbf{p}) = \mathbf{q},$$

by setting $Y = \prod_{k=1}^{r} E_{t_k s_k} \in \mathcal{U}_n$, we obtain

$$\mathbf{Y} \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{p}}(w_1 x_{t_1} x_{s_1}^{-1})(w_2 x_{t_2} x_{s_2}^{-1}) \cdots (w_r x_{t_r} x_{s_r}^{-1})$$
$$= \left(\prod_{k=1}^r w_k\right) \mathbf{x}^{\mathbf{p}} \mathbf{x}^{\mathbf{q}-\mathbf{p}} = \left(\prod_{k=1}^r w_k\right) \mathbf{x}^{\mathbf{q}}$$

where the coefficient is

$$\prod_{k=1}^{r} w_{k} = \prod_{\ell: p_{\ell} - q_{\ell} > 0} (p_{\ell} + \alpha_{\ell}) (p_{\ell} - 1 + \alpha_{\ell}) \cdots (p_{\ell} - (p_{\ell} - q_{\ell} - 1) + \alpha_{\ell}).$$

For each ℓ in the above product, if $\ell \notin I_{\alpha}$ then $\alpha_{\ell} \neq 0$, and therefore the corresponding factor is not zero by (3.1). Now let $\ell \in I_{\alpha}$ and therefore $\alpha_{\ell} = 0$. To derive a contradiction, suppose $(p_{\ell} - c)$ in the ℓ th factor of the above product is zero for some $0 \leq c \leq (p_{\ell} - q_{\ell} - 1)$. Then, from $p_{\ell} = c$, we have

$$0 \leqslant p_{\ell} \leqslant (p_{\ell} - q_{\ell} - 1) \tag{4.1}$$

and therefore $q_{\ell} \leq -1$. On the other hand, from the given hypothesis $(\mathbf{q}^{neg} \cap I_{\alpha}) \subseteq (\mathbf{p}^{neg} \cap I_{\alpha})$, we know that $p_{\ell} < 0$ whenever $q_{\ell} < 0$, which contradicts to (4.1). Therefore, we have $\prod_{k=1}^{r} w_k \neq 0$ and with the element

$$X = \prod_{k=1}^{r} w_k^{-1} E_{t_k s_k}$$

we see that $X \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{q}}$.

Example 4.2. 1) Let $\alpha = (1/2, i, 0)$, $I_{\alpha} = \{3\}$, and $J = \emptyset$. If m = 4 then from the condition

$$\mathbf{k}^{neg} \cap \{3\} \subseteq \emptyset$$
,

 $V^{\pmb{\alpha}}_n(m,J)$ is spanned by all the monomials $x_1^{k_1}x_2^{k_2}x_3^{k_3}$ of degree 4 with $k_3 \geqslant 0.$

Note that $\mathbf{x}^{\mathbf{p}} = x_1^4$ and $\mathbf{x}^{\mathbf{q}} = x_1 x_2^{-2} x_3^5$ in $V_n^{\boldsymbol{\alpha}}(m, J)$ satisfy the condition in Lemma 4.1. From

$$\mathbf{p} - \mathbf{q} = (3, 2, -5) = (3, 2, 0) + (0, 0, -5)$$

we define the element $Y = E_{31} \cdot E_{31} \cdot E_{31} \cdot E_{32} \cdot E_{32} \in \mathcal{U}_n$ to obtain

$$Y \cdot \mathbf{x}^{\mathbf{p}} = (2+1/2)(3+1/2)(4+1/2)(-1+i)(0+i)\,\mathbf{x}^{\mathbf{q}}.$$

Therefore there is $X \in \mathcal{U}_n$ such that $X \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{q}}$.

2) Let $\alpha = (0,0,0), I_{\alpha} = \{1,2,3\}$, and $J = \{1,3\}$. If m = -2 then from the condition

$$\mathbf{k}^{neg} \cap \{1, 2, 3\} \subseteq \{1, 3\},\$$

 $V^{\pmb{\alpha}}_n(m,J)$ is spanned by all the monomials $x_1^{k_1}x_2^{k_2}x_3^{k_3}$ of degree -2 with $k_2 \geqslant 0.$

Note that $\mathbf{x}^{\mathbf{p}} = x_1^{-1}x_3^{-1}$ and $\mathbf{x}^{\mathbf{q}} = x_1x_2^2x_3^{-5}$ in $V_n^{\boldsymbol{\alpha}}(m, J)$ satisfy the condition in Lemma 4.1. From

$$\mathbf{p} - \mathbf{q} = (-2, -2, 4) = (0, 0, 4) + (-2, -2, 0)$$

we define $Y = E_{13} \cdot E_{13} \cdot E_{23} \cdot E_{23} \in \mathcal{U}_n$ to obtain

$$Y \cdot \mathbf{x}^{\mathbf{p}} = (-4+0)(-3+0)(-2+0)(-1+0)\,\mathbf{x}^{\mathbf{q}}.$$

Therefore, there is $X \in \mathcal{U}_n$ such that $X \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{q}}$.

Now we investigate the structure of $V_n^{\alpha}(m, J)$ for $\alpha \neq 0$.

Theorem 4.3 (Structure of $V_n^{\alpha}(m, J)$ with nonzero α).

Let $\alpha \neq 0$ and $J = \{\ell_1, \ldots, \ell_j\} \subseteq I_{\alpha}$. Then, $V_n^{\alpha}(m, J)$ is the cyclic submodule of L_n^{α} generated by

$$\mathbf{x}_{J,t} = x_{\ell_1}^{-1} x_{\ell_2}^{-1} \cdots x_{\ell_j}^{-1} x_t^{m+j} \quad \text{for some } t \in \{1, 2, \dots, n\} \setminus I_{\alpha}.$$

Proof. Since $\alpha \neq \mathbf{0}$, there exists t such that $\alpha[t] \neq 0$. Write $\mathbf{x}^{\mathbf{p}}$ for $\mathbf{x}_{J,t}$ and let $\mathbf{x}^{\mathbf{q}}$ be an arbitrary monomial in $V_n^{\alpha}(m, J)$. Since $(\mathbf{q}^{neg} \cap I_{\alpha}) \subseteq$ $(\mathbf{p}^{neg} \cap I_{\alpha}) = J$, we can apply Lemma 4.1 to obtain $X \in \mathcal{U}_n$ such that $X \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{q}}$. Therefore, $\mathbf{x}^{\mathbf{p}}$ generates the module $V_n^{\alpha}(m, J)$.

Next we consider the other cases with $\alpha = 0$. Let us fix

$$J = \{\ell_1, \ldots, \ell_j\} \subseteq I_{\boldsymbol{\alpha}} = \{1, 2, \ldots, n\}.$$

Theorem 4.4 (Structure of $V_n^0(m, J)$ with nonnegative degree m).

1) If $m \ge 0$ and $0 \le j \le n-1$, then $V_n^0(m, J)$ is the cyclic submodule of $L_n^0(m, j)$ generated by

$$\mathbf{x}_{J,t} = x_{\ell_1}^{-1} x_{\ell_2}^{-1} \cdots x_{\ell_j}^{-1} x_t^{m+j} \quad \text{for some } t \in \{1, 2, \dots, n\} \setminus J.$$

2) If $m \ge 0$ and j = n (therefore, $J = \{1, 2, \dots, n\}$), then

$$V_n^{\mathbf{0}}(m, \{1, 2, \dots, n\}) = L_n^{\mathbf{0}}(m, n) = L_n^{\mathbf{0}}(m, n-1)$$
$$= \sum_{J'} V_n^{\mathbf{0}}(m, J')$$

where the summation is over all the subsets J' of $\{1, 2, ..., n\}$ with |J'| = n - 1.

Proof. For Statement (1), we first note that $\mathbf{x}_{J,t} \in V_n^{\mathbf{0}}(m, J)$. Write $\mathbf{x}^{\mathbf{p}}$ for $\mathbf{x}_{J,t}$ and let $\mathbf{x}^{\mathbf{q}}$ be an arbitrary monomial in $V_n^{\mathbf{0}}(m, J)$. Since $\mathbf{q}^{neg} \subseteq \mathbf{p}^{neg} = J$, applying Lemma 4.1, we see that there exists $X \in \mathcal{U}_n$ such that $X \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{q}}$. Therefore, $\mathbf{x}^{\mathbf{q}}$ belongs to the module generated by $\mathbf{x}_{J,t}$ and we have $V_n^{\mathbf{0}}(m, J) = \langle \mathbf{x}_{J,t} \rangle$.

For Statement (2), if $x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$ is a monomial in $L_n^{\mathbf{0}}(m, n)$, then not all k_j 's can be negative, because the degree m is nonnegative. Therefore, $L_n^{\mathbf{0}}(m, n) = L_n^{\mathbf{0}}(m, n-1)$. The other equalities follow from Lemma 3.7 and (3.2).

Theorem 4.5 (Structure of $V_n^0(-m, J)$ with negative degree -m).

Let $1 \leq m < n$. 1a) If j = 0 (therefore, $J = \emptyset$), then

$$V_n^{0}(-m, \emptyset) = L_n^{0}(-m, 0) = \{0\}.$$

1b) If $1 \leq j \leq m$, then $V_n^{\mathbf{0}}(-m, J)$ is the cyclic submodule of $L_n^{\mathbf{0}}(-m, j)$ generated by

$$\mathbf{x}_J = x_{\ell_1}^{-1} x_{\ell_2}^{-1} \cdots x_{\ell_{j-1}}^{-1} x_{\ell_j}^{j-1-m}.$$

1c) If $m + 1 \leq j \leq n - 1$, then $V_n^0(-m, J)$ is the cyclic submodule of $L_n^0(-m, j)$ generated by

$$\mathbf{x}_{J,t} = x_{\ell_1}^{-1} x_{\ell_2}^{-1} \cdots x_{\ell_{j-1}}^{-1} x_{\ell_j}^{-1} x_t^{j-m} \quad \text{for some } t \in \{1, 2, \dots, n\} \setminus J.$$

1d) If j = n (therefore, $J = \{1, 2, ..., n\}$), then

$$V_n^{\mathbf{0}}(-m, \{1, 2, \dots, n\}) = L_n^{\mathbf{0}}(-m, n) = L_n^{\mathbf{0}}(-m, n-1)$$
$$= \sum_{J'} V_n^{\mathbf{0}}(-m, J')$$

where the summation is over all $J' \subset \{1, 2, ..., n\}$ with |J'| = n - 1. Now let $m \ge n$.

2a) If j = 0 (therefore, $J = \emptyset$), then

$$V_n^{\mathbf{0}}(-m, \varnothing) = L_n^{\mathbf{0}}(-m, 0) = \{0\}.$$

2b) If $1 \leq j \leq n$, then $V_n^{\mathbf{0}}(-m, J)$ is the cyclic submodule of $L_n^{\mathbf{0}}(-m, j)$ generated by

$$\mathbf{x}_J = x_{\ell_1}^{-1} x_{\ell_2}^{-1} \cdots x_{\ell_{j-1}}^{-1} x_{\ell_j}^{j-1-m}.$$

Proof. Statements 1a) and 2a) follow directly from Definition 3.5. For Statement 1d), note that if $\mathbf{x}^{\mathbf{k}} \in L_n^{\mathbf{0}}(-m, n)$ then $\sum_{\ell} \mathbf{k}[\ell] = -m > -n$ and therefore there should be at least one ℓ with $\mathbf{k}[\ell] \ge 0$. This implies that $L_n^{\mathbf{0}}(-m, n) = L_n^{\mathbf{0}}(-m, n-1)$. Now the statements follows from Lemma 3.7 and (3.2). The other statements can be shown similarly to Theorem 4.3 and Theorem 4.4 (1).

Remark 4.6. Let $\mathbf{x}^{\mathbf{p}}$ be the generators \mathbf{x}_J or $\mathbf{x}_{J,t}$ of the cyclic modules $V_n^{\boldsymbol{\alpha}}(m, J)$ given in Theorem 4.3, Theorem 4.4, and Theorem 4.5. We remark that these generators are not unique. This is because, when applying Lemma 4.1, if

$$\left(\mathbf{q}^{neg} \cap I_{\boldsymbol{\alpha}}\right) = \left(\mathbf{p}^{neg} \cap I_{\boldsymbol{\alpha}}\right), \qquad (4.2)$$

then we can exchange the roles of $\mathbf{x}^{\mathbf{p}}$ and $\mathbf{x}^{\mathbf{q}}$. Therefore, every monomial $\mathbf{x}^{\mathbf{q}} \in V_n^{\boldsymbol{\alpha}}(m, J)$ satisfying (4.2) can also generate the module $V_n^{\boldsymbol{\alpha}}(m, J)$.

5. Structure of $L_n^{\alpha}(m,j)$

In this section, we investigate the structure of $L_n^{\alpha}(m, j)$. Let us begin with another technical lemma.

Lemma 5.1. For an element $f = \sum_{i=1}^{r} c_i \mathbf{x}^{\mathbf{k}_i}$ of L_n^{α} with distinct monomials and nonzero coefficients, the cyclic module generated by f includes the cyclic modules generated by the terms of f

$$\langle \mathbf{x}^{\mathbf{k}_i} \rangle \subseteq \langle f \rangle$$
 for all *i*.

Proof. We want to prove the statement by induction on the number r of the terms of f. If r = 1 then we have nothing to prove. Suppose $r \ge 2$. We first note that, since $\mathbf{x}^{\mathbf{k}_i}$ are distinct, they are weight vectors with different weights under the action of the Cartan subalgebra \mathfrak{h} of $\mathfrak{gl}(n)$ spanned by E_{aa} for $1 \le a \le n$. Let w_i be the weight for the monomial $\mathbf{x}^{\mathbf{k}_i}$. Then, there is an element $H \in \mathfrak{h}$ such that

$$g = w_1(H)f - H \cdot f = \sum_{i:w_i(H) \neq w_1(H)} (w_1(H) - w_i(H)) c_i \mathbf{x}^{\mathbf{k}_i}$$

is a non-zero element in $\langle f \rangle$. Also, since the number of terms in g is less than r, by the induction hypothesis the cyclic modules generated by the terms of g are included in $\langle g \rangle$. This shows that for i with $w_i(H) \neq w_1(H)$ we have $\langle \mathbf{x}^{\mathbf{k}_i} \rangle \subseteq \langle f \rangle$.

Now we note that

$$h = f - \sum_{i:w_i(H) \neq w_1(H)} c_i \mathbf{x}^{\mathbf{k}_i} = \sum_{i:w_i(H) = w_1(H)} c_i \mathbf{x}^{\mathbf{k}_i}$$

is a nonzero element in $\langle f \rangle$. Since the number of the terms of h is less than r, again by the induction hypothesis, the cyclic modules generated by the terms of h are included in $\langle h \rangle$. Therefore, $\langle f \rangle$ contains $\langle \mathbf{x}^{\mathbf{k}_i} \rangle$ for iwith $w_i(H) = w_1(H)$ as well.

As an immediate consequence of the above lemma, we obtain the following result for the special case of Theorem 4.5 with $J = \{\ell\}$ for $1 \leq \ell \leq n$.

Proposition 5.2. For $m \ge 1$ and $1 \le \ell \le n$, $V_n^0(-m, \{\ell\})$ is a simple submodule of $L_n^0(-m, 1)$ generated by x_{ℓ}^{-m} .

Proof. From Theorem 4.5 1b) and 2b),

$$V_n^{\mathbf{0}}(-m,J) = \langle x_{\ell}^{-m} \rangle \subseteq L_n^{\mathbf{0}}(-m,1).$$

For a nonzero $f \in V_n^{\mathbf{0}}(-m, J)$, writing $f = \sum_i c_i \mathbf{x}^{\mathbf{k}_i}$, let us consider the submodule of $V_n^{\mathbf{0}}(-m, J)$ generated by f. By Lemma 5.1, it contains the cyclic submodules generated by $\mathbf{x}^{\mathbf{k}_i}$.

$$\langle \mathbf{x}^{\mathbf{k}_i} \rangle \subseteq \langle f \rangle \subseteq V_n^{\mathbf{0}}(-m, J).$$

On the other hand, for each *i*, since $(\mathbf{k}_i^{neg} \cap \{1, 2, ..., n\}) \subseteq \{\ell\}$ and the degree of $\mathbf{x}^{\mathbf{k}_i}$ should be -m < 0, we have $\mathbf{k}_i[\ell] < 0$ and $\mathbf{k}_i[\ell'] \ge 0$ for $\ell' \ne \ell$. By Remark 4.6, each of these monomials can generate the whole module $V_n^0(-m, J)$. Therefore, we have $\langle f \rangle = V_n^0(-m, J)$ and conclude that $V_n^0(-m, \{\ell\})$ has no nonzero proper submodules. Now, we investigate the structure of $L_n^{\alpha}(m, j)$ for $\alpha \neq 0$.

Theorem 5.3 (Structure of $L_n^{\alpha}(m, j)$ with nonzero α).

- 1) If $\alpha \neq 0$ and $0 \leq j \leq |I_{\alpha}|$, then $L_n^{\alpha}(m, j)$ is indecomposable.
- 2) In particular, if $\boldsymbol{\alpha} \neq \mathbf{0}$ and j = 0, then $L_n^{\boldsymbol{\alpha}}(m, 0) = V_n^{\boldsymbol{\alpha}}(m, \emptyset)$ is a nonzero simple module over \mathcal{U}_n .

Proof. For Statement (2), from Lemma 3.7, $L_n^{\alpha}(m, 0) = V_n^{\alpha}(m, \emptyset)$, and by Theorem 4.3 it is generated by $\mathbf{x}_{\emptyset,t} = x_t^m$ for some $t \in \{1, 2, \ldots, n\} \setminus I_{\alpha}$. Let f be a nonzero element of $V_n^{\alpha}(m, \emptyset)$, then we can write $f = \sum_{i=1}^r c_i \mathbf{x}^{\mathbf{k}_i}$ with nonzero coefficients such that $\mathbf{k}_i^{neg} \cap I_{\alpha} = \emptyset$ for all i. By Lemma 5.1, the monomials $\mathbf{x}^{\mathbf{k}_i}$ belong to $\langle f \rangle$. On the other hand, by Remark 4.6, each of these monomials generates $V_n^{\alpha}(m, \emptyset)$. Therefore, $\langle f \rangle = V_n^{\alpha}(m, \emptyset)$. This shows that $L_n^{\alpha}(m, 0) = V_n^{\alpha}(m, \emptyset)$ is simple.

For Statement (1), we will show that every nonzero submodule M of $L_n^{\alpha}(m, j)$ contains $V_n^{\alpha}(m, \emptyset)$, which is nonzero by Statement (2). For a nonzero $f \in M$, let $c\mathbf{x}^{\mathbf{p}}$ be a nonzero term of f. Then, by Lemma 5.1, $\langle f \rangle$ includes $\langle \mathbf{x}^{\mathbf{p}} \rangle$. On the other hand, since every monomial $\mathbf{x}^{\mathbf{q}} = x_t^m$ for $t \notin I_{\alpha}$ satisfies the condition

$$\emptyset = (\mathbf{q}^{neg} \cap I_{\alpha}) \subseteq (\mathbf{p}^{neg} \cap I_{\alpha}),$$

we can apply Lemma 4.1 to obtain $X \in \mathcal{U}_n$ such that $X \cdot \mathbf{x}^{\mathbf{p}} = \mathbf{x}^{\mathbf{q}}$. Therefore, we have $\mathbf{x}^{\mathbf{q}} \in \langle \mathbf{x}^{\mathbf{p}} \rangle \subseteq \langle f \rangle \subseteq M$, and therefore $V_n^{\boldsymbol{\alpha}}(m, \emptyset) \subseteq M$. This shows that $L_n^{\boldsymbol{\alpha}}(m, j)$ cannot be written as a direct sum of its proper nonzero submodules.

Next, we consider the other cases with $\alpha = 0$.

Theorem 5.4 (Structure of $L_n^0(m, j)$ with nonnegative degree m).

- 1) If $m \ge 0$ and $1 \le j \le n$, then $L_n^0(m, j)$ is indecomposable.
- 2) In particular, if $m \ge 0$ and j = 0, then $L_n^0(m, 0) = V_n^0(m, \emptyset)$ is the cyclic module generated by

$$\mathbf{x}_{\emptyset,1} = x_1^m.$$

It is a finite dimensional simple module over $\mathfrak{gl}(n)$ of dimension (m+1).

Proof. For Statement (2), observe that for $m \ge 0$, $L_n^0(m, 0)$ is the space of homogeneous polynomials of degree m,

$$L_n^{\mathbf{0}}(m,0) \cong \operatorname{Sym}^m(\mathbb{C}^n),$$

and that x_1^m is the highest weight vector with respect to the standard Borel subalgebra of upper triangular matrices in $\mathfrak{gl}(n)$.

For Statement (1), if j = n, then $L_n^{\mathbf{0}}(m, n) = L_n^{\mathbf{0}}(m, n-1)$ by Theorem 4.4 (2) and therefore we can assume $0 \leq j \leq n-1$. This case can be shown similarly to Theorem 5.3 (1).

Theorem 5.5 (Structure of $L_n^0(-m, j)$ with negative degree -m).

- 1) If $m \ge 1$ and j = 0, then $L_n^0(-m, j) = V_n^0(-m, \emptyset) = \{0\}$.
- 2) If $m \ge 1$ and j = 1, then $L_n^0(-m, j)$ decomposes into simple submodules

$$L_n^{\mathbf{0}}(-m,1) = \bigoplus_{\ell=1}^n V_n^{\mathbf{0}}(-m,\{\ell\}).$$

3) If $m \ge 1$ and $2 \le j \le n$, then $L_n^0(-m, j)$ is indecomposable.

Proof. Statement (1) is straightforward to check. For Statement (2), from (3.2) and Theorem 4.5 1b) and 2b), the module $L_n^{\mathbf{0}}(-m, 1)$ is the sum of the cyclic modules $V_n^{\mathbf{0}}(-m, \{\ell\}) = \langle x_{\ell}^{-m} \rangle$, which are simple by Proposition 5.2. Also, for $\ell \neq \ell'$, by (3.3),

$$V_n^{\mathbf{0}}(-m, \{\ell\}) \cap V_n^{\mathbf{0}}(-m, \{\ell'\}) = V_n^{\mathbf{0}}(-m, \{\ell\} \cap \{\ell'\})$$

which is $V_n^{\mathbf{0}}(-m, \emptyset) = \{0\}$ by Statement (1). Hence we obtain the direct sum expression.

For Statement (3), we first consider the case $2 \leq j \leq n-1$. In order to derive a contradiction, suppose $L_n^0(-m, j) = M \bigoplus N$ for some submodules M and N. From (3.2), $L_n^0(-m, j)$ is generated by the generators of $V_n^0(-m, J)$ given in Theorem 4.5. We denote these generators \mathbf{x}_J or $\mathbf{x}_{J,t}$ by g_J . For each of these monomials $g_J \in L_n^0(-m, j)$, if $g_J = h_1 + h_2$ with $h_1 \in M$ and $h_2 \in N$, then g_J appears in h_1 or h_2 . Therefore, by Lemma 5.1, g_J belongs to $\langle h_1 \rangle \subseteq M$ or $\langle h_2 \rangle \subseteq N$.

If all these g_J are in M (or N), then $L_n^0(-m, j) = M$ (or N). If some of them are in M and some of them are in N, then we claim that there are J and J' such that g_J is an element in M, $g_{J'}$ is an element in N, and $J \cap J' \neq \emptyset$. Suppose there are not such J and J'. Then we can partition $\{1, 2, \ldots, n\}$ into two nontrivial parts S_M and S_N with n_1 elements and n_2 elements such that we have the disjoint union

$$\{J \subset \{1, 2, \dots, n\} : |J| = j\} = \{J \subset S_M : |J| = j\} \cup \{J \subset S_N : |J| = j\}$$

where $J \subset S_M$ if and only if g_J belongs to M; $J \subset S_N$ if and only if g_J belongs to N. Note that it contradicts to $\binom{n}{j} > \binom{n_1}{j} + \binom{n_2}{j}$ for $2 \leq j \leq n-1$. Therefore, we conclude that there are J and J' such that $J \cap J' \neq \emptyset$. Now from (3.3) we have

$$V_n^{\mathbf{0}}(-m, J \cap J') \subset V_n^{\mathbf{0}}(-m, J) \subset M$$

and

$$V_n^{\mathbf{0}}(-m, J \cap J') \subset V_n^{\mathbf{0}}(-m, J') \subset N.$$

Therefore, $V_n^{\mathbf{0}}(-m, J \cap J') \neq \{0\}$ and $M \cap N$ contains a non-trivial element. Hence, $L_n^{\mathbf{0}}(-m, j)$ is indecomposable.

Next, let us consider the case j = n. First, if $1 \leq m < n$ then from Theorem 4.5 1d) we have $L_n^0(-m, n) = L_n^0(-m, n-1)$ and therefore it goes back to the previous case. Second, if $m \geq n$ then $L_n^0(-m, n) =$ $V_n^0(-m, \{1, 2, ..., n\})$ by Lemma 3.7 and its generator is $\mathbf{x}_{\{1, 2, ..., n\}} =$ $x_1^{-1} \cdots x_{n-1}^{-1} x_n^{n-1-m}$ by Theorem 4.5 2b). If $L_n^0(-m, n) = M \oplus N$, then $\mathbf{x}_{\{1, 2, ..., n\}} = h_1 + h_2$ for some $h_1 \in M$ and $h_2 \in N$, and the monomial $\mathbf{x}_{\{1, 2, ..., n\}}$ appears in h_1 or h_2 . By Lemma 5.1, $\langle \mathbf{x}_{\{1, 2, ..., n\}} \rangle \subseteq \langle h_1 \rangle \subseteq M$ or $\langle \mathbf{x}_{\{1, 2, ..., n\}} \rangle \subseteq \langle h_2 \rangle \subseteq N$. This shows that M or N should be equal to $L_n^0(-m, n)$. Therefore, $L_n^0(-m, j)$ is indecomposable.

6. Simple modules $W_n^{\alpha}(m, J)$

In this section, we investigate some submodules of the quotients

$$L_n^{\boldsymbol{\alpha}}(m,j)/L_n^{\boldsymbol{\alpha}}(m,j-1).$$

We will assume $L_n^{\alpha}(m, j) = \{0\}$ for $j \leq -1$.

Definition 6.1. For $m \in \mathbb{Z}$ and a subset J of I_{α} with cardinality j, we define the following submodule of the quotient $L_n^{\alpha}(m, j)/L_n^{\alpha}(m, j-1)$

$$W_n^{\boldsymbol{\alpha}}(m,J) = \left(V_n^{\boldsymbol{\alpha}}(m,J) + L_n^{\boldsymbol{\alpha}}(m,j-1)\right) / L_n^{\boldsymbol{\alpha}}(m,j-1)$$

We note that

$$W_n^{\boldsymbol{\alpha}}(m,J) \cong V_n^{\boldsymbol{\alpha}}(m,J) / \left(V_n^{\boldsymbol{\alpha}}(m,J) \cap L_n^{\boldsymbol{\alpha}}(m,j-1) \right)$$

and

$$V_n^{\alpha}(m,J) \cap L_n^{\alpha}(m,j-1) = \sum_{J'} V_n^{\alpha}(m,J')$$

where the summation runs over all $J' \subset J$ with |J'| = j - 1.

In \S 5, we saw that nontrivial modules

$$L_n^{\boldsymbol{\alpha}}(m,0)/L_n^{\boldsymbol{\alpha}}(m,-1) \cong L_n^{\boldsymbol{\alpha}}(m,0) = V_n^{\boldsymbol{\alpha}}(m,\varnothing)$$

are simple, and that for $m \ge 1$ the following quotient decomposes into simple submodules:

$$L_n^{\mathbf{0}}(-m,1)/L_n^{\mathbf{0}}(-m,0) \cong \bigoplus_{\ell=1}^n V_n^{\mathbf{0}}(-m,\{\ell\}).$$

Let us generalize these observations.

Theorem 6.2. Let $m \in \mathbb{Z}$.

- 1) For $J \subset I_{\alpha}$, the module $W_n^{\alpha}(m, J)$ is simple.
- 2) For $1 \leq j \leq |I_{\alpha}|$, the quotient module $L_n^{\alpha}(m, j)/L_n^{\alpha}(m, j-1)$ decomposes as

$$L_n^{\boldsymbol{\alpha}}(m,j)/L_n^{\boldsymbol{\alpha}}(m,j-1) = \bigoplus_{J:|J|=j} W_n^{\boldsymbol{\alpha}}(m,J)$$

where the direct sum is taken over all subsets J of I_{α} with cardinality j.

Proof. For Statement (1), for any nonzero element $\overline{f} \in W_n^{\alpha}(m, J)$, we want to show that $\langle \overline{f} \rangle = W_n^{\alpha}(m, J)$. From the definition of $W_n^{\alpha}(m, J)$, we can assume that

$$\bar{f} = f + L_n^{\alpha}(m, j-1)$$

where $f = \sum_{i=1}^{r} c_i \mathbf{x}^{\mathbf{k}_i} \in V_n^{\boldsymbol{\alpha}}(m, J)$ having distinct monomials $\mathbf{x}^{\mathbf{k}_i}$ in $V_n^{\boldsymbol{\alpha}}(m, J)$ with $\mathbf{k}_i^{neg} \cap I_{\boldsymbol{\alpha}} = J$. From Lemma 5.1, $\langle f \rangle$ includes the cyclic modules $\langle \mathbf{x}^{\mathbf{k}_i} \rangle$. On the other hand, by Theorem 4.3, Theorem 4.4, Theorem 4.5, and Remark 4.6, each $\mathbf{x}^{\mathbf{k}_i}$ generates the module $V_n^{\boldsymbol{\alpha}}(m, J)$. This shows that $\langle \bar{f} \rangle = W_n^{\boldsymbol{\alpha}}(m, J)$.

For Statement (2), with (3.2) we see that

$$L_{n}^{\alpha}(m,j)/L_{n}^{\alpha}(m,j-1) = \left(\sum_{J:|J|=j} V_{n}^{\alpha}(m,J)\right)/L_{n}^{\alpha}(m,j-1)$$
$$= \left(\sum_{J:|J|=j} V_{n}^{\alpha}(m,J) + L_{n}^{\alpha}(m,j-1)\right)/L_{n}^{\alpha}(m,j-1).$$

Therefore, we have

$$L_n^{\boldsymbol{\alpha}}(m,j)/L_n^{\boldsymbol{\alpha}}(m,j-1) = \sum_{J:|J|=j} W_n^{\boldsymbol{\alpha}}(m,J)$$

where the summation is over $J \subset I_{\alpha}$ with |J| = j. Now, suppose we have

$$\bar{f} \in W_n^{\boldsymbol{\alpha}}(m, J_1) \cap W_n^{\boldsymbol{\alpha}}(m, J_2)$$

with distinct subsets J_1 and J_2 of I_{α} . Then, we can assume that $\overline{f} = f + L_n^{\alpha}(m, j-1)$ where $f = \sum_{i=1}^r c_i \mathbf{x}^{\mathbf{k}_i}$ with distinct monomials $\mathbf{x}^{\mathbf{k}_i}$ such that $\mathbf{k}_i^{neg} \cap I_{\alpha} \subseteq J_1 \cap J_2$ for all *i*. Since $|J_1 \cap J_2| < j$, this shows that $f \in L_n^{\alpha}(m, j-1)$ and therefore \overline{f} is zero in the quotient $L_n^{\alpha}(m, j)/L_n^{\alpha}(m, j-1)$. Therefore, we obtain the direct sum expression in the statement. \Box

Next we investigate the cases when $W_n^{\boldsymbol{\alpha}}(m,J)$ are highest weight modules.

Theorem 6.3 (Highest weight vector in $W_n^{\alpha}(m, J)$).

1) For an integer $1 \leq \ell \leq n$, if $\boldsymbol{\alpha} \in \mathbb{C}^n$ is such that $\boldsymbol{\alpha}[\ell] = c$ is nonzero and $\boldsymbol{\alpha}[\ell'] = 0$ for all $\ell' \neq \ell$ and $J = \{1, 2, \dots, \ell - 1\} \subseteq I_{\boldsymbol{\alpha}}$, then for every $m \in \mathbb{Z}$ the module $W_n^{\boldsymbol{\alpha}}(m, J)$ is a highest weight module having a highest weight vector

$$(x_1^{-1}x_2^{-1}\cdots x_{\ell-1}^{-1}x_\ell^{m+\ell-1}) + L_n^{\alpha}(m,\ell-2)$$

with highest weight

$$(-1, -1, \ldots, -1, m + \ell - 1 + c, 0, \ldots, 0).$$

2) Let $\alpha = 0$ and therefore $I_{\alpha} = \{1, 2, ..., n\}$. For $1 \leq \ell \leq n$, if $J = \{1, 2, ..., \ell - 1\}$ then for $m \in \mathbb{Z}$ such that $m + \ell - 1 \geq 0$ the module $W_n^0(m, J)$ is a highest weight module having a highest weight vector

$$(x_1^{-1}x_2^{-1}\cdots x_{\ell-1}^{-1}x_{\ell}^{m+\ell-1}) + L_n^{\mathbf{0}}(m,\ell-2)$$

with highest weight

$$(-1, -1, \ldots, -1, m + \ell - 1, 0, \ldots, 0).$$

In particular, if $\ell = 1$ and $J = \emptyset$ then for $m \ge 0$, the module $W_n^{\mathbf{0}}(m, \emptyset)$ is a (m + 1)-dimensional module with highest weight $(m, 0, \ldots, 0)$.

3) Let $\alpha = 0$ and therefore $I_{\alpha} = \{1, 2, ..., n\}$. For $1 \leq \ell \leq n$, if $J = \{1, 2, ..., \ell\}$ then for $m \in \mathbb{Z}$ such that $m + \ell - 1 < 0$ the module $W_n^0(m, J)$ is a highest weight module having a highest weight vector

$$(x_1^{-1}x_2^{-1}\cdots x_{\ell-1}^{-1}x_\ell^{m+\ell-1}) + L_n^{\mathbf{0}}(m,\ell-1)$$

with highest weight

$$(-1, -1, \ldots, -1, m + \ell - 1, 0, \ldots, 0).$$

In particular, if $\ell = n$ and $J = \{1, 2, ..., n\}$, then for $m \leq -n$ the module $W_n^0(m, \{1, 2, ..., n\})$ is a finite dimensional module with highest weight

$$(-1, -1, \ldots, -1, m+n-1).$$

Proof. We first notice that the given elements $\mathbf{x}^{\mathbf{k}} + L_n^{\alpha}(m, j-1)$ generate $W_n^{\alpha}(m, J)$ where j = |J| (see Theorem 4.3, Theorem 4.4, and Theorem 4.5). It is straightforward to verify their weights under the action of the Cartan subalgebra of $\mathfrak{gl}(n)$ generated by E_{aa} for $1 \leq a \leq n$. Therefore, now it is enough to show that

$$E_{ab} \cdot (\mathbf{x}^{\mathbf{k}} + L_n^{\boldsymbol{\alpha}}(m, j-1)) = (\mathbf{k}[b] + \boldsymbol{\alpha}[b])(x_a x_b^{-1})\mathbf{x}^{\mathbf{k}} + L_n^{\boldsymbol{\alpha}}(m, j-1)$$
$$= L_n^{\boldsymbol{\alpha}}(m, j-1)$$
(6.1)

in $W_n^{\alpha}(m, J)$ for all $1 \leq a < b \leq n$.

For Statement (1), if a < b and $b \ge l + 1$, then since $\mathbf{k}[b] = \boldsymbol{\alpha}[b] = 0$ we have

$$E_{ab} \cdot (x_1^{-1} \cdots x_{\ell-1}^{-1} x_\ell^{m+\ell-1}) = (0+0)(x_a^{-1} x_b^{-1})(x_1^{-1} \cdots x_{\ell-1}^{-1} x_\ell^{m+\ell-1}) = 0.$$

If a < b and $b \leq \ell$, then $a \leq \ell - 1$ and

$$E_{ab} \cdot (x_1^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}) = (\mathbf{k}[b] + \boldsymbol{\alpha}[b]) (x_a^{-1} x_b^{-1}) (x_1^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1})$$

where $\mathbf{k}[b] = -1$ and $\boldsymbol{\alpha}[b] = 0$ if $b \leq \ell - 1$; and $\mathbf{k}[b] = m + \ell - 1$ and $\boldsymbol{\alpha}[b] = c$ if $b = \ell$. Writing $\mathbf{x}^{\mathbf{q}}$ for the monomial in the right hand side, we see that $\mathbf{q}[a] = 0$ because $a \leq \ell - 1$ and therefore $|\mathbf{q}^{neg} \cap I_{\boldsymbol{\alpha}}| < \ell - 1$. This shows that $\mathbf{x}^{\mathbf{q}} \in L_n^{\boldsymbol{\alpha}}(m, \ell - 2)$ and therefore (6.1) is true.

For Statement (2), the first part can be shown similarly to the previous case. The second part with the conditions $\ell = 1$ and $J = \emptyset$ follows directly from Definition 6.1 with $L_n^0(m, -1) = \{0\}$ and Theorem 5.4 (2).

For Statement (3), if a < b and $b \ge \ell + 1$, then since $\mathbf{k}[b] = \boldsymbol{\alpha}[b] = 0$ we have

$$E_{ab} \cdot (x_1^{-1} \cdots x_{\ell-1}^{-1} x_\ell^{m+\ell-1}) = (0+0)(x_a^1 x_b^{-1})(x_1^{-1} \cdots x_{\ell-1}^{-1} x_\ell^{m+\ell-1} x_b^{-1}) = 0.$$

If a < b and $b \leq \ell$, then since $\alpha[b] = 0$ we have

$$E_{ab} \cdot (x_1^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1}) = \mathbf{k}[b](x_a^1 x_b^{-1})(x_1^{-1} \cdots x_{\ell-1}^{-1} x_{\ell}^{m+\ell-1})$$

where $\mathbf{k}[b] = -1$ if $b \leq \ell - 1$ and $\mathbf{k}[b] = m + \ell - 1$ if $b = \ell$. Again, by denoting the monomial in the right hand side by $\mathbf{x}^{\mathbf{q}}$, we see that $\mathbf{q}[a] = 0$ because $a \leq \ell - 1$, and therefore $|\mathbf{q}^{neg} \cap I_{\boldsymbol{\alpha}}| < \ell$. This shows that $\mathbf{x}^{\mathbf{q}} \in L_n^{\boldsymbol{\alpha}}(m, \ell - 1)$ and therefore (6.1) is true.

We note that the highest weights of $W_n^{\alpha}(m, J)$ given in Theorem 6.3 are integral dominant (see, for example, [5, §3]) only when

i) $\boldsymbol{\alpha} = \mathbf{0}, J = \emptyset$, and $m \ge 0$;

ii) $\alpha = 0, J = \{1, 2, ..., n\}$, and $m \leq -n$.

Indeed, one can easily check that these are the only cases when the modules $W_n^{\alpha}(m, J)$ are finite dimensional.

References

- D. J. Britten and F. W. Lemire, A classification of simple Lie modules having a 1-dimensional weight space. Trans. Amer. Math. Soc. 299 (1987), no. 2, 683–697.
- [2] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2002.
- [3] S. Eswara Rao, Representations of Witt algebras. Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 191–201.
- [4] S. Eswara Rao, Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus. J. Algebra 182 (1996), no. 2, 401–421.
- [5] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants. Graduate Texts in Mathematics, 255. Springer, Dordrecht, 2009.
- [6] X. Guo and K. Zhao, Irreducible weight modules over Witt algebras. Proc. Amer. Math. Soc. 139 (2011), no. 7, 2367–2373.

 Cheonho Choi,
 Department of Mathematics, Korea University, 145 Anam-ro Seongbuk-gu, Seoul 02841, South Korea
 E-Mail(s): cheonho@korea.ac.kr, sk23@korea.ac.kr
 Haeyun Seo
 Department of Mathematics, University of Maryland, William E. Kirwan Hall, 4176 Campus Drive, College Park, MD 20742-4015,

E-Mail(s): hys2500@umd.edu

CONTACT INFORMATION

Received by the editors: 13.12.2018 and in final form 24.02.2021.

USA