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Abstract. We first present a filtration on the ring Ln of
Laurent polynomials such that the direct sum decomposition of
its associated graded ring grLn agrees with the direct sum decom-
position of grLn, as a module over the complex general linear Lie
algebra gl(n), into its simple submodules. Next, generalizing the sim-
ple modules occurring in the associated graded ring grLn, we give
some explicit constructions of weight multiplicity-free irreducible
representations of gl(n).

1. Introduction

In this section, we give a brief summary of our results.

1.1. The ring of polynomials

The ring Pn = C[x1, . . . , xn] of polynomials in n indeterminates over
the complex numbers C is a Z-graded algebra

Pn =
⊕

m∈Z

P (m)
n (1.1)
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where P
(m)
n is the space of homogeneous polynomials of degree m. As a

vector space, Pn becomes a module over the complex general linear Lie
algebra gl(n) = gln(C) under the action

A · f =
∑

ij

aijxi
∂f

∂xj
for A = (aij) ∈ gl(n) and f ∈ Pn. (1.2)

Then, the direct sum decomposition (1.1) of Pn as a graded ring agrees
with the decomposition of Pn as a gl(n)-module into its simple submodules

P
(m)
n . They are the finite dimensional representations of gl(n) labeled by

Young diagrams with single rows.

1.2. The ring of Laurent polynomials

The first goal of this paper is to obtain an analogous result of the
above observation for the ring of Laurent polynomials

Ln = C[x±1
1 , x±1

2 , . . . , x±1
n ].

It turns out that a filtration and its associated graded structure give us
an answer. Note that (1.1) can be seen as the graded ring associated with
the Z-filtration of Pn given by degree.

We will define a filtration on Ln by a partially ordered monoid con-
structed from integers and subsets of {1, 2, . . . , n}

Ln =
⋃

(m,J)∈Z×Pn

L6(m,J)
n

and show that the direct sum decomposition of its associated graded ring

grLn =
⊕

(m,J)∈Z×Pn

L6(m,J)
n /L<(m,J)

n

provides the decomposition of grLn, as a gl(n)-module, into its simple
submodules.

Extending the space with the action (1.2) of gl(n) from Pn to Ln,
we identify Laurent monomials xk = xk11 x

k2
2 · · ·xknn with integral points

k = (k1, k2 . . . , kn) in R
n. Note that they are weight vectors with respect

to the Cartan subalgebra of gl(n) consisting of diagonal matrices. Since
this action preserves the degree of monomials, we can focus on integral
points on the hyperplane k1 + · · ·+ kn = m for each m ∈ Z.

One of main difficulties in studying the gl(n)-module structure of Ln

is that the symmetric behavior of raising and lowering operators we had
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Figure 1. The action of gl(2) on xk1

1
xk2

2
with k1 + k2 = 1.

when working with Pn is not trivial anymore. For example, when n = 2
as in Figure 1,

[

0 0
1 0

]

· xk11 x
m−k1
2 = k1x

k1−1
1 xm+1−k1

2 ,

[

0 1
0 0

]

· xm−k2
1 xk22 = k2x

m+1−k2
1 xk2−1

2 .

The cases k1 = 0 and k2 = 0 divide the line k1 + k2 = m into three parts.
The monomials with k1 > 0 and k2 > 0 can be obtained by applying some
elements of gl(2) to monomials with k1k2 < 0. However, monomials with
k1k2 < 0 cannot be obtained from the ones with k1 > 0 and k2 > 0.

More generally, the planes kj = 0 divide the hyperplane k1+ k2+ · · ·+
kn = m into regions labeled by the signs of the coordinates ki. Then, for
each i, we can obtain weight vectors xk with ki > 0 starting from the
ones with ki < 0 by successively applying some elements of gl(n), but the
opposite way is not possible. See Figure 2.

Therefore, our indecomposable submodules in Ln and simple modules
obtained from their quotients are labeled by degree m of xk and subsets
J of {1, 2, . . . , n} indicating the position of possible negative components
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Figure 2. The action of gl(3) on xk1

1
xk2

2
xk3

3
with k1 + k2 + k3 = m (m > 0).

in k. Their structures depend heavily on m and the cardinality of J . We
will give a clear case-by-case analysis of them.

1.3. Representations of the general linear Lie algebra

Our next goal is to provide explicit constructions of weight multiplicity-
free irreducible representations of gl(n) obtained by twisting the ac-
tion (1.2). For a general theory on weight multiplicity-free representations
of simple Lie algebras, see [1] and references therein.

Motivated by works on weight modules of the Lie algebra of diffeo-
morphisms of the n-dimensional torus (see, for example, [3, 4, 6]), for each
α = (α1, . . . , αn) ∈ C

n, we will define a representation Lα
n of gl(n) on the

vector space Ln (see Definition 3.2). Then, we investigate two families of
its submodules, Lα

n (m, j) and V α
n (m,J), parameterized by integers m, j,

and subsets J of {i : αi = 0}. We can obtain explicit simple gl(n)-modules
from the decomposition of the quotient modules

Lα
n (m, j)/L

α
n (m, j − 1) =

⊕

J :|J |=j

Wα
n (m,J)

where Wα
n (m,J) are simple modules defined by

Wα
n (m,J) = (V α

n (m,J) + Lα
n (m, j − 1)) /Lα

n (m, j − 1).
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Among these simple modules, there are highest weight modules with
highest weights of the form ψλ ∈ h∗ where

λ = (−1, . . . ,−1, z, 0, . . . , 0) ∈ C
n

including the finite dimensional ones having integral dominant weights
with λ = (k, 0, . . . , 0) and (−1, . . . ,−1, ℓ) for k > 0 and ℓ 6 −1.

2. A filtration on Ln and simple modules in grLn

In this section, we impose a filtration on the ring

Ln = C[x±1
1 , . . . , x±1

n ]

of Laurent polynomials in n indeterminates over the complex numbers
C, and then show that the graded structure of its associated graded ring
is compatible with the module structure of Ln over the complex general
linear Lie algebra gl(n) = gln(C).

Recall that gl(n) is the Lie algebra of n × n complex matrices with
the usual matrix addition and the Lie bracket given by the commutator
of two matrices. We will write Un = U(gl(n)) for the universal enveloping
algebra of gl(n).

2.1. Submodules of Ln

The complex vector space Ln is spanned by monomials

xk = xk11 x
k2
2 · · ·xknn

for k = (k1, k2, . . . , kn) ∈ Z
n. We define some subspaces of Ln.

Definition 2.1. Let m be an integer, j be an integer with 0 6 j 6 n,
and J be a subset of {1, 2, . . . , n}.

1) Let Vn(m,J) be the subspace of Ln spanned by all the monomials
xk11 x

k2
2 · · ·xknn such that

n
∑

i=1

ki = m and {i : ki < 0} ⊆ J.

2) Let Ln(m, j) be the sum of the subspaces Vn(m,J) of Ln

Ln(m, j) =
∑

J :|J |=j

Vn(m,J)

over all subsets J of {1, 2, . . . , n} having j elements.
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It follows directly from the definition that

Vn(m,J1) ⊆ Vn(m,J2) for all J1 ⊆ J2.

Then, we have
Ln(m, j − 1) ⊆ Ln(m, j)

and their quotient can be expressed as

Ln(m, j)/Ln(m, j − 1) =

(

∑

J :|J |=j

Vn(m,J)

)

/Ln(m, j − 1)

=
∑

J :|J |=j

(

Vn(m,J) + Ln(m, j − 1)
)

/Ln(m, j − 1).

Definition 2.2. For an integer m and a subset J of {1, 2, . . . , n} having
j elements, we let Wn(m,J) denote the subspace

Wn(m,J) = (Vn(m,J) + Ln(m, j − 1)) /Ln(m, j − 1)

of the quotient space Ln(m, j)/Ln(m, j − 1).

The spaces Vn(m,J), Ln(m, j), and Wn(m,J) are special cases of
the ones defined in Definition 3.5 and Definition 6.1 with α = 0 and
Iα = {1, 2, . . . , n}, and they are modules over Un with respect to

A · f =
∑

ij

aijxi
∂f

∂xj

for A = (aij) ∈ gl(n) and f ∈ Ln. See Theorems 4.4, 4.5, 5.4, and 5.5.
Moreover, Wn(m,J) are simple modules. See Theorem 6.2.

Lemma 2.3. For m ∈ Z and a subset J of {1, 2, . . . , n} having j elements,
as a Un-module,

Wn(m,J) ∼= Vn(m,J)/
∑

J ′

Vn(m,J
′)

where the summation is over all subsets J ′ of J having j − 1 elements

Proof. Note that

Wn(m,J) = (Vn(m,J) + Ln(m, j − 1)) /Ln(m, j − 1)
∼= Vn(m,J)/ (Vn(m,J) ∩ Ln(m, j − 1)) .

Then, the statement follows from the following observation

Vn(m,J) ∩ Ln(m, j − 1) =
∑

J ′

Vn(m,J
′)

where the sum is over all subsets J ′ of J having j − 1 elements.
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2.2. Filtration by a partially ordered monoid

Let Pn be the set of all subsets of {1, 2, . . . , n}. On the set Z ×Pn,
we define the partial order (m1, J1) 6 (m2, J2) if m1 6 m2 and J1 ⊆ J2,
and the multiplication

(m1, J1) ∗ (m2, J2) = (m1 +m2, J1 ∪ J2).

With 6 and ∗, Z×Pn becomes a partially ordered monoid with the
identity (0,∅), and using this monoid we want to impose a filtration on
Ln. For basic properties of a filtration of a ring given by a partially ordered
monoid, we refer to [2, §I.12].

Definition 2.4. For each (m,J) ∈ Z×Pn, we define

L6(m,J)
n =

∑

(m1,J1)

Vn(m1, J1) and L<(m,J)
n =

∑

(m2,J2)

Vn(m2, J2)

where the first summation is over all (m1, J1) such that

(m1, J1) 6 (m,J),

and the second summation is over all (m2, J2) such that

(m2, J2) 6 (m,J) but (m2, J2) 6= (m,J).

Proposition 2.5. The family {L
6(m,J)
n : (m,J) ∈ Z×Pn} of subspace

of Ln defines a filtration on Ln by the partially ordered monoid Z×Pn.

Proof. We need to check the following conditions (see [2, §I.12]).

1) 1 ∈ L
6(0,∅)
n ,

2) for all (m1, J1) 6 (m2, J2),

L6(m1,J1)
n ⊆ L6(m2,J2)

n ,

3) for all (m1, J1) and (m2, J2),

L6(m1,J1)
n L6(m2,J2)

n ⊆ L6(m1,J1)∗(m2,J2)
n ,

4) the union of all such subspaces is equal to Ln

⋃

(m,J)∈Z×Pn

L6(m,J)
n = Ln.

All of them follow directly from the definitions of L
6(m,J)
n and Vn(m,J).
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For (m1, J1) and (m2, J2) in Z×Pn, we have

L6(m1,J1)
n L<(m2,J2)

n + L<(m1,J1)
n L6(m2,J2)

n ⊆ L<(m1,J1)∗(m2,J2)
n

and therefore the quotient spaces L
6(m,J)
n /L

<(m,J)
n form the homogeneous

components of the associated graded ring of Ln.

Theorem 2.6. With the filtration {L
6(m,J)
n : (m,J) ∈ Z×Pn} imposed

on Ln, the direct sum decomposition of the associated graded ring

grLn =
⊕

(m,J)∈Z×Pn

L6(m,J)
n /L<(m,J)

n

agrees with the decomposition of grLn into its simple submodules over
Un. In particular, for each (m,J) ∈ Z×Pn, as a Un-module,

L6(m,J)
n /L<(m,J)

n
∼=Wn(m,J).

Proof. For an integer m and a subset J of {1, 2, . . . , n} having j elements,
let us define

S = Vn(m,J) and T =
∑

J1⊂J

Vn(m,J1) +
∑

m1<m

Vn(m1, J)

where the first summation for T is over all proper subsets J1 of J , and
the second summation is over all m1 strictly less than m. Then, we have

S ∩ T = Vn(m,J) ∩





∑

J1⊂J

Vn(m,J1) +
∑

m1<m

Vn(m1, J)





= Vn(m,J) ∩





∑

J1⊂J

Vn(m,J1)





=
∑

J ′

Vn(m,J
′)

where the last summation is over all subsets J ′ of J having j− 1 elements.
Note that

S + T = L6(m,J)
n and T = L<(m,J)

n

and then, by the usual module isomorphism theorem (S+T )/T ∼= S/(S ∩
T ), we obtain

L6(m,J)
n /L<(m,J)

n
∼= Vn(m,J)/

∑

J ′

Vn(m,J
′) (2.1)
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where the summation is over all subsets J ′ of J having j − 1 elements.
Now, using the realization of Wn(m,J) given in Lemma 2.3, we have

L6(m,J)
n /L<(m,J)

n
∼=Wn(m,J).

In § 6, we will investigate the simple modules Wn(m,J) in a more
general setting.

3. Modules Lα
n
(m, j) and V α

n
(m,J)

In this section, generalizing Ln(m,J) and Vn(m,J) discussed in the
previous section, we define some submodules of Ln over the universal
enveloping algebra Un of gl(n) parameterized by α = (α1, . . . , αn) ∈ C

n.

Notation 3.1. 1) For a finite set S, we will write |S| for the cardinality
of S.

2) For α = (α1, . . . , αn) ∈ C
n, we write α[ℓ] for the ℓth component αℓ

of α. Then, for α,β ∈ C
n, we let α±β be the elements in C

n such
that

(α± β)[ℓ] = α[ℓ]± β[ℓ] for 1 6 ℓ 6 n.

3) We write ej for the element in Z
n whose jth entry is one and all

the other entries are zero.

ej [ℓ] =

{

1 if ℓ = j,
0 otherwise.

4) For k ∈ Z
n, let xk be the monomial

xk = x
k[1]
1 x

k[2]
2 · · ·xk[n]n

in Ln. In this setting, we denote the negative part of k by

kneg = {ℓ : k[ℓ] < 0}.

We let Eab ∈ gl(n) be the n × n matrix with one in (a, b) and zero
elsewhere.

Definition 3.2. For each α ∈ C
n, Eab acts on the monomials xk in the

algebra Ln of Laurent polynomials as

Eab · x
k = (k[b] +α[b]) xk+ea−eb for 1 6 a, b 6 n.

With this action, the space Ln gives rise to a Un-module, which we will
denote by Lα

n , and for f ∈ Ln we write 〈f〉 for the cyclic submodule of
Lα
n generated by f .
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Informally, we may think of the above action as

Eab · f = x−α xa
∂

∂xb
xαf for f ∈ Ln

and then the action in the definition can be considered a generalization
of the action (1.2) of gl(n) on the polynomial ring which provides all the
finite dimensional representations of gl(n) labeled by Young diagrams
with single rows. See Theorem 5.4 (2).

Lemma 3.3. For α and β ∈ C
n, if α − β ∈ Z

n then, as a Un-module,
Lα
n is isomorphic to Lβ

n .

Proof. It is enough to show that the linear map ψ from Ln to Ln sending
xk to xk+α−β for k ∈ Z

n gives a Un-module map from Lα
n to Lβ

n . It
follows from

ψ(Eab · x
k) = (k[b] +α[b])xk+ea−eb × xα−β

= {(k+α− β)[b] + β[b]}x(k+α−β)+ea−eb

= Eab · x
(k+α−β) = Eab · ψ(x

k)

for all 1 6 a, b 6 n.

With this lemma, we can focus on the following choice of α.

Notation 3.4. Once and for all, we fix α ∈ C
n the entries of whose real

parts satisfy
0 6 Re(α[ℓ]) < 1 for all 1 6 ℓ 6 n,

and the following subset of {1, 2, . . . , n}

Iα = {ℓ : α[ℓ] = 0}.

With this choice of α, we note that for k ∈ Z
n,

k[ℓ] +α[ℓ] = 0 for some ℓ (3.1)

only when k[ℓ] = α[ℓ] = 0.

Definition 3.5 (Submodules Lα
n (m, j) and V α

n (m,J)).
1) For integers m and j with 0 6 j 6 |Iα|, we let Lα

n (m, j) be the
subspace of Lα

n spanned by all the monomials xk such that

n
∑

ℓ=1

k[ℓ] = m and |kneg ∩ Iα| 6 j.
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2) For a subset J of Iα with |J | = j, we let V α
n (m,J) be the subspace

of Lα
n (m, j) spanned by all the monomials xk in Lα

n (m, j) such that

(kneg ∩ Iα) ⊆ J.

Example 3.6. Let n = 4, α = (0, 1/2, 0, 0), and therefore Iα = {1, 3, 4}.
1) Let j = 2. From the condition |kneg ∩ {1, 3, 4}| 6 2, the space

Lα
n (m, j) is spanned by all the monomials xk = xk11 x

k2
2 x

k3
3 x

k4
4 in Ln

such that

i) k1 + k2 + k3 + k4 = m and ii) k1 > 0 or k3 > 0 or k4 > 0.

2) Let J = {1, 4}. From the condition (kneg ∩ {1, 3, 4}) ⊂ {1, 4},
V α
n (m,J) is the subspace of Lα

n (m, j) spanned by all the monomials
of degree m with k3 > 0.

See more examples in Example 4.2. The following is easy to check.

Lemma 3.7. If J = ∅ (therefore j = 0) or J = Iα (therefore j = |Iα|),
then

V α
n (m,J) = Lα

n (m, j).

From Definition 3.5, it immediately follows that

Lα
n (m, j − 1) ⊆ Lα

n (m, j) and Lα
n (m, j) =

∑

J :|J |=j

V α
n (m,J) (3.2)

where the summation runs over all subsets J of Iα with |J | = j. Also, for
two subsets J1 and J2 of Iα, we have

V α
n (m,J1) ⊂ V α

n (m,J2) for J1 ⊂ J2; (3.3)

V α
n (m,J1 ∩ J2) = V α

n (m,J1) ∩ V
α
n (m,J2).

Now we show that V α
n (m,J) and Lα

n (m, j) are indeed modules over
Un.

Proposition 3.8. V α
n (m,J) and Lα

n (m, j) are Un-submodules of Lα
n .

Proof. For a monomial xp ∈ V α
n (m,J), we need to show

Eab · x
p = (p[b] +α[b])xp+ea−eb

are in V α
n (m,J) for all 1 6 a, b 6 n. Since the action of Eab preserves

the degree of monomials, writing q = (p+ ea − eb), it is enough to show
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that for a 6= b if (pneg ∩ Iα) ⊆ J , then (qneg ∩ Iα) ⊆ J or the coefficient
(p[b] +α[b]) is zero.

For this, because the only element which is not in pneg but can possibly
appear in qneg is b, it is enough to consider the case

b /∈ pneg ∩ Iα and b ∈ qneg ∩ Iα.

This happens only when p[b] = 0 and in this case, since b ∈ Iα, we have
α[b] = 0. Therefore, the coefficient (p[b] + α[b]) is zero. Consequently,
we have Eab · x

p ∈ V α
n (m,J) for all 1 6 a, b 6 n, and V α

n (m,J) is a
submodule of Lα

n . Now from (3.2), Lα
n (m, j) is a submodule of Lα

n .

4. Structure of V α
n
(m,J)

In this section, we investigate the structure of V α
n (m,J). We first give

a technical lemma.

Lemma 4.1. For two distinct monomials xp and xq in Lα
n (m, j) such

that

(qneg ∩ Iα) ⊆ (pneg ∩ Iα) ,

there exists X ∈ Un such that X · xp = xq.

Proof. For simplicity, we let p[ℓ] = pℓ, q[ℓ] = qℓ, and α[ℓ] = αℓ for all ℓ.
Consider the difference p− q = (p1 − q1, . . . , pn − qn) ∈ Z

n. Since xp and
xq have the same degree m, we have

∑n
ℓ=1 (pℓ − qℓ) = 0 and therefore we

can separate the positive and negative parts of p− q

r =
∑

ℓ:pℓ−qℓ>0

(pℓ − qℓ) =
∑

ℓ:pℓ−qℓ<0

(qℓ − pℓ).

With Notation 3.1, we define 1 6 s1 6 s2 6 · · · 6 sr 6 n and 1 6 t1 6

t2 6 · · · 6 tr 6 n so that

r
∑

k=1

esk =
∑

ℓ:pℓ−qℓ>0

(pℓ − qℓ) eℓ and
r
∑

k=1

etk =
∑

ℓ:pℓ−qℓ<0

(qℓ − pℓ) eℓ

where the summations are over ℓ such that pℓ − qℓ > 0 and pℓ − qℓ < 0
respectively.
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Setting p0 = p and pk = pk−1 + etk − esk for 1 6 k 6 r, we have
Etksk · x

pk−1 = wkx
pk . Furthermore, from

pr = p0 +

r
∑

k=1

(etk − esk)

= p0 +
∑

ℓ:pℓ−qℓ<0

(qℓ − pℓ)eℓ −
∑

ℓ:pℓ−qℓ>0

(pℓ − qℓ)eℓ

= p0 + (q− p) = q,

by setting Y =
∏r

k=1Etksk ∈ Un, we obtain

Y · xp = xp(w1xt1x
−1
s1

)(w2xt2x
−1
s2

) · · · (wrxtrx
−1
sr

)

=

(

r
∏

k=1

wk

)

xpxq−p =

(

r
∏

k=1

wk

)

xq

where the coefficient is
r
∏

k=1

wk =
∏

ℓ:pℓ−qℓ>0

(pℓ + αℓ)(pℓ − 1 + αℓ) · · · (pℓ − (pℓ − qℓ − 1) + αℓ).

For each ℓ in the above product, if ℓ /∈ Iα then αℓ 6= 0, and therefore
the corresponding factor is not zero by (3.1). Now let ℓ ∈ Iα and therefore
αℓ = 0. To derive a contradiction, suppose (pℓ − c) in the ℓth factor of the
above product is zero for some 0 6 c 6 (pℓ − qℓ − 1). Then, from pℓ = c,
we have

0 6 pℓ 6 (pℓ − qℓ − 1) (4.1)

and therefore qℓ 6 −1. On the other hand, from the given hypothesis
(qneg ∩ Iα) ⊆ (pneg ∩ Iα), we know that pℓ < 0 whenever qℓ < 0, which
contradicts to (4.1). Therefore, we have

∏r
k=1wk 6= 0 and with the element

X =

r
∏

k=1

w−1
k Etksk

we see that X · xp = xq.

Example 4.2. 1) Let α = (1/2, i, 0), Iα = {3}, and J = ∅. If m = 4
then from the condition

kneg ∩ {3} ⊆ ∅,

V α
n (m,J) is spanned by all the monomials xk11 x

k2
2 x

k3
3 of degree 4 with

k3 > 0.
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Note that xp = x41 and xq = x1x
−2
2 x53 in V α

n (m,J) satisfy the condition
in Lemma 4.1. From

p− q = (3, 2,−5) = (3, 2, 0) + (0, 0,−5)

we define the element Y = E31 · E31 · E31 · E32 · E32 ∈ Un to obtain

Y · xp = (2 + 1/2)(3 + 1/2)(4 + 1/2)(−1 + i)(0 + i)xq.

Therefore there is X ∈ Un such that X · xp = xq.

2) Let α = (0, 0, 0), Iα = {1, 2, 3}, and J = {1, 3}. If m = −2 then
from the condition

kneg ∩ {1, 2, 3} ⊆ {1, 3},

V α
n (m,J) is spanned by all the monomials xk11 x

k2
2 x

k3
3 of degree −2 with

k2 > 0.

Note that xp = x−1
1 x−1

3 and xq = x1x
2
2x

−5
3 in V α

n (m,J) satisfy the
condition in Lemma 4.1. From

p− q = (−2,−2, 4) = (0, 0, 4) + (−2,−2, 0)

we define Y = E13 · E13 · E23 · E23 ∈ Un to obtain

Y · xp = (−4 + 0)(−3 + 0)(−2 + 0)(−1 + 0)xq.

Therefore, there is X ∈ Un such that X · xp = xq.

Now we investigate the structure of V α
n (m,J) for α 6= 0.

Theorem 4.3 (Structure of V α
n (m,J) with nonzero α).

Let α 6= 0 and J = {ℓ1, . . . , ℓj} ⊆ Iα. Then, V α
n (m,J) is the cyclic

submodule of Lα
n generated by

xJ,t = x−1
ℓ1
x−1
ℓ2

· · ·x−1
ℓj
xm+j
t for some t ∈ {1, 2, . . . , n} \ Iα.

Proof. Since α 6= 0, there exists t such that α[t] 6= 0. Write xp for xJ,t

and let xq be an arbitrary monomial in V α
n (m,J). Since (qneg ∩ Iα) ⊆

(pneg ∩ Iα) = J , we can apply Lemma 4.1 to obtain X ∈ Un such that
X · xp = xq. Therefore, xp generates the module V α

n (m,J).

Next we consider the other cases with α = 0. Let us fix

J = {ℓ1, . . . , ℓj} ⊆ Iα = {1, 2, . . . , n}.
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Theorem 4.4 (Structure of V 0
n (m,J) with nonnegative degree m).

1) If m > 0 and 0 6 j 6 n− 1, then V 0
n (m,J) is the cyclic submodule

of L0
n(m, j) generated by

xJ,t = x−1
ℓ1
x−1
ℓ2

· · ·x−1
ℓj
xm+j
t for some t ∈ {1, 2, . . . , n} \ J.

2) If m > 0 and j = n (therefore, J = {1, 2, . . . , n}), then

V 0
n (m, {1, 2, . . . , n}) = L0

n(m,n) = L0
n(m,n− 1)

=
∑

J ′

V 0
n (m,J

′)

where the summation is over all the subsets J ′ of {1, 2, . . . , n} with
|J ′| = n− 1.

Proof. For Statement (1), we first note that xJ,t ∈ V 0
n (m,J). Write xp

for xJ,t and let xq be an arbitrary monomial in V 0
n (m,J). Since qneg ⊆

pneg = J , applying Lemma 4.1, we see that there exists X ∈ Un such that
X · xp = xq. Therefore, xq belongs to the module generated by xJ,t and
we have V 0

n (m,J) = 〈xJ,t〉.

For Statement (2), if xk11 x
k2
2 · · ·xknn is a monomial in L0

n(m,n), then not
all kj ’s can be negative, because the degree m is nonnegative. Therefore,
L0
n(m,n) = L0

n(m,n − 1). The other equalities follow from Lemma 3.7
and (3.2).

Theorem 4.5 (Structure of V 0
n (−m,J) with negative degree −m).

Let 1 6 m < n.

1a) If j = 0 (therefore, J = ∅), then

V 0
n (−m,∅) = L0

n(−m, 0) = {0}.

1b) If 1 6 j 6 m, then V 0
n (−m,J) is the cyclic submodule of L0

n(−m, j)
generated by

xJ = x−1
ℓ1
x−1
ℓ2

· · ·x−1
ℓj−1

xj−1−m
ℓj

.

1c) If m+ 1 6 j 6 n − 1, then V 0
n (−m,J) is the cyclic submodule of

L0
n(−m, j) generated by

xJ,t = x−1
ℓ1
x−1
ℓ2

· · ·x−1
ℓj−1

x−1
ℓj
xj−m
t for some t ∈ {1, 2, . . . , n} \ J.
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1d) If j = n (therefore, J = {1, 2, . . . , n}), then

V 0
n (−m, {1, 2, . . . , n}) = L0

n(−m,n) = L0
n(−m,n− 1)

=
∑

J ′

V 0
n (−m,J

′)

where the summation is over all J ′ ⊂ {1, 2, . . . , n} with |J ′| = n− 1.

Now let m > n.

2a) If j = 0 (therefore, J = ∅), then

V 0
n (−m,∅) = L0

n(−m, 0) = {0}.

2b) If 1 6 j 6 n, then V 0
n (−m,J) is the cyclic submodule of L0

n(−m, j)
generated by

xJ = x−1
ℓ1
x−1
ℓ2

· · ·x−1
ℓj−1

xj−1−m
ℓj

.

Proof. Statements 1a) and 2a) follow directly from Definition 3.5. For
Statement 1d), note that if xk ∈ L0

n(−m,n) then
∑

ℓ k[ℓ] = −m > −n
and therefore there should be at least one ℓ with k[ℓ] > 0. This implies that
L0
n(−m,n) = L0

n(−m,n−1). Now the statements follows from Lemma 3.7
and (3.2). The other statements can be shown similarly to Theorem 4.3
and Theorem 4.4 (1).

Remark 4.6. Let xp be the generators xJ or xJ,t of the cyclic modules
V α
n (m,J) given in Theorem 4.3, Theorem 4.4, and Theorem 4.5. We remark

that these generators are not unique. This is because, when applying
Lemma 4.1, if

(qneg ∩ Iα) = (pneg ∩ Iα) , (4.2)

then we can exchange the roles of xp and xq. Therefore, every monomial
xq ∈ V α

n (m,J) satisfying (4.2) can also generate the module V α
n (m,J).

5. Structure of Lα
n
(m, j)

In this section, we investigate the structure of Lα
n (m, j). Let us begin

with another technical lemma.

Lemma 5.1. For an element f =
∑r

i=1 cix
ki of Lα

n with distinct mono-
mials and nonzero coefficients, the cyclic module generated by f includes
the cyclic modules generated by the terms of f

〈xki〉 ⊆ 〈f〉 for all i.
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Proof. We want to prove the statement by induction on the number r of
the terms of f . If r = 1 then we have nothing to prove. Suppose r > 2.
We first note that, since xki are distinct, they are weight vectors with
different weights under the action of the Cartan subalgebra h of gl(n)
spanned by Eaa for 1 6 a 6 n. Let wi be the weight for the monomial
xki . Then, there is an element H ∈ h such that

g = w1(H)f −H · f =
∑

i:wi(H) 6=w1(H)

(w1(H)− wi(H)) cix
ki

is a non-zero element in 〈f〉. Also, since the number of terms in g is less
than r, by the induction hypothesis the cyclic modules generated by the
terms of g are included in 〈g〉. This shows that for i with wi(H) 6= w1(H)
we have 〈xki〉 ⊆ 〈f〉.

Now we note that

h = f −
∑

i:wi(H) 6=w1(H)

cix
ki =

∑

i:wi(H)=w1(H)

cix
ki .

is a nonzero element in 〈f〉. Since the number of the terms of h is less
than r, again by the induction hypothesis, the cyclic modules generated
by the terms of h are included in 〈h〉. Therefore, 〈f〉 contains 〈xki〉 for i
with wi(H) = w1(H) as well.

As an immediate consequence of the above lemma, we obtain the
following result for the special case of Theorem 4.5 with J = {ℓ} for
1 6 ℓ 6 n.

Proposition 5.2. For m > 1 and 1 6 ℓ 6 n, V 0
n (−m, {ℓ}) is a simple

submodule of L0
n(−m, 1) generated by x−m

ℓ .

Proof. From Theorem 4.5 1b) and 2b),

V 0
n (−m,J) = 〈x−m

ℓ 〉 ⊆ L0
n(−m, 1).

For a nonzero f ∈ V 0
n (−m,J), writing f =

∑

i cix
ki , let us consider the

submodule of V 0
n (−m,J) generated by f . By Lemma 5.1, it contains the

cyclic submodules generated by xki .

〈xki〉 ⊆ 〈f〉 ⊆ V 0
n (−m,J).

On the other hand, for each i, since (kneg
i ∩ {1, 2, . . . , n}) ⊆ {ℓ} and

the degree of xki should be −m < 0, we have ki[ℓ] < 0 and ki[ℓ
′] > 0 for

ℓ′ 6= ℓ. By Remark 4.6, each of these monomials can generate the whole
module V 0

n (−m,J). Therefore, we have 〈f〉 = V 0
n (−m,J) and conclude

that V 0
n (−m, {ℓ}) has no nonzero proper submodules.
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Now, we investigate the structure of Lα
n (m, j) for α 6= 0.

Theorem 5.3 (Structure of Lα
n (m, j) with nonzero α).

1) If α 6= 0 and 0 6 j 6 |Iα|, then Lα
n (m, j) is indecomposable.

2) In particular, if α 6= 0 and j = 0, then Lα
n (m, 0) = V α

n (m,∅) is a
nonzero simple module over Un.

Proof. For Statement (2), from Lemma 3.7, Lα
n (m, 0) = V α

n (m,∅), and by
Theorem 4.3 it is generated by x∅,t = xmt for some t ∈ {1, 2, . . . , n} \ Iα.
Let f be a nonzero element of V α

n (m,∅), then we can write f =
∑r

i=1 cix
ki

with nonzero coefficients such that kneg
i ∩ Iα = ∅ for all i. By Lemma 5.1,

the monomials xki belong to 〈f〉. On the other hand, by Remark 4.6,
each of these monomials generates V α

n (m,∅). Therefore, 〈f〉 = V α
n (m,∅).

This shows that Lα
n (m, 0) = V α

n (m,∅) is simple.
For Statement (1), we will show that every nonzero submodule M of

Lα
n (m, j) contains V α

n (m,∅), which is nonzero by Statement (2). For a
nonzero f ∈ M , let cxp be a nonzero term of f . Then, by Lemma 5.1,
〈f〉 includes 〈xp〉. On the other hand, since every monomial xq = xmt for
t /∈ Iα satisfies the condition

∅ = (qneg ∩ Iα) ⊆ (pneg ∩ Iα),

we can apply Lemma 4.1 to obtain X ∈ Un such that X · xp = xq.
Therefore, we have xq ∈ 〈xp〉 ⊆ 〈f〉 ⊆M , and therefore V α

n (m,∅) ⊆M .
This shows that Lα

n (m, j) cannot be written as a direct sum of its proper
nonzero submodules.

Next, we consider the other cases with α = 0.

Theorem 5.4 (Structure of L0
n(m, j) with nonnegative degree m).

1) If m > 0 and 1 6 j 6 n, then L0
n(m, j) is indecomposable.

2) In particular, if m > 0 and j = 0, then L0
n(m, 0) = V 0

n (m,∅) is the
cyclic module generated by

x∅,1 = xm1 .

It is a finite dimensional simple module over gl(n) of dimension
(m+ 1).

Proof. For Statement (2), observe that for m > 0, L0
n(m, 0) is the space

of homogeneous polynomials of degree m,

L0
n(m, 0)

∼= Symm(Cn),
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and that xm1 is the highest weight vector with respect to the standard
Borel subalgebra of upper triangular matrices in gl(n).

For Statement (1), if j = n, then L0
n(m,n) = L0

n(m,n− 1) by Theo-
rem 4.4 (2) and therefore we can assume 0 6 j 6 n− 1. This case can be
shown similarly to Theorem 5.3 (1).

Theorem 5.5 (Structure of L0
n(−m, j) with negative degree −m).

1) If m > 1 and j = 0, then L0
n(−m, j) = V 0

n (−m,∅) = {0}.
2) If m > 1 and j = 1, then L0

n(−m, j) decomposes into simple sub-
modules

L0
n(−m, 1) =

n
⊕

ℓ=1

V 0
n (−m, {ℓ}).

3) If m > 1 and 2 6 j 6 n, then L0
n(−m, j) is indecomposable.

Proof. Statement (1) is straightforward to check. For Statement (2),
from (3.2) and Theorem 4.5 1b) and 2b), the module L0

n(−m, 1) is the
sum of the cyclic modules V 0

n (−m, {ℓ}) = 〈x−m
ℓ 〉, which are simple by

Proposition 5.2. Also, for ℓ 6= ℓ′, by (3.3),

V 0
n (−m, {ℓ}) ∩ V

0
n (−m, {ℓ

′}) = V 0
n (−m, {ℓ} ∩ {ℓ′})

which is V 0
n (−m,∅) = {0} by Statement (1). Hence we obtain the direct

sum expression.
For Statement (3), we first consider the case 2 6 j 6 n− 1. In order

to derive a contradiction, suppose L0
n(−m, j) = M

⊕

N for some sub-
modules M and N . From (3.2), L0

n(−m, j) is generated by the generators
of V 0

n (−m,J) given in Theorem 4.5. We denote these generators xJ or
xJ,t by gJ . For each of these monomials gJ ∈ L0

n(−m, j), if gJ = h1 + h2
with h1 ∈ M and h2 ∈ N , then gJ appears in h1 or h2. Therefore, by
Lemma 5.1, gJ belongs to 〈h1〉 ⊆M or 〈h2〉 ⊆ N .

If all these gJ are in M (or N), then L0
n(−m, j) =M (or N). If some

of them are in M and some of them are in N , then we claim that there
are J and J ′ such that gJ is an element in M , gJ ′ is an element in N , and
J ∩ J ′ 6= ∅. Suppose there are not such J and J ′. Then we can partition
{1, 2, . . . , n} into two nontrivial parts SM and SN with n1 elements and
n2 elements such that we have the disjoint union

{J ⊂ {1, 2, . . . , n} : |J | = j} = {J ⊂ SM : |J | = j} ∪ {J ⊂ SN : |J | = j}

where J ⊂ SM if and only if gJ belongs to M ; J ⊂ SN if and only
if gJ belongs to N . Note that it contradicts to

(

n
j

)

>
(

n1

j

)

+
(

n2

j

)

for



“adm-n3” — 2021/11/8 — 20:27 — page 28 — #30

28 Laurent polynomials

2 6 j 6 n− 1. Therefore, we conclude that there are J and J ′ such that
J ∩ J ′ 6= ∅. Now from (3.3) we have

V 0
n (−m,J ∩ J ′) ⊂ V 0

n (−m,J) ⊂M

and

V 0
n (−m,J ∩ J ′) ⊂ V 0

n (−m,J
′) ⊂ N.

Therefore, V 0
n (−m,J∩J ′) 6= {0} andM∩N contains a non-trivial element.

Hence, L0
n(−m, j) is indecomposable.

Next, let us consider the case j = n. First, if 1 6 m < n then from
Theorem 4.5 1d) we have L0

n(−m,n) = L0
n(−m,n − 1) and therefore it

goes back to the previous case. Second, if m > n then L0
n(−m,n) =

V 0
n (−m, {1, 2, . . . , n}) by Lemma 3.7 and its generator is x{1,2,...,n} =

x−1
1 · · ·x−1

n−1x
n−1−m
n by Theorem 4.5 2b). If L0

n(−m,n) = M ⊕ N , then
x{1,2,...,n} = h1 + h2 for some h1 ∈ M and h2 ∈ N , and the monomial
x{1,2,...,n} appears in h1 or h2. By Lemma 5.1, 〈x{1,2,...,n}〉 ⊆ 〈h1〉 ⊆ M
or 〈x{1,2,...,n}〉 ⊆ 〈h2〉 ⊆ N . This shows that M or N should be equal to
L0
n(−m,n). Therefore, L0

n(−m, j) is indecomposable.

6. Simple modules Wα
n
(m,J)

In this section, we investigate some submodules of the quotients

Lα
n (m, j)/L

α
n (m, j − 1).

We will assume Lα
n (m, j) = {0} for j 6 −1.

Definition 6.1. For m ∈ Z and a subset J of Iα with cardinality j, we
define the following submodule of the quotient Lα

n (m, j)/L
α
n (m, j − 1)

Wα
n (m,J) = (V α

n (m,J) + Lα
n (m, j − 1)) /Lα

n (m, j − 1).

We note that

Wα
n (m,J) ∼= V α

n (m,J)/ (V α
n (m,J) ∩ Lα

n (m, j − 1))

and

V α
n (m,J) ∩ Lα

n (m, j − 1) =
∑

J ′

V α
n (m,J ′)

where the summation runs over all J ′ ⊂ J with |J ′| = j − 1.
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In § 5, we saw that nontrivial modules

Lα
n (m, 0)/L

α
n (m,−1) ∼= Lα

n (m, 0) = V α
n (m,∅)

are simple, and that for m > 1 the following quotient decomposes into
simple submodules:

L0
n(−m, 1)/L

0
n(−m, 0)

∼=

n
⊕

ℓ=1

V 0
n (−m, {ℓ}).

Let us generalize these observations.

Theorem 6.2. Let m ∈ Z.
1) For J ⊂ Iα, the module Wα

n (m,J) is simple.
2) For 1 6 j 6 |Iα|, the quotient module Lα

n (m, j)/L
α
n (m, j − 1)

decomposes as

Lα
n (m, j)/L

α
n (m, j − 1) =

⊕

J :|J |=j

Wα
n (m,J)

where the direct sum is taken over all subsets J of Iα with cardinal-
ity j.

Proof. For Statement (1), for any nonzero element f̄ ∈ Wα
n (m,J), we

want to show that 〈f̄〉 =Wα
n (m,J). From the definition of Wα

n (m,J), we
can assume that

f̄ = f + Lα
n (m, j − 1)

where f =
∑r

i=1 cix
ki ∈ V α

n (m,J) having distinct monomials xki in
V α
n (m,J) with k

neg
i ∩ Iα = J . From Lemma 5.1, 〈f〉 includes the cyclic

modules 〈xki〉. On the other hand, by Theorem 4.3, Theorem 4.4, Theo-
rem 4.5, and Remark 4.6, each xki generates the module V α

n (m,J). This
shows that 〈f̄〉 =Wα

n (m,J).
For Statement (2), with (3.2) we see that

Lα
n (m, j)/L

α
n (m, j − 1) =

(

∑

J :|J |=j

V α
n (m,J)

)

/Lα
n (m, j − 1)

=

(

∑

J :|J |=j

V α
n (m,J) + Lα

n (m, j − 1)

)

/Lα
n (m, j − 1).

Therefore, we have

Lα
n (m, j)/L

α
n (m, j − 1) =

∑

J :|J |=j

Wα
n (m,J)
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where the summation is over J ⊂ Iα with |J | = j. Now, suppose we have

f̄ ∈Wα
n (m,J1) ∩W

α
n (m,J2)

with distinct subsets J1 and J2 of Iα. Then, we can assume that f̄ =
f +Lα

n (m, j − 1) where f =
∑r

i=1 cix
ki with distinct monomials xki such

that kneg
i ∩ Iα ⊆ J1 ∩ J2 for all i. Since |J1 ∩ J2| < j, this shows that f ∈

Lα
n (m, j−1) and therefore f̄ is zero in the quotient Lα

n (m, j)/L
α
n (m, j−1).

Therefore, we obtain the direct sum expression in the statement.

Next we investigate the cases when Wα
n (m,J) are highest weight

modules.

Theorem 6.3 (Highest weight vector in Wα
n (m,J)).

1) For an integer 1 6 ℓ 6 n, if α ∈ C
n is such that α[ℓ] = c is nonzero

and α[ℓ′] = 0 for all ℓ′ 6= ℓ and J = {1, 2, . . . , ℓ − 1} ⊆ Iα, then
for every m ∈ Z the module Wα

n (m,J) is a highest weight module
having a highest weight vector

(x−1
1 x−1

2 · · ·x−1
ℓ−1x

m+ℓ−1
ℓ ) + Lα

n (m, ℓ− 2)

with highest weight

(−1,−1, . . . ,−1,m+ ℓ− 1 + c, 0, . . . , 0).

2) Let α = 0 and therefore Iα = {1, 2, . . . , n}. For 1 6 ℓ 6 n, if
J = {1, 2, . . . , ℓ − 1} then for m ∈ Z such that m + ℓ − 1 > 0
the module W 0

n (m,J) is a highest weight module having a highest
weight vector

(x−1
1 x−1

2 · · ·x−1
ℓ−1x

m+ℓ−1
ℓ ) + L0

n(m, ℓ− 2)

with highest weight

(−1,−1, . . . ,−1,m+ ℓ− 1, 0, . . . , 0).

In particular, if ℓ = 1 and J = ∅ then for m > 0, the module
W 0

n (m,∅) is a (m + 1)-dimensional module with highest weight
(m, 0, . . . , 0).

3) Let α = 0 and therefore Iα = {1, 2, . . . , n}. For 1 6 ℓ 6 n, if
J = {1, 2, · · · , ℓ} then for m ∈ Z such that m+ℓ−1 < 0 the module
W 0

n (m,J) is a highest weight module having a highest weight vector

(x−1
1 x−1

2 · · ·x−1
ℓ−1x

m+ℓ−1
ℓ ) + L0

n(m, ℓ− 1)
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with highest weight

(−1,−1, . . . ,−1,m+ ℓ− 1, 0, . . . , 0).

In particular, if ℓ = n and J = {1, 2, . . . , n}, then for m 6 −n the
module W 0

n (m, {1, 2, . . . , n}) is a finite dimensional module with
highest weight

(−1,−1, . . . ,−1,m+ n− 1).

Proof. We first notice that the given elements xk +Lα
n (m, j− 1) generate

Wα
n (m,J) where j = |J | (see Theorem 4.3, Theorem 4.4, and Theorem 4.5).

It is straightforward to verify their weights under the action of the Cartan
subalgebra of gl(n) generated by Eaa for 1 6 a 6 n. Therefore, now it is
enough to show that

Eab · (x
k + Lα

n (m, j − 1)) = (k[b] +α[b])(xax
−1
b )xk + Lα

n (m, j − 1)

= Lα
n (m, j − 1) (6.1)

in Wα
n (m,J) for all 1 6 a < b 6 n.

For Statement (1), if a < b and b > ℓ+ 1, then since k[b] = α[b] = 0
we have

Eab · (x
−1
1 · · ·x−1

ℓ−1x
m+ℓ−1
ℓ ) = (0 + 0)(x1ax

−1
b )(x−1

1 · · ·x−1
ℓ−1x

m+ℓ−1
ℓ ) = 0.

If a < b and b 6 ℓ, then a 6 ℓ− 1 and

Eab · (x
−1
1 · · ·x−1

ℓ−1x
m+ℓ−1
ℓ ) = (k[b] +α[b]) (x1ax

−1
b )(x−1

1 · · ·x−1
ℓ−1x

m+ℓ−1
ℓ )

where k[b] = −1 and α[b] = 0 if b 6 ℓ − 1; and k[b] = m + ℓ − 1 and
α[b] = c if b = ℓ. Writing xq for the monomial in the right hand side, we
see that q[a] = 0 because a 6 ℓ− 1 and therefore |qneg ∩ Iα| < ℓ− 1. This
shows that xq ∈ Lα

n (m, ℓ− 2) and therefore (6.1) is true.
For Statement (2), the first part can be shown similarly to the previous

case. The second part with the conditions ℓ = 1 and J = ∅ follows directly
from Definition 6.1 with L0

n(m,−1) = {0} and Theorem 5.4 (2).
For Statement (3), if a < b and b > ℓ+ 1, then since k[b] = α[b] = 0

we have

Eab · (x
−1
1 · · ·x−1

ℓ−1x
m+ℓ−1
ℓ ) = (0+0)(x1ax

−1
b )(x−1

1 · · ·x−1
ℓ−1x

m+ℓ−1
ℓ x−1

b ) = 0.

If a < b and b 6 ℓ, then since α[b] = 0 we have

Eab · (x
−1
1 · · ·x−1

ℓ−1x
m+ℓ−1
ℓ ) = k[b](x1ax

−1
b )(x−1

1 · · ·x−1
ℓ−1x

m+ℓ−1
ℓ )
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where k[b] = −1 if b 6 ℓ − 1 and k[b] = m + ℓ − 1 if b = ℓ. Again,
by denoting the monomial in the right hand side by xq, we see that
q[a] = 0 because a 6 ℓ− 1, and therefore |qneg ∩ Iα| < ℓ. This shows that
xq ∈ Lα

n (m, ℓ− 1) and therefore (6.1) is true.

We note that the highest weights of Wα
n (m,J) given in Theorem 6.3

are integral dominant (see, for example, [5, §3]) only when
i) α = 0, J = ∅, and m > 0;
ii) α = 0, J = {1, 2, . . . , n}, and m 6 −n.

Indeed, one can easily check that these are the only cases when the modules
Wα

n (m,J) are finite dimensional.
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