© Journal "Algebra and Discrete Mathematics"

Generators and ranks in finite partial transformation semigroups

Goje Uba Garba and Abdussamad Tanko Imam

Communicated by V. Mazorchuk

ABSTRACT. We extend the concept of path-cycles, defined in [2], to the semigroup \mathcal{P}_n , of all partial maps on $X_n = \{1, 2, \dots, n\}$, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of \mathcal{P}_n by means of path-cycles. The device is used to obtain information about generating sets for the semigroup $\mathcal{P}_n \setminus \mathcal{S}_n$, of all singular partial maps of X_n . Moreover, by analogy with [3], we give a definition for the (m,r)-rank of $\mathcal{P}_n \setminus \mathcal{S}_n$ and show that it is $\frac{n(n+1)}{2}$.

1. Introduction

Since the work of Howie [7], establishing that every singular map in the full transformation semigroup \mathcal{T}_n on the finite set $X_n = \{1, 2, ..., n\}$ is expressible as a product (that is composition) of idempotent singular maps, there have been many articles concerned with this idea in \mathcal{T}_n (see for example, [1-3,8-10,12,13,15]).

Evseev and Podran [5] established that even in the larger semroup \mathcal{P}_n , consisting of all partial maps on X_n , all elements (other than permutations) are expressible as products of idempotents. Garba [6] extended all the results of [9–11,15] to \mathcal{P}_n using a result of Vagner [16] quoted in [4, p.254].

²⁰¹⁰ MSC: 20M20.

Key words and phrases: path-cycle, (m,r)-path-cycle, m-path, generating set, (m,r)-rank.

In analysing elements of \mathcal{T}_n , there are many variations in notations. Lipscomb [14] developed what might be called a linear notation for elements of \mathcal{P}_n . Recently, Ayik et al. [2] described an alternative approach, to the Lipscomb's linear notation for elements of \mathcal{T}_n , which generalised the concept of cycle notation for permutations in the symmetric group \mathcal{S}_n . In this paper we show that this idea can be further generalise to the larger semigroup \mathcal{P}_n via Vagner's result. The technique is used to obtain information about generators for $\mathcal{P}_n \setminus \mathcal{S}_n$.

It is known (see [6, Theorem 4.1]) that the rank of $\mathcal{P}_n \setminus \mathcal{S}_n$, defined by

$$rank(\mathcal{P}_n \setminus \mathcal{S}_n) = min\{|A| : \langle A \rangle = \mathcal{P}_n \setminus \mathcal{S}_n\},$$

is equal to n(n+1)/2. The idempotent rank of $\mathcal{P}_n \setminus \mathcal{S}_n$ is the cardinality of a smallest generating set for $\mathcal{P}_n \setminus \mathcal{S}_n$ consisting solely of idempotents, and this too equals n(n+1)/2. For any fixed m and r such that $2 \le r \le m \le n$, we give a definition for (m,r)-rank of $\mathcal{P}_n \setminus \mathcal{S}_n$, analogous to the definition given in [3] for $\mathcal{T}_n \setminus \mathcal{S}_n$, and show that it is once again equal to $\frac{n(n+1)}{2}$.

This article is a direct translation of the results in [2,3] for \mathcal{T}_n to similar results concerning \mathcal{P}_n . Thus, many of our proofs are direct modifications of the corresponding proofs in [2,3].

2. Preliminaries

Let $X_n = \{1, \ldots, n\}$ and let \mathcal{P}_n be the partial transformation semi-group on X_n . For a subset $\{x_1, \ldots, x_m\}$ of X_n let $\alpha \in \mathcal{P}_n$ be such that $x_i \alpha = x_{i+1} (1 \leq i \leq m-1)$ and $x \alpha = x \ (x \in X_n \setminus \{x_1, \ldots, x_m\})$. If:

- i) $x_m \alpha = x_r$ for some $1 \le r \le m$, α is called an (m, r)-path-cycle and is denoted by $\alpha = [x_1, \ldots, x_m | x_r]$;
- ii) $x_m \notin \text{dom}(\alpha)$, α is called an (m,0)-path-cycle, or an m-chain and is denoted by $\alpha = [x_1, \ldots, x_m]$.

An element of \mathcal{P}_n is called a path-cycle of size m if it is either an (m,r)-path-cycle or an m-chain. An (m,r)-path-cycle is called: an r-cycle if r=1; a $proper\ path$ -cycle if $r\neq 1$; and an m-path if m=r.

We let $X_n^0 = X_n \cup \{0\}$ and denote the semigroup of all full transformations of X_n^0 by $\mathcal{T}_{X_n^0}$. For each $\alpha \in \mathcal{P}_n$ the map α^* , defined by

$$\alpha^* = \begin{cases} x\alpha & \text{if } x \in \text{dom}(\alpha), \\ 0 & \text{if } x \notin \text{dom}(\alpha), \end{cases}$$

belongs to $\mathcal{T}_{X_n^0}$. Let \mathcal{P}_n^* be the set of all elements in $\mathcal{T}_{X_n^0}$ that fixed 0 and let \mathcal{S}_n^* be the set of all permutations in \mathcal{P}_n^* . It is clear that \mathcal{P}_n^* is a subsemigroup of $\mathcal{T}_{X_n^0}$ and from [6, Lemma 2.4] it is regular.

For convenience we record the following result due to Vagner [16] (also to be found in [4, p.254]).

Theorem 1. For each $\alpha \in \mathcal{P}_n$ and each $\beta \in \mathcal{P}_n^*$, the mappings $\alpha \mapsto \alpha^*$ and $\beta \mapsto \beta|_{X_n}$ (the restriction of β to X_n) are mutually inverse isomorphisms of \mathcal{P}_n onto \mathcal{P}_n^* and vice-verse.

Here we make the following important remark which will be effectively used throughout the next sections.

Remark 1. i) For $1 \le r < m \le n$, an (m,r)-path-cycle $[x_1, \ldots, x_m | x_r]$ in \mathcal{P}_n^* corresponds in these isomorphisms to an (m,r)-path-cycle $[x_1, \ldots, x_m | x_r]$ in \mathcal{P}_n , while an m-path $[x_1, \ldots, x_m | x_m]$ in \mathcal{P}_n^* corresponds either to an m-path $[x_1, \ldots, x_m | x_m]$ in \mathcal{P}_n if $x_m \ne 0$, or to an (m-1)-chain $[x_1, \ldots, x_{m-1}]$ in \mathcal{P}_n if $x_m = 0$.

ii) A set of elements in \mathcal{P}_n generates \mathcal{P}_n if and only if its image under the isomorphisms generates \mathcal{P}_n^* and vice-verse.

3. Generating sets

In this section we identify many generating sets of path-cycles for the semigroup $\mathcal{P}_n \setminus \mathcal{S}_n$. First, we start by generating \mathcal{P}_n using path-cycles.

Theorem 2. Each element of \mathcal{P}_n is expressible as a product of path-cycles in \mathcal{P}_n .

Proof. Let $\alpha \in \mathcal{P}_n$. The associated map $\alpha^* \in \mathcal{P}_n^*$ is expressible as a product $\alpha^* = \alpha_1 \cdots \alpha_P$ of path-cycles in $\mathcal{T}_{X_n^0}$ using the algorithm described in [2]. Since $0\alpha^* = 0$, the algorithm ensures that $0\alpha_i = 0$ for all i. Hence, $\alpha_i = \delta_i^*$ for some path-cycle δ_i in \mathcal{P}_n . Therefore, by the isomorphism $\alpha = \delta_1 \cdots \delta_p$.

As in [2], the integer p is called the path-cycle rank of α and is denoted by $pcr(\alpha)$. By [2, Theorem 2], we have that $pcr(\alpha^*) = def(\alpha^*) + cycl(\alpha^*)$, where $def(\alpha^*) = |X_n^0 \setminus im(\alpha^*)|$, the defect of α^* and $cycl(\alpha^*)$ is the number of cycles in the decomposition. It has also been observed in [6, Lemma 2.2 & 2.3] that $cycl(\alpha^*) = cycl(\alpha)$ and $def(\alpha^*) = def(\alpha)$ for all $\alpha \in \mathcal{P}_n$. Thus, we have the following observation.

Lemma 1. Let $\alpha \in \mathcal{P}_n$. Then $pcr(\alpha) = def(\alpha) + cycl(\alpha)$.

Next, we have

Theorem 3. For each $\alpha \in \mathcal{P}_n \setminus \mathcal{S}_n$, there exists proper path-cycles $\gamma_1, \ldots, \gamma_k$ in $\mathcal{P}_n \setminus \mathcal{S}_n$ such that $\alpha = \gamma_1 \cdots \gamma_k$.

Proof. Let $\alpha \in \mathcal{P}_n \backslash \mathcal{S}_n$. By [2, Theorem 4], the associated map $\alpha^* \in \mathcal{P}_n^* \backslash \mathcal{S}_n^*$ is expressible as a product $\alpha^* = \beta_1 \cdots \beta_k$ of proper path-cycles in $\mathcal{T}_{X_n^0}$ and since $0\alpha^* = 0$, the method of factorisation ensures that each of the proper path-cycles β_i is in $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$. Hence, by the isomorphism, $\alpha = \gamma_1 \cdots \gamma_k$, where for each $i, \gamma_i^* = \beta_i$ and each γ_i is a path-cycle in $\mathcal{P}_n \setminus \mathcal{S}_n$. It is also clear that each γ_i is a proper path-cycle.

Theorem 4. The set of all 2-paths and 1-chains in $\mathcal{P}_n \setminus \mathcal{S}_n$ together generates $\mathcal{P}_n \setminus \mathcal{S}_n$.

Proof. By [2, Theorem 5], each element of $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ is a product of 2-paths in $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$. Thus, the result follows from the Isomorphisms between $\mathcal{P}_n \setminus \mathcal{S}_n$ and $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$, and Remark 1.

Theorem 5. For each $m \in \{2, ..., n\}$, the semigroup $\mathcal{P}_n \setminus \mathcal{S}_n$ can be generated by path-cycles of size m or m-1.

Proof. Since, for each $m \in \{2, \ldots, n\}$, the semigroup $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ is generated by its path-cycles of size m. It remains to show that each path-cycle of size m in $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ corresponds to path-cycles of size m or m-1 under the isomorphism. But this is the content of Remark 1.

Theorem 6. Let $m \in \{2, ..., n\}$. Then the set of all m-paths and all m-chains in $\mathcal{P}_n \setminus \mathcal{S}_n$ generates $\mathcal{P}_n \setminus \mathcal{S}_n$.

Proof. For any $x_1, x_2 \in X_n$, we observe that

$$[x_1, x_2 | x_2] = [x_m, x_{m-1}, \dots, x_3, x_1, x_2 | x_2][x_1, x_3, x_4, \dots, x_m, x_2 | x_2],$$
$$[x_1] = [x_m, x_{m-1}, \dots, x_1][x_1, x_2, \dots, x_m].$$

Thus the result follows from Theorem 4.

Theorem 7. Let $m \in \{2, ..., n\}$ and $r \in \{2, ..., m\}$. Then the set of all (m, r)-path-cycles and all m-chains in $\mathcal{P}_n \setminus \mathcal{S}_n$ generates $\mathcal{P}_n \setminus \mathcal{S}_n$.

Proof. By Theorem 4 it suffices to show that each 2-path [x, y|y] and each 1-chain [x] in $\mathcal{P}_n \setminus \mathcal{S}_n$ can be expressed as a product of (m, r)-path-cycles and m-chains $\mathcal{P}_n \setminus \mathcal{S}_n$ respectively. But, as in [3, Theorem 5], we have

$$[x,y|y] = [x_1, x_2, \dots, x_m|x_r][x_{r-1}, x_{r-2}, \dots, x_1, x_m, x_{m-1}, \dots, x_r|x_m]$$

where $\{x_1, x_2, \dots, x_m\} \subseteq X_n$, $x_{r-1} = x$ and $x_m = y$. Also, as in Theorem 6,

$$[x] = [x_m, x_{m-1}, \dots, x_1][x_1, x_2, \dots, x_m]$$

where $x_1 = x$.

Remark 2. Each 1-chain [x] in $\mathcal{P}_n \setminus \mathcal{S}_n$ can be expressed as a product of 2 k-paths, for each $k \in \{2, \ldots, n\}$, simply by choosing k-1 distinct points $x_2, x_3, \ldots, x_k \in X_n \setminus \{x\}$ and observing that

$$[x] = [x_k, x_{k-1}, \dots, x][x, x_2, \dots, x_k].$$

Thus, for any fixed $k, m \in \{2, ..., n\}$ and $r \in \{2, ..., m\}$, the set of all (m, r)-path-cycles and all k-chains in $\mathcal{P}_n \setminus \mathcal{S}_n$ generates $\mathcal{P}_n \setminus \mathcal{S}_n$.

4. Rank properties

For any fixed m and r such that $2 \leqslant r \leqslant m \leqslant n$, we define the (m,r)-rank of $\mathcal{P}_n \setminus \mathcal{S}_n$, denoted by $\operatorname{rank}_{m,r}(\mathcal{P}_n \setminus \mathcal{S}_n)$, to be the cardinality of a
smallest generating set for $\mathcal{P}_n \setminus \mathcal{S}_n$ consisting solely of (m,r)-path-cycles
and (m-1)-chains. In the light of Remarks 1 and 2, the corresponding (m,r)-rank of $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$, denoted by $\operatorname{rank}_{m,r}(\mathcal{P}_n^* \setminus \mathcal{S}_n^*)$, is define to be the
cardinality of a smallest generating set for $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ consisting solely of (m,r)path-cycles and m-paths. In this section, we show that $\operatorname{rank}_{m,r}(\mathcal{P}_n \setminus \mathcal{S}_n)$ is equal to n(n+1)/2. Since $\operatorname{rank}_{m,r}(\mathcal{P}_n \setminus \mathcal{S}_n)$ is at least as large as $\operatorname{rank}(\mathcal{P}_n \setminus \mathcal{S}_n)$, it is sufficient to prove that $\operatorname{rank}_{m,r}(\mathcal{P}_n \setminus \mathcal{S}_n) \leqslant n(n+1)/2$.

A digraph Γ with n vertices is called *complete* if, for all $i \neq j$ in the set of vertices, either $i \to j$ or $j \to i$ is an edge. It is called *strongly connected* if, for any two vertices i and j, there is a path from i to j. A vertex i in a digraph is called a sink if, for all vertices j, $j \to i$ is an edge and $i \to j$ is not an edge.

In the semigroup \mathcal{P}_n^* , idempotents of defect 1 are 2-paths of type [i,j|j] where $i,j\in X_n^0$ and $0\neq i\neq j$. There are n^2 such 2-paths in \mathcal{P}_n^* . To each set I^* of 2-paths in \mathcal{P}_n^* we associate a digraph $\triangle(I^*)$ with n+1

vertices, in which $i \to j$ is a directed edge if and only if $[i, j|j] \in I^*$. First, we prove the following.

Theorem 8. A set I^* , of 2-paths in $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ $(n \ge 3)$, is a generating set for $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ if and only if 0 is a sink in $\triangle(I^*)$ and the digraph $\triangle(I^*) - 0$ is strongly connected and complete.

Proof. Suppose that I^* is a set of 2-paths in $\mathcal{P}_n^* \backslash \mathcal{S}_n^*$ that generates $\mathcal{P}_n^* \backslash \mathcal{S}_n^*$. First, we observe that, for all $i=1,\ldots,n$, the 2-paths [0,i|i] cannot be in I^* since $[0,i|i] \notin \mathcal{P}_n^* \backslash \mathcal{S}_n^*$. Thus, for all $i=1,\ldots,n,\ 0 \to i$ is not an edge in $\triangle(I^*)$. Therefore, $\deg_{out}(0)=0$. Also, by Remark 1, the image set I of I^* (under the isomorphisms in Theorem 1) is a generating set for $\mathcal{P}_n \backslash \mathcal{S}_n$, consisting of 2-paths and 1-chains. Since each 2-path and each 1-chain is an idempotents of defect 1, by [10, Lemma 1], we must have $[i] \in I$, for all $i=1,\ldots,n$. Thus, again by Remark 1, $[i,0|0] \in I^*$ for all $i=1,\ldots,n$ and so, $i\to 0$ is an edge in $\triangle(I^*)$ for all $i=1,\ldots,n$. Therefore 0 is a sink in $\triangle(I^*)$.

Now, we show that $\triangle(I^*) - 0$ is strongly connected and complete. It is not difficult to observe that the image set $I \setminus \{[i] : i = 1, ..., n\}$ of $I^* \setminus \{[i, 0|0] : i = 1, ..., n\}$ (under the isomorphisms in Theorem 1) is a generating set for the semigroup $\mathcal{T}_n \setminus \mathcal{S}_n$, of all singular full transformations of X_n . Thus, by Howie (1078, Theorem 1), $\triangle(I \setminus \{[i] : i = 1, ..., n\}) = \triangle(I^* \setminus \{[i, 0|0] : i = 1, ..., n\}) = \triangle(I^*) - 0$ must be strongly connected and complete.

Conversely, suppose that 0 is a sink in $\triangle(I^*)$ and that the digraph $\triangle(I^*) - 0$ is strongly connected and complete. Observe that each map $\alpha^* \in \mathcal{P}_n^* \setminus \mathcal{S}_n^*$ can be expressed as

$$\alpha = [i_1, 0|0][i_2, 0|0] \cdots [i_m, 0|0]\alpha_1,$$

where $i_1, i_2, \ldots, i_m \in X_n$ are non-zero pre-images of 0 under α^* , and α_1 is a map in \mathcal{P}_n^* defined by

$$x\alpha_1 = \begin{cases} x & \text{if } x \in \{0, i_1, \dots, i_m\}, \\ x\alpha & \text{if } x \notin \{0, i_1, \dots, i_m\}. \end{cases}$$

Now, since $i\alpha_1 = 0$ if and only if i = 0, it is clear that for any $\beta_1, \beta_2, \ldots, \beta_k \in I^*$,

$$\alpha_1 = \beta_1 \beta_2 \cdots \beta_k$$
 if and only if $\alpha_1 |_{X_n} = \beta_1 |_{X_n} \beta_2 |_{X_n} \cdots \beta_k |_{X_n}$. (1)

But, since $\triangle(I^*) - 0$ is strongly connected and complete, it follows from [8, Lemma 1] that $I \setminus \{[i] : i = 1, 2, ..., n\}$ is a generating set for $\mathcal{T}_n \setminus \mathcal{S}_n$. Thus, by (2) and the isomorphisms, α_1 is a product of element in I^* and so α is generated by I^* .

Next, we make use of the following result from [6, Theorem 4.1].

Theorem 9. For $n \ge 3$, $\operatorname{rank}_{2,2}(\mathcal{P}_n^* \setminus \mathcal{S}_n^*) = n(n+1)/2$.

It follows from Theorems 8 and 9 that a digraph associated with a minimal generating set of 2-paths in $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ is complete and contains n(n+1)/2 edges. Consequently, the underlying (undirected) graph of such a generating set is, upto isomorphism, the complete graph K_n^* with vertices $0, 1, \ldots, n$.

The following definition is from [3].

Definition 1. Let G be a graph with vertex set V(G) and edge set E(G). If |E(G)| is even, let A and B be disjoint subsets of E(G) such that |A| = |B| = |E(G)|/2; the triple (A, B, φ) is called a *pairing* of G if $\varphi: A \to B$ is a bijection such that, for each $e \in A$, e and $\varphi(e)$ have no vertices in common. If |E(G)| is odd, a pairing of G is defined to be a pairing of G - e, for some $e \in E(G)$.

From [3, Lemma 3] we deduce the following.

Lemma 2. For all $n \ge 3$, there exists a pairing of K_n^* .

Proof. For each $n \ge 3$, form a pairing (A, B, φ) of the complete graph K_{n+1} on the vertex set $\{1, 2, \ldots, n+1\}$ using the construction described in [3, Lemma 3]. In each of the disjoint subsets A, B of $E(K_{n+1})$ replace each edge (i, j) by $(i, j)^* = (i - 1, j - 1)$ to obtain subsets A^*, B^* of $E(K_n^*)$. Then (A^*, B^*, φ^*) , where $\varphi^*(i - 1, j - 1) = (\varphi(i, j))^*$, is a pairing of K_n^* .

Before we prove our next theorem stating that $\operatorname{rank}_{m,r}(\mathcal{P}_n^* \setminus \mathcal{S}_n^*) = \frac{n(n+1)}{2}$, it is convenient to deal with two particular cases.

Lemma 3. For each $n \ge 3$ and each $2 \le m \le n$,

$$\operatorname{rank}_{m,2}(\mathcal{P}_n^* \setminus \mathcal{S}_n^*) = \frac{n(n+1)}{2}.$$

Proof. From Theorem 9, we know that the result holds when m=2. Let I^* be a generating set for $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$ consisting of 2-paths with $|I^*| = n(n+1)/2$. Them, from Theorem 8, $[i,0|0] \in I^*$, for all $i=1,2,\ldots,n$. If n is even, then we form n/2 distinct pairs of $\{[i,0|0]: i=1,2,\ldots,n\}$ and corresponding to each pair $[i,0|0] \leftrightarrow [j,0|0]$ (with $i\neq j$) define m-paths

$$\alpha = [j, x_2, x_3, \dots, x_{m-2}, i, 0|0], \qquad (2)$$

$$\beta = [i, x_{m-2}, x_{m-3}, \dots, x_2, j, 0|0], \qquad (3)$$

where the m-3 elements $x_2, x_3, \ldots, x_{m-2}$ are distinct elements in $X_n \setminus \{i, j\}$. Then $\alpha\beta = [i, 0|0]$ and $\beta\alpha = [j, 0|0]$. For each $[i, j|j] \in I^* \setminus \{[i, 0|0] : i = 1, 2, \ldots, n\}$ we associate an (m, 2)-path-cycle

$$\alpha_{ij} = [i, x_2, x_3, \dots, x_{m-1}, j | x_2].$$
 (4)

Then $\alpha_{ij}^{m-1} = [i,j|j]$. Thus, in equalities (2), (3) and (4), we have found n(n+1)/2 (m,2)-path-cycles and m-paths that generate elements in I^* . Now, if n is odd, then we form (n-1)/2 distinct pairs of $\{[i,0|0]:i=1,2,\ldots,n-1\}$ and corresponding to each pair define m-paths α and β as in equalities (2) and (3) respectively. For the 2-path [n,0|0], we choose a 2-path $[k,l|l] \in I^* \setminus \{[i,0|0]:i=1,2,\ldots,n\}$ and define m-paths

$$\gamma = [k, x_2, x_3, \dots, x_{m-2}, n, 0|0], \qquad (5)$$

$$\delta = [n, x_{m-2}, x_{m-3}, \dots, x_2, k, l|l].$$
(6)

Then, $\gamma \delta = [n, 0|0]$ and $\delta \gamma = [k, l|l]$. Lastly, for each $[i, j|j] \in I^* \setminus \{[k, l|l], [i, 0|0] : i = 1, 2, ..., n\}$ we associate an (m, 2)-path-cycle α_{ij} given in equality (4). Thus, again, in equalities (2-6), we found n(n+1)/2 (m, 2)-path-cycles and m-paths that generate elements in I^* .

Lemma 4. rank_{3,3} $(\mathcal{P}_3^* \setminus \mathcal{S}_3^*) = 6$.

Proof. From Theorems 8 and 9, we know that

$$I^* = \{[1,0|0], [2,0|0], [3,0|0], [1,3|3], [2,1|1], [3,2|2]\}$$

is a minimal generating set for $\mathcal{P}_{3}^{*} \setminus \mathcal{S}_{3}^{*}$. Define (3, 3)-path-cycles as $\alpha_{1} = [2, 1, 0|0], \alpha_{2} = [3, 2, 0|0], \alpha_{3} = [1, 3, 0|0], \beta_{1} = [1, 2, 3|3], \beta_{2} = [2, 3, 1|1]$ and $\beta_{3} = [3, 1, 2|2]$. Then the set $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}\}$ is a minimal generating set for $\mathcal{P}_{3}^{*} \setminus \mathcal{S}_{3}^{*}$, since $\alpha_{1}\beta_{1} = [1, 0|0], \alpha_{2}\beta_{2} = [2, 0|0], \alpha_{3}\beta_{3} = [3, 0|0], \beta_{2}\beta_{3}\beta_{1} = [1, 3|3], \beta_{3}\beta_{1}\beta_{2} = [2, 1|1]$ and $\beta_{1}\beta_{2}\beta_{3} = [3, 2|2]$.

Theorem 10. For each $n \ge 3$ and each $2 \le r \le m \le n$,

$$\operatorname{rank}_{m,r}(\mathcal{P}_n^* \setminus \mathcal{S}_n^*) = \frac{n(n+1)}{2}.$$

Proof. By virtue of Lemmas 3 and 4, we only need to consider the case when $n \ge 4$ and $r \ge 3$. Thus, suppose that $n \ge 4$ and $3 \le r \le m \le n$. Let

$$P\{[1, n|n], [1, n-1|n-1], [m-r+2, n|n]\}$$

and

$$Q = \{ [n, 1|1], [n-1, 1|1], [n, m-r+2|m-r+2] \}.$$

Then define

$$I^* = \{ [i, 0|0] : 1 \leqslant i \leqslant n \} \cup (\{ [i, j|j] : 1 \leqslant i < j \leqslant n \} \setminus P) \cup Q.$$

Since |P| = |Q| = 3, it is clear that

$$|I^*| = n + |\{[i, j|j] : 1 \leqslant i < j \leqslant n\}| = n + \binom{n}{2} = \frac{n(n+1)}{2},$$

and that 0 is a sink in the associated digraph $\triangle(I^*)$. Also, observe that, when $m-r+2\neq n-1$, the digraph $\triangle(I^*)-0$ has a Hamiltonian cycle

$$1 \rightarrow 2 \rightarrow \cdots \rightarrow n-1 \rightarrow n \rightarrow 1$$

and, when m-r+2=n-1, the digraph $\triangle(I^*)-0$ has a Hamiltonian cycle

$$n \to n-1 \to 1 \to 2 \to \cdots \to n-3 \to n-2 \to n$$
.

Thus in both cases the digraph $\triangle(I^*) - 0$ is strongly connected. It is easy to see that the digraph is complete, and so, by Theorem 8, $\triangle(I^*)$ is a generating set for $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$.

Suppose that $|I^*|$ is even. By Lemma 2, we can pair elements of I^* in such a way that

$$[i,j|j] \leftrightarrow [k,l|l] \implies \{i,j\} \cap \{k,l\} = \varnothing.$$
 (7)

There are two cases: (i) r = m; (ii) $3 \le r \le m - 1$. In case (i), for each pair of type (7), let

$$\alpha = [i, x_2, x_3, \dots, x_{m-2}, k, l|l]$$
(8)

and

$$\beta = [k, x_{m-2}, x_{m-3}, \dots, x_2, i, j|j], \qquad (9)$$

where the m-3 elements $x_2, x_3, \ldots, x_{m-2}$ are fixed distinct elements of $\in X_n \setminus \{i, j, k, l\}$. Then

$$\alpha\beta = [k, l|l]$$
 and $\beta\alpha = [i, j|j]$,

and so, in equalities (8) and (9), we have found $\frac{n(n+1)}{2}$ m-paths that generate $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$.

In case (ii), where $3 \le r \le m-1$, if both $j \ne 0$ and $l \ne 0$ hold, we define, for each pair of type (7),

$$\gamma = \begin{cases}
[i, k, j, x_4, \dots, x_{m-1}, l|j] & \text{if } r = 3 \\
[i, x_2, \dots, x_{m-3}, k, j, l|j] & \text{if } r = m - 1 \\
[i, x_2, \dots, x_{r-2}, k, j, x_{r+1}, \dots, x_{m-1}, l|j] & \text{if } 3 < r < m - 1
\end{cases}$$
(10)

and

$$\delta = \begin{cases} [k, i, l, x_{m-1}, \dots, x_4, j | l] & \text{if } r = 3\\ [k, x_{m-3}, \dots, x_2, i, l, j | l] & \text{if } r = m - 1\\ [k, x_{r-2}, \dots, x_2, i, l, x_{m-1}, \dots, x_{r+1}, j | l] & \text{if } 3 < r < m - 1, \end{cases}$$

$$(11)$$

where the m-4 elements $x_2, \ldots, x_{r-2}, x_{r+1}, \ldots, x_{m-1}$ are fixed distinct elements of $X_n \setminus \{i, j, k, l\}$. Then, in all the situations,

$$\gamma \delta = [k, l|l]$$
 and $\delta \gamma = [i, j|j]$.

And so, we have found $\frac{n(n+1)}{2}$ (m,r)-path-cycles and/or m-paths that generate $\mathcal{P}_n^* \setminus \mathcal{S}_n^*$.

So far we have dealt with the case where $|I^*|$ is even. Suppose now that $|I^*|$ is odd. By Lemma 2, we have a pairing of the elements of $J = I^* \setminus \{[n, 1|1]\}$. By the above argument we can ensure that, for all $3 \leq r \leq m$, all elements of J are products of (m, r)-path-cycles and m-paths of the forms (8) and (9), or (10) and (11). In particular with those generators, we obtain $\xi = [n, m - r + 2|m - r + 2]$. We now define

$$\eta = \begin{cases} [2, 3, \dots, m-1, 1, n | n] & \text{if } r = m \\ [m-r+2, m-r+3, \dots, m-1, 1, 2, \dots, m-r+1, n | 2] & \text{if } r < m. \end{cases}$$

Then

$$(\eta \xi)^{m-1} = [n, 2, 3, \dots, m-1, 1|2]^{m-1} = [n, 1|1].$$

The (m, r)-path-cycle η (if r < m) or m-path η (if r = m) does not appear in the list of elements (8), (9), (10) and (11); for otherwise we would have found a generating set with fewer than $\frac{n(n+1)}{2}$ elements. Hence, adding η to the generating elements already described gives a generating set consisting of $\frac{n(n+1)}{2}$ (m, r)-path-cycles and m-paths.

Now, using Theorem 10 and Remark 1, we have proved the next theorem.

Theorem 11. For each $n \ge 3$ and each $2 \le r \le m \le n$,

$$\operatorname{rank}_{m,r}(\mathcal{P}_n \setminus \mathcal{S}_n) = \frac{n(n+1)}{2}.$$

References

- Andre, J. M. (2004). Semigroups that contain all singular transformations. Semigroup Forum 68:304-307.
- [2] Ayik, G., Ayik, H., Howie, H. M. (2005). On factorisations and generators in transformations semigroups. *Semigroup Forum* 70(2):225-237.
- [3] Ayik, G., Ayik, H., Ünlü, Y., Howie, H. M. (2008). Rank properties of the semigroup of singular transformations on a finite set. *Communications in Algebra* 36:2581-2587.
- [4] Clifford, A. H., Preston, G. B. (1967). The Algebraic Theory of Semigroups, Mathematical Surveys of the American Mathematical Society, Vol. 2, Providence, R. L.
- [5] Evseev, A. E., Podran, N. E. (1970). Semigroup of transformations of a finite set generated by idempotents with given projection characteristics. *Izv. Vyssh. Zaved Mat.* 12(103):30-36; translated in *Amer. Math. Soc. Transl.* (1988) 139(2):67-76.
- [6] Garba, G. U. (1990). Idempotents in partial transformation semigroup. Proc. Roy. Soc. Edinburgh 116A:359-366.
- [7] Howie, J. M. (1966). The subsemigroup generated by the idempotents of a full transformation semigroup. J. London Math. Soc. 41:707-716.
- [8] Howie, J. M. (1978). Idempotent generators in finite full transformation semigroups. Proc. Roy. Soc. Edinburgh 81A:317-323.
- [9] Howie, J. M. (1980). Products of idempotents in a finite full transformation semigroup. *Proc. Roy. Soc. Edinburgh* 86A:243-254.
- [10] Howie, J. M., McFadden, R. B. (1990). Idempotent rank in finite full transformation semigroups. *Proc. Roy. Soc. Edinburgh* 116A:161-167.
- [11] Howie, J. M., Lusk, E. L., McFadden, R. B. (1990). Combinatorial results relating to products of idempotents in finite full transformation semigroups. *Proc. Roy.* Soc. Edinburgh 115A:289-299.

- [12] Howie, J. M., Robertson, R. B., Schein, B. M. (1988). A combinatorial property of finite full transformation semigroups. Proc. Roy. Soc. Edinburgh 109A:319-328.
- [13] Kearnes, K. A., Szendrei, A., Wood, J. (2001). Generating singular transformations. Semigroup Forum 63:441-448.
- [14] Lipscomb, S. (1996). Symmetric Inverse Semigroups, Mathematical Surveys of the American Mathematical Society, Vol. 46, Providence, R. L.
- [15] Saito, T. (1989). Products of idempotents in finite full transformation semigroups. Semigroup forum 39:295-309.
- [16] Vagner, V. V. (1956). Representations of ordered semigroups. *Mat. Sb. (N.S.)* 38:203-240; translated in *Amer. Math. Soc. Transl.* (1964) 36(2):295-336.

CONTACT INFORMATION

G. U. Garba, A. T. Imam Department of Mathematics,
Ahmadu Bello University, Zaria-Nigeria
E-Mail(s): gugarba@yahoo.com,
atimam@abu.edu.ng

Received by the editors: 20.12.2015 and in final form 03.04.2016.