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Abstract. We extend the concept of path-cycles, defined
in [2], to the semigroup Pn, of all partial maps on Xn = {1, 2, . . . , n},
and show that the classical decomposition of permutations into
disjoint cycles can be extended to elements of Pn by means of path-
cycles. The device is used to obtain information about generating
sets for the semigroup Pn \ Sn, of all singular partial maps of Xn.
Moreover, by analogy with [3], we give a definition for the (m, r)-rank

of Pn \ Sn and show that it is n(n+1)
2 .

1. Introduction

Since the work of Howie [7], establishing that every singular map in

the full transformation semigroup Tn on the finite set Xn = {1, 2, . . . , n}

is expressible as a product (that is composition) of idempotent singular

maps, there have been many articles concerned with this idea in Tn (see

for example, [1–3,8–10,12,13,15]).

Evseev and Podran [5] established that even in the larger semroup Pn,

consisting of all partial maps on Xn, all elements (other than permutations)

are expressible as products of idempotents. Garba [6] extended all the

results of [9–11,15] to Pn using a result of Vagner [16] quoted in [4, p.254].
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In analysing elements of Tn, there are many variations in notations.

Lipscomb [14] developed what might be called a linear notation for ele-

ments of Pn. Recently, Ayik et al. [2] described an alternative approach,

to the Lipscomb’s linear notation for elements of Tn, which generalised

the concept of cycle notation for permutations in the symmetric group Sn.

In this paper we show that this idea can be further generalise to the

larger semigroup Pn via Vagner’s result. The technique is used to obtain

information about generators for Pn \ Sn.

It is known (see [6, Theorem 4.1]) that the rank of Pn \ Sn, defined by

rank(Pn \ Sn) = min{|A| : 〈A〉 = Pn \ Sn},

is equal to n(n+1)/2. The idempotent rank of Pn \Sn is the cardinality of

a smallest generating set for Pn \ Sn consisting solely of idempotents, and

this too equals n(n+1)/2. For any fixed m and r such that 2 6 r 6 m 6 n,

we give a definition for (m, r)-rank of Pn \ Sn, analogous to the definition

given in [3] for Tn \ Sn, and show that it is once again equal to n(n+1)
2 .

This article is a direct translation of the results in [2,3] for Tn to similar

results concerning Pn. Thus, many of our proofs are direct modifications

of the corresponding proofs in [2, 3].

2. Preliminaries

Let Xn = {1, . . . , n} and let Pn be the partial transformation semi-

group on Xn. For a subset {x1, . . . , xm} of Xn let α ∈ Pn be such that

xiα = xi+1(1 6 i 6 m − 1) and xα = x (x ∈ Xn \ {x1, . . . , xm}). If:

i) xmα = xr for some 1 6 r 6 m, α is called an (m, r)-path-cycle and

is denoted by α = [x1, . . . , xm|xr];

ii) xm /∈ dom(α), α is called an (m, 0)-path-cycle, or an m-chain and

is denoted by α = [x1, . . . , xm].

An element of Pn is called a path-cycle of size m if it is either an

(m, r)-path-cycle or an m-chain. An (m, r)-path-cycle is called: an r-cycle

if r = 1; a proper path-cycle if r 6= 1; and an m-path if m = r.

We let X0
n = Xn ∪ {0} and denote the semigroup of all full transfor-

mations of X0
n by TX0

n

. For each α ∈ Pn the map α∗, defined by

α∗ =

{

xα if x ∈ dom(α),

0 if x /∈ dom(α),
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belongs to TX0
n

. Let P∗

n be the set of all elements in TX0
n

that fixed 0

and let S∗

n be the set of all permutations in P∗

n. It is clear that P∗

n is a

subsemigroup of TX0
n

and from [6, Lemma 2.4] it is regular.

For convenience we record the following result due to Vagner [16] (also

to be found in [4, p.254]).

Theorem 1. For each α ∈ Pn and each β ∈ P∗

n, the mappings α 7→ α∗

and β 7→ β|Xn
(the restriction of β to Xn) are mutually inverse isomor-

phisms of Pn onto P∗

n and vice-verse.

Here we make the following important remark which will be effectively

used throughout the next sections.

Remark 1. i) For 1 6 r < m 6 n, an (m, r)-path-cycle [x1, . . . , xm|xr]

in P∗

n corresponds in these isomorphisms to an (m, r)-path-cycle

[x1, . . . , xm|xr] in Pn, while an m-path [x1, . . . , xm|xm] in P∗

n corresponds

either to an m-path [x1, . . . , xm|xm] in Pn if xm 6= 0, or to an (m−1)-chain

[x1, . . . , xm−1] in Pn if xm = 0.

ii) A set of elements in Pn generates Pn if and only if its image under

the isomorphisms generates P∗

n and vice-verse.

3. Generating sets

In this section we identify many generating sets of path-cycles for the

semigroup Pn \ Sn. First, we start by generating Pn using path-cycles.

Theorem 2. Each element of Pn is expressible as a product of path-cycles

in Pn.

Proof. Let α ∈ Pn. The associated map α∗ ∈ P∗

n is expressible as a

product α∗ = α1 · · · αP of path-cycles in TX0
n

using the algorithm described

in [2]. Since 0α∗ = 0, the algorithm ensures that 0αi = 0 for all i. Hence,

αi = δ∗

i for some path-cycle δi in Pn. Therefore, by the isomorphism

α = δ1 · · · δp.

As in [2], the integer p is called the path-cycle rank of α and is denoted

by pcr(α). By [2, Theorem 2], we have that pcr(α∗) = def(α∗) + cycl(α∗),

where def(α∗) = |X0
n\im(α∗)|, the defect of α∗ and cycl(α∗) is the number

of cycles in the decomposition. It has also been observed in [6, Lemma

2.2 & 2.3] that cycl(α∗) = cycl(α) and def(α∗) = def(α) for all α ∈ Pn.

Thus, we have the following observation.
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Lemma 1. Let α ∈ Pn. Then pcr(α) = def(α) + cycl(α).

Next, we have

Theorem 3. For each α ∈ Pn \ Sn, there exists proper path-cycles

γ1, . . . , γk in Pn \ Sn such that α = γ1 · · · γk.

Proof. Let α ∈ Pn\Sn. By [2, Theorem 4], the associated map α∗ ∈ P∗

n\S∗

n

is expressible as a product α∗ = β1 · · · βk of proper path-cycles in TX0
n

and

since 0α∗ = 0, the method of factorisation ensures that each of the proper

path-cycles βi is in P∗

n \ S∗

n. Hence, by the isomorphism, α = γ1 · · · γk,

where for each i, γ∗

i = βi and each γi is a path-cycle in Pn \ Sn. It is also

clear that each γi is a proper path-cycle.

Theorem 4. The set of all 2-paths and 1-chains in Pn \ Sn together

generates Pn \ Sn.

Proof. By [2, Theorem 5], each element of P∗

n \ S∗

n is a product of 2-paths

in P∗

n \S∗

n. Thus, the result follows from the Isomorphisms between Pn \Sn

and P∗

n \ S∗

n, and Remark 1.

Theorem 5. For each m ∈ {2, . . . , n}, the semigroup Pn \ Sn can be

generated by path-cycles of size m or m − 1.

Proof. Since, for each m ∈ {2, . . . , n}, the semigroup P∗

n \ S∗

n is generated

by its path-cycles of size m. It remains to show that each path-cycle of

size m in P∗

n \ S∗

n corresponds to path-cycles of size m or m − 1 under

the isomorphism. But this is the content of Remark 1.

Theorem 6. Let m ∈ {2, . . . , n}. Then the set of all m-paths and all

m-chains in Pn \ Sn generates Pn \ Sn.

Proof. For any x1, x2 ∈ Xn, we observe that

[x1, x2|x2] = [xm, xm−1, . . . , x3, x1, x2|x2][x1, x3, x4, . . . , xm, x2|x2],

[x1] = [xm, xm−1, . . . , x1][x1, x2, . . . , xm].

Thus the result follows from Theorem 4.

Theorem 7. Let m ∈ {2, . . . , n} and r ∈ {2, . . . , m}. Then the set of all

(m, r)-path-cycles and all m-chains in Pn \ Sn generates Pn \ Sn.
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Proof. By Theorem 4 it suffices to show that each 2-path [x, y|y] and each

1-chain [x] in Pn \ Sn can be expressed as a product of (m, r)-path-cycles

and m-chains Pn \ Sn respectively. But, as in [3, Theorem 5], we have

[x, y|y] = [x1, x2, . . . , xm|xr][xr−1, xr−2, . . . , x1, xm, xm−1, . . . , xr|xm]

where {x1, x2, . . . , xm} ⊆ Xn, xr−1 = x and xm = y. Also, as in Theo-

rem 6,

[x] = [xm, xm−1, . . . , x1][x1, x2, . . . , xm]

where x1 = x.

Remark 2. Each 1-chain [x] in Pn \ Sn can be expressed as a product

of 2 k-paths, for each k ∈ {2, . . . , n}, simply by choosing k − 1 distinct

points x2, x3, . . . , xk ∈ Xn \ {x} and observing that

[x] = [xk, xk−1, . . . , x][x, x2, . . . , xk].

Thus, for any fixed k, m ∈ {2, . . . , n} and r ∈ {2, . . . , m}, the set of all

(m, r)-path-cycles and all k-chains in Pn \ Sn generates Pn \ Sn.

4. Rank properties

For any fixed m and r such that 2 6 r 6 m 6 n, we define the (m, r)-

rank of Pn \ Sn, denoted by rankm,r(Pn \ Sn), to be the cardinality of a

smallest generating set for Pn \ Sn consisting solely of (m, r)-path-cycles

and (m − 1)-chains. In the light of Remarks 1 and 2, the corresponding

(m, r)-rank of P∗

n \ S∗

n, denoted by rankm,r(P∗

n \ S∗

n), is define to be the

cardinality of a smallest generating set for P∗

n\S∗

n consisting solely of (m, r)-

path-cycles and m-paths. In this section, we show that rankm,r(Pn \ Sn)

is equal to n(n + 1)/2. Since rankm,r(Pn \ Sn) is at least as large as

rank(Pn \ Sn), it is sufficient to prove that rankm,r(Pn \ Sn) 6 n(n + 1)/2.

A digraph Γ with n vertices is called complete if, for all i 6= j in the set

of vertices, either i → j or j → i is an edge. It is called strongly connected

if, for any two vertices i and j, there is a path from i to j. A vertex i in

a digraph is called a sink if, for all vertices j, j → i is an edge and i → j

is not an edge.

In the semigroup P∗

n, idempotents of defect 1 are 2-paths of type

[i, j|j] where i, j ∈ X0
n and 0 6= i 6= j. There are n2 such 2-paths in P∗

n.

To each set I∗ of 2-paths in P∗

n we associate a digraph △(I∗) with n + 1
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vertices, in which i → j is a directed edge if and only if [i, j|j] ∈ I∗. First,

we prove the following.

Theorem 8. A set I∗, of 2-paths in P∗

n \ S∗

n (n > 3), is a generating set

for P∗

n \ S∗

n if and only if 0 is a sink in △(I∗) and the digraph △(I∗) − 0

is strongly connected and complete.

Proof. Suppose that I∗ is a set of 2-paths in P∗

n \S∗

n that generates P∗

n \S∗

n.

First, we observe that, for all i = 1, . . . , n, the 2-paths [0, i|i] cannot be in

I∗ since [0, i|i] /∈ P∗

n \ S∗

n. Thus, for all i = 1, . . . , n, 0 → i is not an edge

in △(I∗). Therefore, degout(0) = 0. Also, by Remark 1, the image set I of

I∗ (under the isomorphisms in Theorem 1) is a generating set for Pn \ Sn,

consisting of 2-paths and 1-chains. Since each 2-path and each 1-chain is

an idempotents of defect 1, by [10, Lemma 1], we must have [i] ∈ I, for

all i = 1, . . . , n. Thus, again by Remark 1, [i, 0|0] ∈ I∗ for all i = 1, . . . , n

and so, i → 0 is an edge in △(I∗) for all i = 1, . . . , n. Therefore 0 is a

sink in △(I∗).

Now, we show that △(I∗) − 0 is strongly connected and complete. It

is not difficult to observe that the image set I \ {[i] : i = 1, . . . , n} of

I∗ \ {[i, 0|0] : i = 1, . . . , n} (under the isomorphisms in Theorem 1) is a

generating set for the semigroup Tn\Sn, of all singular full transformations

of Xn. Thus, by Howie (1078, Theorem 1), △(I \ {[i] : i = 1, . . . , n}) =

△(I∗ \ {[i, 0|0] : i = 1, . . . , n}) = △(I∗) − 0 must be strongly connected

and complete.

Conversely, suppose that 0 is a sink in △(I∗) and that the digraph

△(I∗) − 0 is strongly connected and complete. Observe that each map

α∗ ∈ P∗

n \ S∗

n can be expressed as

α = [i1, 0|0][i2, 0|0] · · · [im, 0|0]α1,

where i1, i2, . . . , im ∈ Xn are non-zero pre-images of 0 under α∗, and α1

is a map in P∗

n defined by

xα1 =

{

x if x ∈ {0, i1, . . . , im},

xα if x /∈ {0, i1, . . . , im}.

Now, since iα1 = 0 if and only if i = 0, it is clear that for any

β1, β2, . . . , βk ∈ I∗,

α1 = β1β2 · · · βk if and only if α1|Xn
= β1|Xn

β2|Xn
· · · βk|Xn

. (1)
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But, since △(I∗) − 0 is strongly connected and complete, it follows from

[8, Lemma 1] that I \ {[i] : i = 1, 2, . . . , n} is a generating set for Tn \ Sn.

Thus, by (2) and the isomorphisms, α1 is a product of element in I∗ and

so α is generated by I∗.

Next, we make use of the following result from [6, Theorem 4.1].

Theorem 9. For n > 3, rank2,2(P∗

n \ S∗

n) = n(n + 1)/2.

It follows from Theorems 8 and 9 that a digraph associated with a

minimal generating set of 2-paths in P∗

n \ S∗

n is complete and contains

n(n + 1)/2 edges. Consequently, the underlying (undirected) graph of

such a generating set is, upto isomorphism, the complete graph K∗

n with

vertices 0, 1, . . . , n.

The following definition is from [3].

Definition 1. Let G be a graph with vertex set V (G) and edge set

E(G). If |E(G)| is even, let A and B be disjoint subsets of E(G) such

that |A| = |B| = |E(G)|/2; the triple (A, B, ϕ) is called a pairing of G if

ϕ : A → B is a bijection such that, for each e ∈ A, e and ϕ(e) have no

vertices in common. If |E(G)| is odd, a pairing of G is defined to be a

pairing of G − e, for some e ∈ E(G).

From [3, Lemma 3] we deduce the following.

Lemma 2. For all n > 3, there exists a pairing of K∗

n.

Proof. For each n > 3, form a pairing (A, B, ϕ) of the complete graph

Kn+1 on the vertex set {1, 2, . . . , n + 1} using the construction described

in [3, Lemma 3]. In each of the disjoint subsets A, B of E(Kn+1) replace

each edge (i, j) by (i, j)∗ = (i − 1, j − 1) to obtain subsets A∗, B∗ of

E(K∗

n). Then (A∗, B∗, ϕ∗), where ϕ∗(i − 1, j − 1) = (ϕ(i, j))∗, is a pairing

of K∗

n.

Before we prove our next theorem stating that rankm,r(P∗

n \ S∗

n) =
n(n+1)

2 , it is convenient to deal with two particular cases.

Lemma 3. For each n > 3 and each 2 6 m 6 n,

rankm,2(P∗

n \ S∗

n) =
n(n + 1)

2
.
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Proof. From Theorem 9, we know that the result holds when m = 2. Let I∗

be a generating set for P∗

n \S∗

n consisting of 2-paths with |I∗| = n(n+1)/2.

Them, from Theorem 8, [i, 0|0] ∈ I∗, for all i = 1, 2, . . . , n. If n is even, then

we form n/2 distinct pairs of {[i, 0|0] : i = 1, 2, . . . , n} and corresponding

to each pair [i, 0|0] ↔ [j, 0|0] (with i 6= j) define m-paths

α = [j, x2, x3, . . . , xm−2, i, 0|0] , (2)

β = [i, xm−2, xm−3, . . . , x2, j, 0|0] , (3)

where the m − 3 elements x2, x3, . . . , xm−2 are distinct elements in Xn \

{i, j}. Then αβ = [i, 0|0] and βα = [j, 0|0]. For each [i, j|j] ∈ I∗ \ {[i, 0|0] :

i = 1, 2, . . . , n} we associate an (m, 2)-path-cycle

αij = [i, x2, x3, . . . , xm−1, j|x2] . (4)

Then αm−1
ij = [i, j|j]. Thus, in equalities (2), (3) and (4), we have found

n(n + 1)/2 (m, 2)-path-cycles and m-paths that generate elements in I∗.

Now, if n is odd, then we form (n − 1)/2 distinct pairs of {[i, 0|0] : i =

1, 2, . . . , n − 1} and corresponding to each pair define m-paths α and β

as in equalities (2) and (3) respectively. For the 2-path [n, 0|0], we choose

a 2-path [k, l|l] ∈ I∗ \ {[i, 0|0] : i = 1, 2, . . . , n} and define m-paths

γ = [k, x2, x3, . . . , xm−2, n, 0|0] , (5)

δ = [n, xm−2, xm−3, . . . , x2, k, l|l] . (6)

Then, γδ = [n, 0|0] and δγ = [k, l|l]. Lastly, for each [i, j|j] ∈ I∗ \

{[k, l|l], [i, 0|0] : i = 1, 2, . . . , n} we associate an (m, 2)-path-cycle αij

given in equality (4). Thus, again, in equalities (2-6), we found n(n + 1)/2

(m, 2)-path-cycles and m-paths that generate elements in I∗.

Lemma 4. rank3,3(P∗

3 \ S∗

3 ) = 6.

Proof. From Theorems 8 and 9, we know that

I∗ = {[1, 0|0], [2, 0|0], [3, 0|0], [1, 3|3], [2, 1|1], [3, 2|2]}

is a minimal generating set for P∗

3 \ S∗

3 . Define (3, 3)-path-cycles as α1 =

[2, 1, 0|0], α2 = [3, 2, 0|0], α3 = [1, 3, 0|0], β1 = [1, 2, 3|3], β2 = [2, 3, 1|1] and

β3 = [3, 1, 2|2]. Then the set {α1, α2, α3, β1, β2, β3} is a minimal generating

set for P∗

3 \ S∗

3 , since α1β1 = [1, 0|0], α2β2 = [2, 0|0], α3β3 = [3, 0|0],

β2β3β1 = [1, 3|3], β3β1β2 = [2, 1|1] and β1β2β3 = [3, 2|2].
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Theorem 10. For each n > 3 and each 2 6 r 6 m 6 n,

rankm,r(P∗

n \ S∗

n) =
n(n + 1)

2
.

Proof. By virtue of Lemmas 3 and 4, we only need to consider the case

when n > 4 and r > 3. Thus, suppose that n > 4 and 3 6 r 6 m 6 n. Let

P{[1, n|n], [1, n − 1|n − 1], [m − r + 2, n|n]}

and

Q = {[n, 1|1], [n − 1, 1|1], [n, m − r + 2|m − r + 2]}.

Then define

I∗ = {[i, 0|0] : 1 6 i 6 n} ∪ ({[i, j|j] : 1 6 i < j 6 n} \ P ) ∪ Q.

Since |P | = |Q| = 3, it is clear that

|I∗| = n + |{[i, j|j] : 1 6 i < j 6 n}| = n +

(

n

2

)

=
n(n + 1)

2
,

and that 0 is a sink in the associated digraph △(I∗). Also, observe that,

when m − r + 2 6= n − 1, the digraph △(I∗) − 0 has a Hamiltonian cycle

1 → 2 → · · · → n − 1 → n → 1

and, when m − r + 2 = n − 1, the digraph △(I∗) − 0 has a Hamiltonian

cycle

n → n − 1 → 1 → 2 → · · · → n − 3 → n − 2 → n.

Thus in both cases the digraph △(I∗) − 0 is strongly connected. It is easy

to see that the digraph is complete, and so, by Theorem 8, △(I∗) is a

generating set for P∗

n \ S∗

n.

Suppose that |I∗| is even. By Lemma 2, we can pair elements of I∗ in

such a way that

[i, j|j] ↔ [k, l|l] =⇒ {i, j} ∩ {k, l} = ∅. (7)

There are two cases: (i) r = m; (ii) 3 6 r 6 m − 1. In case (i), for each

pair of type (7), let

α = [i, x2, x3, . . . , xm−2, k, l|l] (8)
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and

β = [k, xm−2, xm−3, . . . , x2, i, j|j] , (9)

where the m − 3 elements x2, x3, . . . , xm−2 are fixed distinct elements of

∈ Xn \ {i, j, k, l}. Then

αβ = [k, l|l] and βα = [i, j|j],

and so, in equalities (8) and (9), we have found n(n+1)
2 m-paths that

generate P∗

n \ S∗

n.

In case (ii), where 3 6 r 6 m − 1, if both j 6= 0 and l 6= 0 hold, we

define, for each pair of type (7),

γ =











[i, k, j, x4, . . . , xm−1, l|j] if r = 3

[i, x2, . . . , xm−3, k, j, l|j] if r = m − 1

[i, x2, . . . , xr−2, k, j, xr+1, . . . , xm−1, l|j] if 3 < r < m − 1

(10)

and

δ =











[k, i, l, xm−1, . . . , x4, j|l] if r = 3

[k, xm−3, . . . , x2, i, l, j|l] if r = m − 1

[k, xr−2, . . . , x2, i, l, xm−1, . . . , xr+1, j|l] if 3 < r < m − 1,

(11)

where the m − 4 elements x2, . . . , xr−2, xr+1, . . . , xm−1 are fixed distinct

elements of Xn \ {i, j, k, l}. Then, in all the situations,

γδ = [k, l|l] and δγ = [i, j|j].

And so, we have found n(n+1)
2 (m, r)-path-cycles and/or m-paths that

generate P∗

n \ S∗

n.

So far we have dealt with the case where |I∗| is even. Suppose now

that |I∗| is odd. By Lemma 2, we have a pairing of the elements of

J = I∗ \ {[n, 1|1]}. By the above argument we can ensure that, for all

3 6 r 6 m, all elements of J are products of (m, r)-path-cycles and

m-paths of the forms (8) and (9), or (10) and (11). In particular with

those generators, we obtain ξ = [n, m − r + 2|m − r + 2]. We now define

η =

{

[2, 3, . . . , m − 1, 1, n|n] if r = m

[m−r+2, m−r+3, . . . , m−1, 1, 2, . . . , m−r+1, n|2] if r < m.
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Then

(ηξ)m−1 = [n, 2, 3, . . . , m − 1, 1|2]m−1 = [n, 1|1].

The (m, r)-path-cycle η (if r < m) or m-path η (if r = m) does not appear

in the list of elements (8), (9), (10) and (11); for otherwise we would have

found a generating set with fewer than n(n+1)
2 elements. Hence, adding

η to the generating elements already described gives a generating set

consisting of n(n+1)
2 (m, r)-path-cycles and m-paths.

Now, using Theorem 10 and Remark 1, we have proved the next

theorem.

Theorem 11. For each n > 3 and each 2 6 r 6 m 6 n,

rankm,r(Pn \ Sn) =
n(n + 1)

2
.
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