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ABSTRACT. We introduce the notion of ¢’-compactness for
MV-algebras. One of the main results of the paper is a characteri-
zation of a class of orthomodular lattices that are horizontal sums
of strongly algebraically closed algebras.

1. Introduction

This paper deals with MV-algebras (multi-valued-algebras), Hajek’s
basic algebras, and the algebras of Hajek’s basic logic. MV-algebras are
models of an equational theory in universal algebra. In order to prove
the completeness theorem of Lukasiewicz infinite-valued logic, Chang
introduced MV-algebras in [8]. In recent years, MV-algebras and pseudo-
MV-algebras have been extensively studied and investigated by W. Chen,
W.A. Dudek, B. Davvaz, R.A. Borzooei and others (see [4], [8]-[13], [20]-
[29], [40], and [33]). Recall that pseudo-MV-algebras were introduced by
Dvurecenskij [24]. It is noted that MV-algebras and their generalizations
have been rapidly developed into the so called quasi-pseudo-MV-algebras
with board applications in quantum computational logics and theoretical
computer science. An interesting problem in mathematics is to construct
relative complicated objects from simple ones or conversely. For this
purpose, I. Chajda in [5] and [6] studied the structure of basic algebras
which are horizontal sums of chain basic algebras or, in particular, the
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cases when the components are chains or MV-algebras. Similarly, we can
study the case when the components are strongly algebraically closed
algebras.

In [49] J. Schmid proved that a distributive lattice is a algebraically
closed lattice if and only if it is a Boolean lattice. Also, he shows that any
strongly algebraically closed lattice is a complete Boolean lattice. Later,
it is proved by the author in [39] that if a complete Boolean lattice is
¢'-compact, then it is a strongly algebraically closed lattice. We recall from
[39] that an algebra A is strongly algebraically closed in a class of algebras,
if every set of equations (finite or infinite) with coefficients from A, which
is solvable in some algebras of the class of algebras containing A, already
has a solution in A.

In this paper we study the ¢’-compactness of MV-algebras. In particu-
lar, we prove in Theorem 3.5 that if every subalgebra of an orthomodular
lattice L is compact Hausdorff MV-algebra and ¢’-compact, then L is a
horizontal sum of strongly algebraically closed algebras, where L satisfies
(H1) and (H2). We recall that the notion of algebraically compactness for
a general algebraic systems was introduced and studied in early 50ties of
XX century by Los in [34] and [35] , later developed by Balcerzyk [3] for
abelian groups and by Simson [45] for Grothendieck categories.

2. Preliminaries

We recall from [32] that an orthomodular lattice (L, A, V,', 0, 1) is
an ortholattice L which satisfies the orthomodular law: if z < y then
y=axV(z'Ay), for all z, y € L. It is known (see [6]), that a subalgebra of
an orthomodular lattice L is a structure (L*, A, V., "x, 0%, 1x) where: (i)
L* € L, (ii) As, Vs, "* are the restrictions of L, A, V,’ to L*, (iii) 0* = 0
and 1x = 1, (iv) L* is an orthomodular lattice. A Boolean algebra is an
ortholattice satisfying the distributive law: zV (y A 2z) = (z Vy) A (z V 2),
for all z, y, z € L. Sachs 48] showed that a Boolean algebra is determined
by its lattice of subalgebras. In [30], it is shown that an orthomodular
lattice L is determined by its lattice of subalgebras, as well as by its poset
of Boolean subalgebras.

In [2], an orthomodular L is called the horizontal sum of a family
(Ly;)ier of at least two subalgebras of L, if UL; = L and L; N L; = {0, 1}
whenever i # j and one of the following equivalent conditions is satisfied:

(1)ifz € Li\Lj and y € L;\L;, then z Vy =1,

(2) every block of L belongs to some Lj;,

(3) if S; is a subalgebra of L;, then US; is a subalgebra of L.
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System of equations we mean an arbitrary set of equations. Recall
from [46] that Boolean algebras By, By are geometrically equivalent if
for any system of equations the coordinate algebras over By and By are
isomorphic. This means that a description of coordinate algebras over
an algebra By automatically implies the corresponding description over
any algebra By which is geometrically equivalent to B; [18]. We recall
that the problem “ When two geometrically equivalent extensions Ly and
Lo of a field P have different elementary theories in the logic?” of the
study of geometric equivalence was posed in [43]. In [37] this problem was
solved for equationally Noetherian groups. Theorem 7.2 of [46] contains
a criterion for a pair of boolean algebras to be geometrically equivalent.
Following this, in the present paper we define geometrically equivalence for
MV-algebras, and we try to establish a relationship between MV-algebras
and the strongly algebraically closed algebras.

We recall from [5,6] the following definitions. A basic algebra is called
an algebra (A, @, =, 0) of type (2, 1, 0) satisfying the following four
identities:

(1) z®0 ==z,

(2) o =,
(3) (zdy)dy=-(ydz)da,

4) ~(=(-zey®)ez)®(xd2) =1,
for all z, y, z € A.

Basic algebras are to some extent similar to MV-algebras; especially,

the stipulation

—_
—

r<LyYy<= 2xdy=1.

defines a bounded lattice in which the join x V y and the meet x A y are
given by
rVy=-(-rdy) Sy, xAy=-(-zV-y).

It is well known that (A, <) is a bounded lattice, where 0 is the least
and 1 the greatest element. The lattice (A, V, A, 0, 1) is said the assigned
lattice of A.

For more information the theory of lattices, the reader is referred to
Birkhoff [1]. In order to make this preliminary section not too long we give
only a quick review of MV-algebras, referring to [15] for further details.

An MV-algebra is a structure (A, @, -, 0) where @ is a binary opera-
tion, = is a unary operation and 0 is a constant such that the following
axioms are satisfied for any z, y € A:

(1) (A, @, 0) is an abelian monoid,

(2) ~x =,
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(3) x & -0 = -0,

(4) ~(z@y)dy=-(ydz) D

In an MV-algebra A the constant 1 and the auxiliary operation © are
defined as follows:

1) 1:=-0,

2) x @y :=—(—-a® -b).

Let A be an MV-algebra. Then the natural order determines a lattice
structure over A. The join x V y and the meet x Ay of the elements x and
y are given by

rVy=(r0-y) Sy, xAy=-(-zV-y).

As it was shown in [25], an MV-algebra is a basic algebra (A, @, =, 0)
whose binary operation @ is commutative and associative. Recall that an
element x of a basic algebra A is called sharp if t & = . An MV-algebra
A is complete iff its underlying lattice is complete ([17], p. 129).

As mentioned in [36], an MV-equation in the variables z1, ..., x4
is a pair (7, 0) of MV-terms in the variables z1, ..., ;. Following a
tradition, we write 7 = o instead of (7, o). An MV-algebra A satisfies
the MV-equation 7 = o, in symbols, A = (17 = o), if 74(ay, ..., ;) =
oAay, ..., a;) for any ay, ..., a; € A.

Notice that a topological MV-algebra is an MV-algebra (A, @, —, 0)
together with a topology 7 such that @ and — (and in particular V, A) are
T-continuous. For any MV-algebra A, its maximal ideal space equipped
with the spectral topology is a nonempty compact Hausdorff space [50].

3. Horizontal sums of strongly algebraically closed
algebras

The following proposition and lemma of [5] are our main motivation
to investigate that an orthomodular lattice or a basic algebra is horizontal
sum of strongly algebraically closed algebras.

Recall from [39] that an algebra A is strongly algebraically closed in a
class of algebras, if every set of equations (finite or infinite) with coefficients
from A, which is solvable in some algebra of the class containing A, already
has a solution in A (compare with [3], [35] and Section 4 in [45]).

Proposition 3.1. A basic algebra (A, ®, —, 0) is a lattice effect algebra
if and only if it satisfies the quasi-identity:

<y and zBY<z=z2PD(20y)=(2DyY) D=2 (Hy)
forall x,y, z € A.
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Lemma 3.2. Let a basic algebra (A, ®, =, 0) be a horizontal sum of
MV-algebras. Then A satisfies the condition:

TRY#£ydr, c@z=z20x, ydz=20y=—=2=00rz=1 (Hs)
forall x, y, z € A.

Let S be a system of equations in MV-algebra A and V4(S) be the
set of solutions of S in underlying lattice A ([22]). The set of all logical
consequences of S over A is the radical Rad4(.S). In other words, Rad 4(.5)
is the set of all MV-algebra equations 7 =~ o such that V4(S) C Va(r = o),
where 7 and o are MV-terms. It is known that Rad 4(S) is an ideal in the
term algebra [22].

Now, we introduce geometrically equivalent and ¢’-compactness in
MV-algebras.

Definition 3.3. Let A and B be two MV-algebras. Then A and B are
meant geometrically equivalent, if Rad4(S) = Radp(S) for any system S.

Definition 3.4. An MV-algebra A is called ¢’-compact if it is a geo-
metrically equivalent to any of its elementary extensions of underlying
lattice A.

We are ready to prove our main theorem.

Theorem 3.5. Let an orthomodular lattice L satisfies (Hy) and (Hs). If
every subalgebra of L is compact Hausdorff MV-algebra and q'-compact,
then L is a horizontal sum of strongly algebraically closed algebras.

Proof. Suppose that L is an orthomodular lattice. By [7]|, we know that
every orthomodular lattice is a basic algebra (A, @, -, 0) satisfying the
identity = @ (z A y) = x and every element of A is sharp. According to
the assumption, since L satisfies (H;) and (Hz) then by ([5], Theorem 2),
L is a horizontal sum of MV-algebras. It remains to prove that if an
MV-algebra K admits a topology making it a compact and Hausdorff
space, then K is complete. Now, we are focusing the Boolean center
B(K) = {a € K|aA—-a =0} = f~1({0}) of K equipped with the subspace
topology of K, where f : K — K the map defined by f(a) = a A —a.
We have that f is clearly continuous and {0} is closed and B(K) is
a closed subspace of the compact space K. Therefore, B(K) admits
a compact and Hausdorff topological making it a topological Boolean
algebra. In conclusion, every compact Hausdorff MV-algebra is complete
(|31}, Theorem 3.41) and here K is complete. Thus, we observe that
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L is a horizontal sum of complete MV-algebras. On the other hand,
every element of L is sharp. By ([5], Corollary 2), L is horizontal sum of
complete Boolean algebras. Now, we prove that each of these components
are strongly algebraically closed algebras. Suppose C' is one of these
components. We claim that C is a strongly algebraically closed algebra. In
[39], we prove that if C' is complete Boolean algebra which is ¢’-compact,
then C'is strongly algebraically closed algebra. So C' is a horizontal sum of
strongly algebraically closed algebras. To prove, suppose F' is the language
of boolean algebras and we have that C is a lattice in the language of
ortholattices F. Note that, in the same time we can consider C as a
boolean algebra. Because if we attach the elements of C' as constants to F,
then the new language will be denoted by F(C). Let S be a consistent
system in the language F(C'). Clearly, S is also a system in F'(C'). Since C
is complete so by [46], it is a weak equational Noetherian boolean algebra.
So, there is a finite system 7" in the language F'(C) equivalent to S over C',
We know that every finite Sp C S is consistent, and by the result [49] of
Schmid , C' is algebraically closed. Hence, every such Sy has a solution in
L. So S has a solution in some ultra-power D = C!/U. Note that C is
also a distributive lattice, and since it is an elementary extension of C,
and C' is ¢’-compact then

Radg(S) = Radp(S).
On the other hand, we have

Radg(S) = Rade(T).
Since T is finite, we also have

Radc(T) = Radp(T).

This shows that .S and T" are equivalent over D. Therefore, T' has a solution
in D and consequently in C. Thus S has a solution in C'. On the other
hand, T is a finite system in the language F'(C'). But by introducing a
finite number of new variables and a finite number of new equations we
can transform it to a finite system in F(C'). To do this, we perform the
following actions:

1. If T' contains the boolean constants 0 and 1, then there will be no
change, since 0,1 € C.

2. If T' contains therm 2/, then we introduce a new variable y and
insert new equations x Ay ~ 0 and x V y ~ 1, instead.
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3. If there appears a term of the form a’, then again there will not be
any changes.

Therefore, each of these components are strongly algebraically closed
algebras and the proof is complete. ]

In [19], orthologic or minimal quantum logic is the logic that is se-
mantically characterized by the class of all algebraic realizations based
on ortholattices. Generally, an algebraic realization for a logic has the
following form (B, v), where B is an element of given category of alge-
braic structures, while v is a valuation-function that transforms sentences
into elements of B, preserving the logical form. Moreover, an algebraic
realization for orthologic is a pair (B, v) consisting of an ortholattice
(B, <,’, 0, 1) and a valuation-function v that associates to any sentence
« of the language an element in B, satisfying the following conditions:

(i) v(~ B) = v(B),

(i) (8 X 7) = v(8) Av(3),
which the notions ~ and A of sentence (or formula) of the logic language
is defined “not” and “and”, respectively. Note that an orthomodular lattice
L is a Boolean algebra iff for any algebraic realization (L, v) and any 4
(1 <i<5)and any «, (3 the following condition is satisfied:

vV Av(e) Sv(f) <= v(y) <vla—=if), (R)

where the notion —; of the logic language is “if”. Consequently, we have
the following theorem:

Theorem 3.6. Let an orthomodular lattice L satisfies (Hy) and (H2)
and (R). If every subalgebra of L is q'-compact and complete, then L is a
horizontal sum of strongly algebraically closed algebras.

Definition 3.7. Two elements a and b, in a distributive lattice D with
zero, are consonant if there are x, y € D such that a < bV z,b<aVy,
and x Ay = 0. A subset X of D is consonant if every pair of elements in X
is consonant. A distributive lattice D is called completely normal if it is a
consonant subset of itself. We recall from [21] the following definition.

Given A an MV-algebra and a € A, then Spec(A) and (a) denote the
set of prime ideals of A and the principal ideal generated by a, respectively.
We recall that an MV-algebra A hypernormal if and only if Spec(A) is a
cardinal sum of (spectral) chains, i.e., if and only if the algebraic lattice A
is a hypernormal lattice in the sense of Monteiro [38| or a perfect lattice
in the terminology of [26]. Notice that an MV-algebra A is hypernormal
if and only if Spec(A) is a completely normal lattice (see [16]).
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Theorem 3.8. Let an orthomodular lattice L satisfies (Hy) and (Hz).
If for each x,y of arbitrary subalgebra K of L, there exists z € K such
that (z) N (z) C (y) and (y) N (=z) C (x), then L is a horizontal sum of
hypernormals.

Proof. By [7], every orthomodular lattice is a basic algebra (L, &, -, 0)
satisfying the identity @ (z A y) = z in which every element is sharp.
On the other hand, using ([5], Theorem 2), the basic algebra (L, ®, —, 0)
satisfies (H1) and (Hz). So L is a horizontal sum of MV-algebras. Now,
we prove that the subalgebra K is hypernormal. Suppose that z € L we
will have (z) vV (-t) = K. Therefore, for each z, y of the subalgebra K
of L, x Ny = 0 implies that there exists z € K such that x A z =0 and
y A=z = 0. By [27], a bounded distributive lattice is hypernormal if and
only if it is simultaneously completely normal and dual completely normal.
Therefore, an MV-algebra A is hypernormal if and only if Spec(A) is a
completely normal lattice. In this part of the proof we make use of the
following facts [16]
(oY) ANyox)=0.

By assumption, for each x, y of the subalgebra K of L, there exists z € K
such that (x) N (z) C (y) and (y) N (—z) C (x). Therefore,

(z) N (z) S (x), (x)N(z) C (),
and then
x) N (z) C (x) N (y).
(xyN{(y) =0=xz A z=0. Also,
S (), (y)n(=z) < (),
and then

{y) N (=2) € (y) N (z) and (y) N (=z) C (y) N () =0

and we obtain y A =z = 0.
On the other hand, since (z) C (z V y) and (z) C (z), then

(@) N(z) S{yva)n(z) =we@o-y)n{) =
({y) V((z ©=y))) 0 {E) = (y) N (2) € (v)-

Consequently, (y) N (—z) C (y). Similarly, we will have (y) N (=z) C (z). In
the sequel, for any z, y € A there exists t € A such that (y) N (=z) C (z)
and (y) N (—z) C (y). As a result, we set z =y = ¢, then (¢) V (-t) = A.
So the subalgebra K is hypernormal and then L is a horizontal sum of

hypernormals. O
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Theorem 3.9. Let an orthomodular lattice L satisfies (Hy) and (Hs). If
every subalgebra of L is compact Hausdorff MV-algebra and ¢'-compact,
then L is a horizontal sum of products of copies [0, 1] and finite Lukasiewicz
chains.

Proof. In [41], MV-algebras admitting compact Hausdorff topologies are
product of copies [0, 1] and finite Lukasiewicz chains. Thus, we conclude
L is a horizontal sum of MV-algebras that every MV-algebra is product
of copies [0, 1] and finite Lukasiewicz chains. O

Remember that a block of an orthomodular L is a maximal Boolean
subalgebra of L.

Theorem 3.10. Let an orthomodular lattice L satisfies (Hy) and (Hz).
If every block of L is complete subalgebra and ¢ -compact, then L is a
horizontal sum of strongly algebraically closed algebras.

Proof. Suppose that L is an orthomodular lattice and L satisfies (Hq).
By Proposition 3.1, L is a lattice effect algebra and every block of L is
subalgebra which is an MV-algebra. Moreover, L satisfies (H;) and (Ha2),
then L is a horizontal sum of complete MV-algebras, in particular, L is a
horizontal sum of complete Boolean algebra ([5], Theorem 2). Finally, we
have that every block of L is ¢’-compact, then L is a horizontal sum of
strongly algebraically closed algebras. O

We recall from [28] that orthoalgebras play an important role in the
empirical logic approach to the foundations of quantum mechanics initiated
by D. J. Foulis and C. H. Randall. Such an algebra appears in that theory
as the (empirical) logic associated with a manual of operations. Any
orthomodular lattice or orthomodular poset is also an orthoalgebra.

Corollary 3.11. Let an orthomodular lattice L satisfies (Hy) and (Ha). If
every subalgebra of L is orthoalgebra and ¢’ -compact and compact Hausdorff
MV-algebra, then L is a horizontal sum of strongly algebraically closed
algebras.

Proof. We know that every MV-algebra, which is an orthoalgebra, is a
Boolean algebra. Since L satisfies (H;) and (H2) and every subalgebra
of L admits a topology making it a compact and Hausdorff topological
MV-algebra, then L is a horizontal sum of complete Boolean algebras. By
assumption we have that every subalgebra of L is ¢’-compact, then L is a
horizontal sum of strongly algebraically closed algebras. O
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Definition 3.12. [51] A quantale is a triple (@, V, ®) such that

(1) (Q, V) is a V-semilattice,

(2) (Q, ®) is a semigroup,

(3) ¢®(VS) = Vses(q®s) and (VS)®q = Vses(s®q) for every g € Q
and every S C Q.

Also, we can say that a quantale (Q, V, -, 1) is a sup-lattice equipped
with a monoid operation “-”, which distributes over arbitrary joins. For
example, let (A, ) be a semigroup. The powerset P(A) is a quantale,
where V is union and S® T ={s-t|se S, t € T}.

Corollary 3.13. Let an orthomodular lattice L satisfies (Hy) and (Hs).
If every subalgebra of L is compact Hausdorff MV-algebra, then L is
isomorphic with a horizontal sum of quantales.

Proof. Since L is an orthomodular lattice such that every subalgebra of
L admits a topology making it a compact and Hausdorff topological MV-
algebra and L satisfies (H;) and (Hz), L is a horizontal sum of complete
MV-algebras. On the other hand, it is proved that every complete MV-
algebra is isomorphic with quantales [44]. As a result, L is isomorphic
with a horizontal sum of quantales. O

In this final section we consider Sheffer stroke basic algebras. In 1913,
Sheffer [47] presented the following 3-basis for Boolean algebra in terms
of the Sheffer stroke. We recall from [42] the following definition:

Definition 3.14. An algebra (A4, |) of type (2) is called a Sheffer stroke
basic algebra if the following identities hold:

(1) (z|(]x))[(x]x) = =,

(2) (z[(yly)l(yly) = (yl(z[x))|(z]z),

3) ([ (wlyD Iyl =) z[2))|(2l(2]2))) = z[(x]x),

for all x, y, z € A.

Theorem 3.15. Let a basic algebra (A, &, —, 0) satisfies (H1) and (Ha).
We define x|y = —x & —y. If every subalgebra of A is ¢'-compact and com-
plete, then A is a horizontal sum of strongly algebraically closed algebras.

Proof. Using [42], the first we claim that with definition x|y = -~z @& -y,
the structure (4, |) is a Sheffer stroke basic algebra. From definition of
Sheffer stroke basic algebra have the following.

(1) (z[(x]2)|(z]2) = ~(=2 @ ~(-2 ® ) © (-2 & —2) = ~(~r
r)®r=0qx=1.
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2) @IWY)Iyly) = ~(-z & =(~y & ) & (-2 & ~y) = ~(~y &
—y) @ x = (y|(x]x)))|(z]z).
Also, for (3) of Sheffer stroke basic algebra satisfies have that:

([ ly)Iwly)I 1) ((](2]2))[ (2] (21))
= (2 (=22 (7))=(72))) (= (ma=(22))~(m2(=2)))

=1=z|(z|x).

Therefore, (A, |) is a Sheffer Stroke basic algebra. On the other hand, by
([42], Theorem 3.18), every subalgebra (B, |) Sheffer stroke basic algebra
of A with the least element 0 and the greatest element 1, and its induced
lattice (B, V, A, 0, 1) with an antitone involution z — ¥ is a Boolean
algebra. By ([5], Corollary 2), since induced lattice of every subalgebra
is Boolean algebra and A satisfies (H;) and (H3), then A is a horizontal
sum of Boolean algebras and here the Boolean algebras are complete. By
the assumption we have that every subalgebra of A is ¢-compact. This
implies that A is a horizontal sum of strongly algebraically closed algebras
([39], Theorem 3.5). O

References

[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., XXV, Providence,
(1967) USA.

[2] G. Bruns and R. Greechie, Blocks and commutators in orthomodular lattices,
Algebra Universalis, 27(1990) 1-9.

[3] S. Balcerzyk, On algebraically compact groups of I. Kaplansky, Fund. Math.,
44(1957) 91-93.

[4] R.A. Borzooei, W.A. Dudek, A. Radfar, and Q. Zahiri, Some results in hyper
MV-algebras, J. of Intelligent and Fuzzy Systems, 6(27)(2014) 2997-3004.

[5] 1. Chajda, Horizontal sum of basic algebras, Discussiones Mathematicae, General
Algebra and Applications, 29(2009) 21-33.

[6] 1. Chajda, R. Halas, and J. Kuhr, Semilattice structures, Heldermann Verlag,
Lemgo (Germany), (2007) 228 pp, ISBN 978-3-88538-230-0.

[7] L. Chajda, Basic algebras and their applications, An overview. Proc., 81st Workshop
on General Algebra (J. Czermak et al., eds.), Salzburg, Austria, 2011, Johannes
Heyn, Klagenfurt, 2012, pp. 110.

[8] C.C. Chang, A new proof of the completeness of the Lukasiewicz azioms, Trans.
Amer. Math. Soc., 93(1959) 74-80.

[9] C.C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc.,
88(1958) 467-490.

[10] W. Chen and W.A. Dudek, The representation of square root quasi-pseudo-MV
algebras, Soft Computing, 19(2015) 269-282.



A. MoLkHASI, K. P. SHUM 141

1]
12]
113
[14]
[15]
[16]
117]
18]
[19]
120]
[21]
[22]
23]

[24]
25]

[26]

27]
28]

[29]
(30]

(31]
32]

W. Chen and W.A. Dudek, Quantum computational algebra with a non-
commutative generalization, Math. Slovaca, 66(2016) 19-34.

W. Chen and W.A. Dudek, Ideals and congruences in quasi-pseudo-MV algebras,
Soft Computing, 22(2018) 3879-3899.

W. Chen and W.A. Dudek, States, state operators and quasi-pseudo-MV algebras,
Soft Computing, 22(2018) 8025-8040.

W. Chen and B. Davvaz, Some classes of quasi-pseudo MV-algebras, Logic Journal
of the IGPL, 5(24)(2016) 655-859.

R. Cignoli, I.M.L. Dottaviano, and D. Mundici, Foundations of many-valued
reasoning, Trends Log. Stud. Log. Libr., Kluwer, Dordrecht, 2000.

R. Cignoli, Boolean products of MV-algebras: Hypernormal MV-algebras, J. Math.
Analysis and Applications, 0167(199)(1996) 637-653.

R. Cignoli, I.M.L. Dottaviano, and D. Mundici, Algebraic foundations of many-
valued reasoning, Kluwer Academic Publishers, Dordrecht, 7(2000).

E. Daniyarova, A. Miasnikov, and V. Remeslennikov, Unification theorems in
algebraic geometry, Algebra and Discrete Mathematics, 1(2008) 80-112.

M. Dalla Chiara, R. Giuntini, and R. Greechie, Reasoning in Quantum Theory:
Sharp and unsharp quantum logics, Kluwer academic publisher, 2004.

P. Daowu, Fuzzy logic algebras on residuated lattices, Southeast Asian Bull. Math.,
28(3)(2004) 519-531.

C.N. Delzell and J.J. Madden, A completely normal spectral space that is not a
real spectrum, J. Algebra, 169(1)(1994) 71-77.

A. Di Nola and A. Lettieri, Equational characterization of all varieties of MV-
algebras, J. Algebra, 221(1999) 463-474.

E.J. Dubuc and Y.A. Povedc, Representation theory of MV-algebras, Annals of
Pure and Applied Logics, 8(161)(2010) 1024-1046.

A. Dvurecenskij, States on pseudo MV-algebras, Studia Logica, 68(2001) 301-327.

A. Dvurecenskij and S. Pulmannova, New trends in quantum structures, Kluwer
Academic Publ., Dordrecht, Ister Science, Bratislava, 541(2000)+ xvi.

E. Fried, G.E. Hansoul, E.T. Schmidt, and J.C. Varlet, Perfect distributive lattices,
in contributions to algebra 3, Proceedings of the Vienna Conference, June 1984,
pp-125-142; Verlag-Holder-Pichler-Tempsky, ViennarTeubner, Stuttgart, 1985.

G. Gratzer, General lattice theory, Pure and Applied Mathematics, Vol. 75, Aca-
demic Press, New York, 1978.

R.J. Greechie, Sites and tours in orthoalgebras and orthomodular lattices, Founda-
tions of Physics, 20(7)(1990) 915-923.

P. Hajek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, 1998.

J. Harding and M. Navara, Subalgebras of orthomodular lattices, Order, 28(2011)
549-563.

C.S. Hoo, Topological MV-algebras, Topology Appl., 81(1997) 103-121.
G. Kalmbach, Orthomodular lattices, Academic Press Inc. (London) Ltd., 1983.



142 STRONGLY ALGEBRAICALLY CLOSED ALGEBRAS

[33] J. Lukasiewicz, Philosophical remarks on many-valued systems of propositional
logic, [in:] Selected Works, L. Borkowski (ed.), Amsterdam, North-Holland, (1970)
153-178.

[34] J. Los, On algebraic proof of completeness for the two-valued propositional calculus,
Colloq. Math., 2(1951) 271-274.

[35] J. Los, On the categoricity in power of elementary deductive systems and some
related problems, Colloq. Math., 3(1954) 58-62.

[36] D. Mundici, A characterization of the free n-generated MV-algebra, Archive for
Mathematical Logic, 45(2006) 239-247.

[37] A. Myasnikov and V. Remeslennikov, Algebraic geometry over groups I1: logical
foundations, J. Algebra, 234(2000) 225-276.

[38] A. Monteiro, Larithmetique des filtres et les spaces topologiques, I, 11, Notas Logica
Mat., (1974) 29-30.

[39] A. Molkhasi, On strrongly algebraically closed lattices, J. Sib. Fed. Univ. Math.
Phys., 9(2)(2016) 202-208.

[40] A. Moshen Badawy and K.P. Shum, Congruences and Boolean filters of quasi-
modular p-algebras, Discuss. Math Gen. Algebra Appl., 34(2014) 109-123.

[41] J.B. Nganou, Stone MV-algebras and strongly complete MV-algebras, Algebra
Universalis, 77(2)(2017) 147-161.

[42] T. Oner and I. Senturk, The Sheffer stroke operation reducts of basic algebras,
Open Math., 15(2017) 926-935

[43] B. Plotkin, Algebras with the same (algebraic) geometry, Proc. Steklov Inst. Math.,
242(2003) 165-196.

[44] W. Rump, Quantum B-algebras, Central European Journal of Mathematics,
11(11)(2013) 1881-1899

[45] D. Simson, On pure global dimension of locally finitely presented Grothendieck
categories, Fund. Math., 96(1977) 91-116.

[46] A. Shevlyakov, Algebraic geometry over Boolean algebras in the language with
constants, J. Math. Sciences, 206(2015) 724-757.

[47] H. Sheffer, A set of five independent postulates for Boolean algebras, with application
to logical constants, Trans. Amer. Math. Soc., 14(4)(1913) 481-488.

[48] D. Sachs, The lattice of subalgebras of a Boolean algebra, Canad. J. Math., 14(1962)
451-460.

[49] J. Schmid, Algebraically and existentially closed distributive lattices, Zeitschr Math.
Logik U. G. M., 25(1979) 525-530.

[50] D.P. Strauss, Topological lattices, Proc. London Math. Soc., 3(18)(1968) 217-230.

[51] S. Solovyov, From quantale algebroids to topological spaces: fized-and variable-basis
approaches, Fuzzy Sets Syst., 161(9)(2010) 1270-1287.



A. MoLkHASI, K. P. SHUM 143

CONTACT INFORMATION

A. Molkhasi Department of Mathematics, Faculty of
Mathematical Sciences,
Farhangian University, Tabriz, Iran
E-Mail(s): molkhasi@cfu.ac.ir

K. P. Shum Institute of Mathematics Yunnan University,
Kunning, P.R. China
E-Mail(s): kpshum@ynu.edu.cn

Received by the editors: 22.03.2018
and in final form 12.10.2018.



