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Abstract. We study formulas for eigenvectors of strongly

connected simply laced quivers in terms of eigenvalues. The relation

of these formulas to the isomorphism of quivers is investigated.

1. Introduction

In this work we study a possibility to use indices and eigenvectors
of strongly connected simply laced quivers as characteristics, which can
provide the conclusion whether quivers are isomorphic or not.

Following P. Gabriel and [1] we use the term quiver for an oriented
graph. The term “quiver” was introduced in [3], which is devoted to finite
dimensional algebras over an algebraically closed field, with zero square
radical (see details in [4, §11.10]).

Recall that a quiver is called strongly connected, if for every two
vertices of it there exists an oriented path from one to other. A quiver is
called simply laced, if it has no loops and multiple arrows.

The maximum root of the characteristic polynomial of the adjacency
matrix of a quiver is called its index. In this work we use the terms
eigenvector, eigenvalue, index and characteristic polynomial of a quiver,
meaning the notions, which correspond to its adjacency matrix. An attempt
to reduce the question about the isomorphism of quivers to the properties
of their characteristic polynomials and eigenvalues was already made in [2].
We call two vectors with n coordinates permutationally equivalent (or,
simply, equivalent), if they are equal up to multiplication by a constant
and permutation of coordinates. Also we call a non-zero vector normalized,
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if its Euclidean norm is 1 and the first positive coordinate is non-negative.
The unique normalized eigenvector of a strongly connected quiver, which
corresponds to the index, will be called an index-vector. We write SCSL-

quiver for a strongly connected simply laced quiver.

The importance of the assumption that a quiver is strongly connected,
is provided by the following classical fact reformulated using the notion a
quiver.

Theorem 1 (Frobenius theorem, Theorem 6.5.2 in [5]). The adjacency

matrix of a strongly connected quiver has a positive eigenvalue r which is

a simple root of the characteristic polynomial. This vector is the unique

positive eigenvector up to multiplication by a constant. The absolute values

of all the other eigenvalues do not exceed r. To the maximal eigenvalue r
there corresponds an eigenvector with all positive coordinates.

Theorem 2 ([2]). SCSL-quivers with four vertices are isomorphic if

and only if their characteristic polynomials are equal and right and left

index-vectors are permutationally equivalent.

The number of vertices of a quiver cannot be increased in Theorem 2.
The matrices




0 0 0 0 1
0 0 0 0 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0




and




0 0 0 0 1
0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
0 1 0 1 0




provide a counterexample. They are non-equivalent. Nevertheless, their
characteristic polynomials are equal, their right eigenvectors coincide, and
their left eigenvectors coincide, too.

Also the equivalence of left index-vectors cannot be removed from
Theorem 2. This shows the following example.

Example 1. There are two non-isomorphic SCSL-quivers, whose normal-
ized right index-vectors and characteristic polynomials coincide [2].

Let

A1 =




0 0 0 1
0 0 1 1
1 0 0 1
0 1 1 0


 and A2 =




0 0 0 1
0 0 1 1
1 1 0 0
0 1 1 0



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be adjacency matrices of quivers Q1 and Q2, respectively. These quivers
are not isomorphic, because Q1 has a vertex, which is a head of three
arrows, and Q2 does not have such a vertex.

The characteristic polynomials of A1 and A2 are equal to λ4 − 2λ2 −
2λ − 1. Right index-vectors of Q1 and Q2 quivers coincide and are ap-
proximately equal to (0.314, 0.577, 0.484, 0.577)t. The approximate
values of left index-vectors of A1 and A2 are (0.307, 0.366, 0.565, 0.673)
and (0.314, 0.577, 0.577, 0.484) respectively. This fact shows that the
condition of the equivalence of left index-vectors is necessary.

Remark 1. Example 1, which shows that the equivalence of left index-
vectors cannot be removed from Theorem 2, is unique (up to isomorphism
of quivers).

We improve Theorem 2, using the method of computing of eigenvectors
and characteristic polynomials, which has been presented in [1]. Let A be an
adjacency matrix of a quiver with n vertices. Any characteristic vector v of
A can be treated as a solution of the equation A−λE = 0, considered as a
system of linear equations with respect to unknown coordinates of v. Thus,
the formulas for coordinates of v1, . . . , vn in terms of the eigenvalues λ can
be found, and this computation is algorithmically equivalent to solving a
system of homogeneous linear equations. The formulas for v1, . . . , vn in
terms of an arbitrary characteristic number λ of A can be considered as a
new characteristic of a quiver (of the adjacency matrix).

Example 2 ([1, p. 94]). For the Dynkin graph Ẽ7,

3

7 5 2 1 4 6 8

the general formulas for the eigenvector v = (v1, . . . , v8)
t in terms of

eigenvalues are v1 = λ3 − 2λ, v2 = λ4 − 4λ2 + 3, v3 = λ2 − 2, v4 = λ2 − 1,
v5 = λ5 − 5λ3 + 5λ, v6 = λ, v7 = λ4 − 5λ2 + 5, v8 = 1.

Example 3 ([1, p. 97]). For the Dynkin graph D̃5,

4 6

1 2

3 5
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the general formulas for the eigenvector in terms of eigenvalues are v1 = λ,
v2 = λ2 − 2, v3 = v4 = 1, v5 = v6 =

λ3
−3λ
2 .

2. Gauss-DGFKK expressions

We show that for any strongly connected simply laced quiver there
exist expressions for the coordinates of eigenvectors in terms of eigenvalues.
Recall the following fact.

Remark 2 (Remark 6.5.2 in [5]). A permutationally irreducible matrix
A > 0 cannot have two linearly independent non-negative eigenvectors
corresponding to the same eigenvalue.

Lemma 1. Let Q be a strongly connected simply laced quiver on n ver-

tices with a characteristic polynomial ξ. For any eigenvalue λ0 there

exist elements f1, . . . , fn of the field of fractions of R[x], such that vt =
(f1(λ0), . . . , fn(λ0))

t for the eigenvector v of Q, which corresponds to λ0.

Proof. If λ0 ∈ R, then v is also real, so its coordinates can be considered
as the required polynomials f1, . . . , fn, whence the lemma is trivial.

Suppose that λ0 ∈ C \ R. Denote by λ0 the complex conjugate to λ0

and let f0(x) = (x−λ0)(x−λ0) ∈ R[x]. Denote by F0 the field of fractions
of the factor-ring R[x]/(f0). Apply the classical Gaussian elimination
algorithm of diagonalization to the matrix A− λE over the field F0. This
process leads to the general form of g ∈ Fn

0 such that (A−λE)g = 0 ∈ F0.
By Remark 2, each of vectors g(λ0) and g(λ0) is an eigenvector of Q, and
they correspond to λ0 and λ0, respectively.

Lemma 2. For any strongly connected simply laced quiver there exist

real fractional-polynomial formulas, which express the coordinates of an

eigenvector in terms of eigenvalues. In other words, let v(1), . . . , v(k) be

all linearly independent vectors of Q, which, by Remark 2, correspond to

eigenvalues λ1, . . . , λk. Then there exist functions f1, . . . , fn from the field

of fractions of R[x] such that

(v(s))t = (f1(λs), . . . , fn(λs))

for every s, 1 6 s 6 k.

Proof. Denote by ξ = ξ1 · . . . · ξm the decomposition of the characteristic
polynomial of Q into the product of indecomposable multipliers over R[x].

By Lemma 1, for every i, 1 6 i 6 m there exist elements f
(i)
1 , . . . , f

(i)
n of the
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field of fractions of R[x] such that for every root λ of ξi the corresponding

eigenvector v(λ) can be expressed as v(λ) = (f
(i)
1 (λ), . . . , f

(i)
n (λ))t. Thus,

v =
m∑

i=1

∑

λ: ξi(λ)=0

v(λ) ·
ξ

ξi
,

which is the required vector by the construction.

The proof of Lemma 2 motivates the following construction.
1. For a strongly connected simply laced quiver Q with the adjacency
matrix A consider the matrix B = A−λE as one over the field of fractions
of the ring of polynomials R[λ].
2. Apply the Gaussian elimination algorithm to reduce the matrix B to
the upper diagonal form B̃ = (̃bij).

3. Take the matrix C = (cij) such that cnn = 0 and cij = b̃ij otherwise.
4. Use the matrix C, as the matrix of a system of linear homogeneous
equations to express variables x1, . . . , xn−1 in terms of xn. Thus, we obtain
a vector v(λ) = (x1(λ), . . . , xn−1(λ), xn)

t, which provides a characteristic
of Q.

Since Lemma 2 was motivated by [1], the vector v(λ), constructed
above, will be called the Gauss-DGFKK expression for eigenvectors of Q.

Example 4. Find Gauss-DGFKK expressions for the eigenvectors of the
quiver 1 // 2oo . The necessary transformations of the matrix are
(
−λ 1
1 −λ

)
⇒

(
−λ 1

1 + −λ
λ

−λ+ 1
λ

)
=

(
−λ 1

0 1−λ2

λ

)
⇒

(
1 −λ
0 λ2 − 1

)
.

Claim now that λ2 − 1 is the characteristic polynomial of our quiver.
Then the equation x1 − λx2 = 0 with the assumption x2 = 1 gives the
Gauss-DGFKK expression v = (λ, 1).

The following example provides an improvement of Theorem 2 by
replacing the condition of equality of left eigenvectors to the condition of
equality of the Gauss-DGFKK expressions.

Example 5. Gauss-DGFKK expressions for left eigenvectors of quivers
in Example 1 are different.

Our computations show, that the Gauss-DGFKK expression for the

right eigenvector of A1 from Example 1 is
(

1
λ
, λ2+λ+1

λ3 , λ+1
λ2 , 1

)t

. Analo-

gously, the Gauss-DGFKK expression for the right eigenvector of A2 is(
1
λ
, −1−λ2

λ(1−λ2)
, −2
1−λ2 , 1

)t

.
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Nevertheless, note that numerical values of given eigenvectors are equal
if λ is an eigenvalue of the corresponding matrix. Moreover, the numerical
values of these expressions are equal if and only if λ is the eigenvalue of
the quiver.

The next theorem follows from Theorem 2 and Remark 1.

Theorem 3. If SCSL-quivers with four vertices have either different

characteristic polynomials, or distinct Gauss-DGFKK expressions for the

right eigenvector, then they are non-isomorphic.

The following example shows that Theorem 3 is not a criterion.

Example 6. There are equivalent SCSL-quivers with four vertices, whose
Gauss-DGFKK expressions for the right eigenvectors are different.

Let

A =




0 0 0 1
0 0 0 1
0 1 0 0
1 0 1 0




be the adjacency matrix of a SCSL-quiver and B the adjacency matrix of
the quiver, obtained from the SCSL-quiver by renumbering of vertices 3
and 4.

The Gauss-DGFKK expression for the right eigenvector of A is(
1
λ
, 1
λ
, 1
λ2 , 1

)t
. At the same time, the Gauss-DGFKK expression for the

right eigenvector of B is
(

1
λ2

−1
, 1
λ2

−1
, λ
λ2

−1
, 1

)t

.

Example 7. There exist quivers with 5 vertices, whose characteristic
polynomials are different, but both left and right eigenvectors can be
expressed by the same formulas.

Consider quivers, given by their adjacency matrices

A1 =




0 0 0 1
0 0 1 0
1 0 0 0
0 1 1 0


 and A2 =




0 0 0 1
0 0 1 0
1 0 0 0
1 1 1 0


 .

Their characteristic polynomials are

f1(λ) = λ4 − λ− 1 and f2(λ) = λ4 − λ2 − λ− 1
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respectively. The Gauss-DGFKK formulas for the right eigenvectors are

v(1)r =

(
1

λ
,
1

λ3
,
1

λ2
, 1

)t

and v(2)r =

(
1

λ
,
1

λ3
,
1

λ2
, 1

)t

.

The Gauss-DGFKK formulas for the left eigenvectors are

v
(1)
l =

(
λ+ 1

λ3
,
1

λ
,
λ+ 1

λ2
, 1

)
and v

(2)
l =

(
λ2 + λ+ 1

λ3
,
1

λ
,
λ+ 1

λ2
, 1

)
.

Nevertheless, formulas for vectors v
(1)
l and v

(2)
l can be rewritten as

vl =

(
λ,

1

λ
,
λ+ 1

λ2
, 1

)
,

because λ4 = λ + 1 for each solution of the equation f1(λ) = 0, and
λ4 = λ2 + λ+ 1 for each solution of the equation f2(λ) = 0.

Example 8. There are non-isomorphic quivers such that their charac-
teristic polynomials are equal and Gauss-DGFKK expressions for right
eigenvectors are also equal.

Let SCSL-quivers Q1 and Q2 be given by their adjacency matrices

A1 =




0 0 0 1 0
0 0 0 1 0
0 0 0 1 1
0 0 1 0 1
1 1 1 1 0




and A2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 1 0 1
1 1 1 1 0




.

These quivers are non-conjugated, because Q1 has a vertex, such that
for all other vertices there are arrows to it and Q2 has not such a vertex.

Characteristic polynomials of quivers coincide and are equal to

−λ5 + 3λ3 + 4λ2 + 2λ.

Gauss-DGFKK expressions for right eigenvectors v1 and v2 of A1 and
A2 are

v1 = v2 =

(
λ+ 1

λ3 − λ
,
λ+ 1

λ3 − λ
,

1

λ− 1
,

1

λ− 1
, 1

)t

.
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