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Abstract. We investigate the row and column structure of

solutions of the matrix polynomial equation

A(λ)X(λ) + Y (λ)B(λ) = C(λ),

where A(λ), B(λ) and C(λ) are the matrices over the ring of poly-

nomials F [λ] with coefficients in field F . We establish the bounds

for degrees of the rows and columns which depend on degrees of the

corresponding invariant factors of matrices A(λ) and B(λ). A cri-

terion for uniqueness of such solutions is pointed out. A method

for construction of such solutions is suggested. We also established

the existence of solutions of this matrix polynomial equation whose

degrees are less than degrees of the Smith normal forms of matrices

A(λ) and B(λ).

Introduction and preliminary results

Let F be a field, and F [λ] be a ring of polynomials over F . We denote
by M(n,F [λ]) and M(n,m,F [λ]) a ring of n × n matrices and a set of
n×m matrices over F [λ], respectively, and by GL(n,F) and GL(n,F [λ])
the groups of invertible n× n matrices over F and F [λ], respectively.
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We investigate solutions of the matrix linear bilateral polynomial
equation

A(λ)X(λ) + Y (λ)B(λ) = C(λ), (1)

where A(λ), B(λ), C(λ) ∈ M(n,F [λ]) are known matrices, and X(λ),
Y (λ) ∈ M(n,F [λ]) are unknown ones. Matrix Sylvester-type equations
over different domains [2,8], in particular, the matrix polynomial equation
(1), appear in various branches of mathematics. Such equations play
fundamental role in many problems of control theory and dynamical
systems theory [5, 7].

If the matrix polynomial equation (1) is solvable, it obviously has
solutions of unbounded above degrees. So, there arises the following natural
question: what is minimal degree of solutions of the matrix polynomial
equation (1)? This problem was solved only in particular cases. The
estimations of degrees of the solutions of the matrix polynomial equation (1)
with regular polynomial matrix coefficients, and conditions for uniqueness
of such solutions were obtained in [4] and [9].

We recall that collections of polynomial matrices A1(λ), . . . , Ak(λ)
and B1(λ), . . . , Bk(λ), where Ai(λ), Bi(λ) ∈ M(n,mi,F [λ]), are called
semiscalar equivalent if there exists a scalar matrix Q ∈ GL(n,F) and
invertible matrices Ri(λ) ∈ GL(mi,F [λ]) such that Bi(λ) = QAi(λ)Ri(λ),
i = 1, . . . , k.

It was shown in [6] that the collection of polynomial matrices
A1(λ), . . . , Ak(λ) with maximal ranks over algebraically closed field F of
characteristic zero is semiscalar equivalent to the collection of the lower
triangular polynomial matrices TA1(λ), . . . , TAk(λ) with invariant factors
on main diagonals. These results were generalized for polynomial matrices
over an arbitrary field F [10,13]. Triangular matrices TAi(λ) are called
standard forms of polynomial matrices Ai(λ), i = 1, . . . , k.

Note that similar form for one polynomial matrix over infinite field
with respect to right semiscalar equivalence of matrices was obtained in
[1].

In [2] the solutions of the matrix linear unilateral and bilateral equations
over some other rings were investigated. These results were based on
the standard form of the pair of matrices with respect to generalized
equivalence [11,12]. The conditions for uniqueness of solutions with some
properties were also proposed in [2].

In this paper we study solutions of the matrix polynomial equation (1)
where both matrix coefficients A(λ) and B(λ) may be nonregular matrices,
unlike to [4, 9]. We describe the structure of solutions of this equation
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by using standard forms of the collection of polynomial matrices with
respect to semiscalar equivalence. We establish the bounds for degrees of
solutions of this matrix polynomial equation. A criterion for uniqueness of
such solutions and a method for their construction are pointed out. These
results are a generalization of results [3].

1. Structure of solutions of the matrix polynomial

equation

According to results of [10], a pair of nonsingular polynomial matrices
A(λ), B(λ) ∈ M(n,F [λ]) from the matrix polynomial equation (1) is
semiscalar equivalent to the pair of triangular matrices TA(λ), TB(λ)
in standard form, i.e., there exists an upper unitriangular matrix Q ∈
GL(n,F) and invertible matrices RA(λ) and RB(λ) ∈ GL(n,F [λ]) such
that

TA(λ) = QA(λ)RA(λ)

=




µA
1 (λ) 0 · · · 0

ã21(λ)µ
A
1 (λ) µA

2 (λ) · · · 0
· · · · · · · · · · · ·

ãn1(λ)µ
A
1 (λ) ãn2(λ)µ

A
2 (λ) · · · µA

n (λ)


 , (2)

where deg ãij(λ) < degµA
i (λ)− degµA

j (λ) if deg µA
i (λ) > degµA

j (λ), and

ãij(λ) ≡ 0 if µA
i (λ) = µA

j (λ), i, j = 1, . . . , n− 1, i > j,

TB(λ) = QB(λ)RB(λ)

=




µB
1 (λ) 0 · · · 0

b̃21(λ)µ
B
1 (λ) µB

2 (λ) · · · 0
· · · · · · · · · · · ·

b̃n1(λ)µ
B
1 (λ) b̃n2(λ)µ

B
2 (λ) · · · µB

n (λ)


 , (3)

where deg b̃ij(λ) < degµB
i (λ)− degµB

j (λ) if degµB
i (λ) > degµB

j (λ), and

b̃ij(λ) ≡ 0 if µB
i (λ) = µB

j (λ), i, j = 1, . . . , n− 1, i > j, µA
i (λ) and µB

i (λ),
i = 1, . . . , n are invariant factors of A(λ) and B(λ), respectively. Triangular
matrices TA(λ), TB(λ) can be written in form TA(λ) = T1(λ)S

A(λ),
TB(λ) = T2(λ)S

B(λ), where T1(λ) and T2(λ) are lower unitriangular
matrices, SA(λ) and SB(λ) are the Smith normal forms of matrices A(λ)
and B(λ).
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Thus, from equation (1) we obtain the following matrix polynomial
equation

TA(λ)X̃(λ) + Ỹ (λ)TB(λ) = C̃(λ), (4)

where X̃(λ) = (RA(λ))−1X(λ)RB(λ), Ỹ (λ) = QY (λ)Q−1, and C̃(λ) =
QC(λ)RB(λ). It is easy to verify that the matrix polynomial equation (1)
is solvable if and only if the matrix polynomial equation (4) is solvable.
Then the following equalities are valid:

X(λ) = RA(λ)X̃(λ)(RB(λ))−1 and Y (λ) = Q−1Ỹ (λ)Q (5)

for solution X(λ), Y (λ) of (1) and solution X̃(λ), Ỹ (λ) of (4). So, solving
of the matrix polynomial equation (1) reduced to solving of the matrix
polynomial equation (4).

The criterion for solvability of matrix Sylvester-type equations was
established by Roth [14].

We denote by rowi(A) and colj(A) the i-th row and j-th column of
matrix A, respectively. Further we assume that deg 0 = −∞.

Theorem 1. Let

SA(λ) = diag(µA
1 (λ), . . . , µ

A
p (λ), µ

A
p+1(λ),

. . . , µA
p+q(λ), µ

A
p+q+1(λ), . . . , µ

A
n (λ)), p > 0, q > 0, (6)

be the Smith normal form of matrix A(λ) from equation (1), where

degµA
i (λ) = 0, that is, µA

i = 1, i = 1, . . . , p, (7)

degµA
i (λ) = 1, i = p+ 1, . . . , p+ q, (8)

deg µA
i (λ) > 1, i = p+ q + 1, . . . , n. (9)

If the matrix polynomial equation (4) be solvable, then this equation has

solutions in the form

X̃1(λ) = [x̃ij(λ)]
n
i,j=1, Ỹ1(λ) = [ỹij(λ)]

n
i,j=1 =




Ỹ (p)(λ)

Ỹ (q)(λ)

Ỹ (n−(p+q))(λ)


 , (10)
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where

Ỹ (p)(λ) =



row1(Ỹ1(λ))

...

rowp(Ỹ1(λ))


 , Ỹ (q)(λ) =



rowp+1(Ỹ1(λ))

...

rowp+q(Ỹ1(λ))


 ,

Ỹ (n−(p+q))(λ) =



rowp+q+1(Ỹ1(λ))

...

rown(Ỹ1(λ))




and

Ỹ (p)(λ) = 0, (11)

Ỹ (q)(λ) is scalar matrix, i.e., Ỹ (q) ∈ M(q, n,F), (12)

deg rowi(Ỹ
(n−(p+q))(λ)) < deg µA

i (λ)− deg(µA
i (λ), µ

B
1 (λ)), (13)

where i = p+ q + 1, . . . , n.

Proof. From (4), we obtain the system of linear polynomial equations

i∑

l=1

µA
l (λ)ãil(λ)x̃lj(λ) +

n∑

k=j

µB
j (λ)̃bkj(λ)ỹik(λ) = c̃ij(λ), (14)

where ãii = b̃ii = 1, ãij = b̃ij = 0 if i < j, and C̃(λ) = [c̃ij(λ)]
n
i,j=1,

i, j = 1, . . . , n. It is obvious that the matrix equation (4) has a solution if
and only if the system of linear polynomial equations (14) has a solution.

Let system (14) be solvable and let

x̃ij(λ) = uij(λ), ỹij(λ) = vij(λ), i, j = 1, . . . , n, (15)

be solutions of system (14).
We split the system (14) into 2n − 1 subsystems in the following

way: every t-th subsystem for t 6 n consists of t equations. We obtain
it from system (14) by assuming that i = 1, 2, . . . , t and j = n− (t− i),
respectively, that is, j = n− (t− 1), n− (t− 2), . . . , n. If t > n, namely
t = n+ q, q = 1, 2, . . . , n− 1, then t-th subsystem consists of equations of
system (14) for i = q + 1, . . . , n, j = 1, . . . , n− q.

The first subsystem of system (14), i.e., t = 1, and therefore i = 1,
j = n, consists of one equation:

µA
1 (λ)x̃1n(λ) + µB

n (λ)ỹ1n(λ) = c̃1n(λ). (16)
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We denote d
(A,B)
i,j (λ) = (µA

i (λ), µ
B
j (λ)).

Since equation (16) is solvable, then d
(A,B)
1,n (λ) | c̃1n(λ). Therefore, we

obtain equation:

µA
1 (λ)

d
(A,B)
1,n (λ)

x̃1n(λ) +
µB
n (λ)

d
(A,B)
1,n (λ)

ỹ1n(λ) =
c̃1n(λ)

d
(A,B)
1,n (λ)

. (17)

Then x̃1n(λ) = u1n(λ), ỹ1n(λ) = v1n(λ) is the solution of (17).

We divide v1n(λ) by
µA
1 (λ)

d
(A,B)
1,n (λ)

: v1n(λ) =
µA
1 (λ)

d
(A,B)
1,n (λ)

s1n(λ)+ ỹ
(1)
1n (λ), where

deg ỹ
(1)
1n (λ) < deg

µA
1 (λ)

d
(A,B)
1,n (λ)

. Then

x̃
(1)
1n (λ) = u1n(λ) +

µB
n (λ)

d
(A,B)
1,n (λ)

s1n(λ), ỹ
(1)
1n (λ) = v1n(λ)−

µA
1 (λ)

d
(A,B)
1,n (λ)

s1n(λ)

is the solution of (17) and (16), where

deg ỹ
(1)
1n (λ) < degµA

1 (λ)− deg(µA
1 (λ), µ

B
n (λ)).

We obtain the second subsystem, that is, t = 2, from (14) by assuming
that i = 1, 2 and j = n− 1, n, respectively. This subsystem consists of the
following two equations:

µA
1 (λ)x̃1,n−1(λ) + µB

n−1(λ)ỹ1,n−1(λ)

+ b̃n,n−1(λ)µ
B
n−1(λ)ỹ1n(λ) = c̃1,n−1(λ),

(18)

ãn−1,1(λ)µ
A
1 (λ)x̃1n(λ) + µA

2 (λ)x̃2n(λ) + µB
n (λ)ỹ2n(λ) = c̃2n(λ). (19)

Using the same procedure as in the previous case, we obtain the
following solution of equations (18) and (19):

x̃
(1)
1,n−1(λ), ỹ

(1)
1,n−1(λ), deg ỹ

(1)
1,n−1(λ) < degµA

1 (λ)−deg(µA
1 (λ), µ

B
n−1(λ)),

and

x̃
(1)
2n (λ), ỹ

(1)
2n (λ), deg ỹ

(1)
2n (λ) < degµA

2 (λ)− deg(µA
2 (λ), µ

B
n (λ)).

Further, we consider the next subsystem, and so on. Thus, by similar
considerations, we obtain solutions x̃ij(λ), ỹij(λ) of system (14) such that
deg ỹij(λ) < degµA

i (λ) − deg(µA
i (λ), µ

B
1 (λ)), i, j = 1, . . . , n. From these

solutions of system (14) we construct solution X̃(λ), Ỹ (λ) with conditions
(11), (12) and (13) of the matrix polynomial equation (4). This completes
the proof.
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Theorem 2. The solution X̃1(λ), Ỹ1(λ) in form (10) with conditions

(11), (12) and (13) of the matrix equation (4) is unique if and only if

(µA
n (λ), µ

B
n (λ)) = 1.

Proof. It is clear that the matrix polynomial equation (4) has unique
solution X̃1(λ), Ỹ1(λ) with conditions (11), (12) and (13) if and only
if system (14) has the corresponding unique solution. As in the proof
of Theorem 1, the solving of system (14) is reduced to the solving of
linear polynomial equations. It is known that linear polynomial equation

in form (16) has unique solution with bounded degree deg ỹ
(1)
1n (λ) <

degµA
1 (λ) − deg(µA

1 (λ), µ
B
n (λ)) if and only if (µA

1 (λ), µ
B
n (λ)) = 1. Then

system (14) has unique solution with corresponding bounded degree if
and only if (µA

i (λ), µ
B
j (λ)) = 1 for all i, j = 1, . . . , n. That is true if and

only if (µA
n (λ), µ

B
n (λ)) = 1.

Analogously we can describe the column structure of the first compo-
nent X̃(λ) of solution X̃(λ), Ỹ (λ) of equation (4).

Corollary 1. Let the matrix polynomial equation (4) be solvable. Then it

has solutions X̃1(λ) = [x̃
(1)
ij (λ)]ni,j=1, Ỹ1(λ) = [ỹ

(1)
ij (λ)]ni,j=1 such that

deg rowi(Ỹ1(λ)) < degµA
i (λ)− deg(µA

i (λ), µ
B
1 (λ)), i = 1, . . . , n,

and X̃2(λ) = [x̃
(2)
ij (λ)]ni,j=1, Ỹ2(λ) = [ỹ

(2)
ij (λ)]ni,j=1 such that

deg colj(X̃2(λ)) < degµB
j (λ)− deg(µA

1 (λ), µ
B
j (λ)), j = 1, . . . , n.

Corollary 2. Let the matrix polynomial equation (1) be solvable. Then it

has the following solutions:

(i) X1(λ), Y1(λ) such that deg Y1(λ) < degSA(λ)− deg(SA(λ), SB(λ)),
(ii) X2(λ), Y2(λ) such that degX2(λ) < degSB(λ)−deg(SA(λ), SB(λ)).

Indeed, taking into account the equality (5) between solutions of
equations (1) and (4) and a fact that Q is scalar invertible matrix, we
obtain solution (i). To obtain solution (ii) we use standard forms T̃A(λ) =
R̃A(λ)A(λ)Q̃ and T̃B(λ) = R̃B(λ)B(λ)Q̃ of matrices A(λ) and B(λ) with
respect to the right semiscalar equivalence.

Theorem 3. If (detA(λ), detB(λ)) = 1 and deg c̃ij(λ) < degµA
i (λ) +

degµB
n (λ), i, j = 1, . . . , n, then the matrix polynomial equation (4) has

the solution X̃(λ) = [x̃ij(λ)]
n
i,j=1, Ỹ (λ) = [ỹij(λ)]

n
i,j=1 such that

deg colj X̃(λ) < degµB
n (λ) and deg rowi(Ỹ (λ)) < degµA

i (λ), (20)

where i, j = 1, . . . , n, and this solution is unique.
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Proof. As in the proof of Theorem 1, we consider the subsystems of system
(14). Since (µA

1 (λ), µ
B
n (λ)) = 1, there exists the following solution of (16):

x̃
(1)
1n (λ), ỹ

(1)
1n (λ), deg x̃

(1)
1n (λ) < degµB

n (λ), deg ỹ
(1)
1n (λ) < degµA

1 (λ)

and this solution is unique.

By substituting ỹ
(1)
1n (λ) in (18) instead ỹ1n(λ), we obtain

µA
1 (λ)x̃1,n−1(λ) + µB

n−1(λ)ỹ1,n−1(λ)

= c̃1,n−1(λ)− b̃n,n−1(λ)µ
B
n−1(λ)ỹ

(1)
1n (λ).

This equation has solution x̃
(1)
1,n−1(λ), ỹ

(1)
1,n−1(λ) such that deg ỹ

(1)
1,n−1(λ) <

degµA
1 (λ). By comparing the degrees on left and on right parts of the same

equation, we obtain deg x̃
(1)
1,n−1(λ) < degµB

n (λ). This solution x̃
(1)
1,n−1(λ),

ỹ
(1)
1,n−1(λ) of equation (18) is also unique, because

(µA
1 (λ), µ

B
n−1(λ)) = 1.

In the same way, we obtain unique solution

x̃
(1)
2n (λ), ỹ

(1)
2n (λ), deg x̃

(1)
2n (λ) < degµB

n (λ), deg ỹ
(1)
2n (λ) < degµA

2 (λ)

from equation (19).

Further, we consider the next subsystem, and so on. In this way,

we obtain solutions x̃
(1)
ij (λ), ỹ

(1)
ij (λ), i, j = 1, . . . , n, of system (14) and

construct solution X̃1(λ) = [x̃
(1)
ij (λ)]ni,j=1, Ỹ1(λ) = [ỹ

(1)
ij (λ)]ni,j=1 of the

matrix polynomial equation (4) with conditions (20). This completes the
proof.

Corollary 3. The matrix polynomial equation (1), where determinants

of matrices A(λ) and B(λ) are relatively prime, has solutions:

(i) X1(λ), Y1(λ) such that deg Y1(λ) < degSA(λ);
(ii) X2(λ), Y2(λ) such that degX2(λ) < degSB(λ).

This Corollary is a generalization of results [4, 9] for the matrix poly-
nomial equation (1) where the matrix coefficients A(λ) and B(λ) can be
nonregular.
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