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Abstract. In this paper we prove that the group (Zp)
2 ×

Zq×Zr is CI-group, where p, q, r are primes such that q and r divide

p− 1, and r divides q − 1.

1. Introduction

A Cayley graph over a finite groupH defined by a connection set S ⊆ H
has H as a set of nodes and arc set Cay(H,S) := {(x, y) : y.x−1 ∈ S}. Two
Cayley graphs Cay(H,S) and Cay(K,T ) are Cayley isomorphic if there
exists a group isomorphism f : H → K which is a graph isomorphism too.

A subset S ⊆ H is called a CI-subset if for each T ⊆ H, the graphs
Cay(H,S), Cay(H,T ) are isomorphic if and only if the sets T and S are
conjugate by an element of Aut(H). A group H is called a CI-group if
each subset of H is a CI-subset.

L. Babai and P. Frankl began to investigate arbitrary CI-groups, see
[1,2]. They found several necessary conditions for a group to be a CI-group
and asked for a complete classification of CI-groups. During last few years
this problem was intensively studied by L. Nowitz, C.H. Li, M. Conder, S.
Praeger, M.Y. Xu, J.X. Meng and P.Palfy [4, 12]

In order to finish the classification of CI-groups one has to answer
two basic questions: Which groups are CI-groups and when a coprime
product of two CI-groups is a CI-group. The first question was answered
affirmatively for many groups: D2p (Babai, [2]), E(Zp, 4) (Li-Palfy, [3]),
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Zep : e 6 3 (Dobson, [4]), Z4
p (Hirasaka-Muzychuk, [9]), Z2

p × Zq (I. Kovacs

and M. Muzychuk, [11]), Z5
p (Yan Feng and I. Kovacs, [8]), Zn and Z2n

and Z4n where n is square-free odd (Muzychuk, [14]). The proofs of CI-
property for the groups H = Znp for n ∈ {4, 5} and H = Z2

p×Zq are based
on the method of S-rings. In fact, in these proofs it was checked that every
Schurian S-ring over H is a CI-S-ring. Due to the result of Hirasaka and
Muzychuk, this is sufficient for the proof that H is a CI-group. In this
paper we prove the following.

Theorem 1. The group (Zp)2 × Zq × Zr is CI-group, where p, q, r are
primes such that q and r divide p− 1, and r divides q − 1.

The text of the paper is organized in the following way. Section 2
contains a background of S-rings. In Section 3 we prove a necessary
condition for an S-ring over an abelian group H such that Sylow subgroups
of H are elementary abelian to be a CI-S-ring. In Section 4 we prove
Theorem 1.

2. Preliminaries

Let X be a nonempty finite set, Sym(X) denote to the group of all
permutations of X. And H is an arbitrary finite multiplicatively written
group with identity 1. If S ⊆ H and f ∈ Sym(H), then

Cay(H,S)f := {(xf , yf ) : (x, y) ∈ Cay(H,S)}.

The automorphism group Aut(Cay(H,S)) of a Cayley graph Cay(H,S)
consists of all permutations f ∈ Sym(H) which satisfy Cay(H,S)f =
Cay(H,S). And this group always contains the regular group HR which
consists of the right shifts hR : h ∈ H the action of which on H is
determined as follows: xhR = xh : x ∈ H.

2.1. S-rings. Let H be a finite group. We denote by ZH the group
ring of H. For a subset T ⊆ H, let T denote the group ring element
∑

x∈H axx with: ax = 1 if x ∈ T , and ax = 0 otherwise. Such elements
called simple quantities. A subring A of ZH is called a Schur ring (or
S-ring) over H if the following axioms are satisfied:

1) There exists a basis of A consisting of simple quantities T0, T1, . . . , Tr.
2) T0 = {1}, H = ∪ri=0Ti and Ti ∩ Tj = φ for 1 6 i 6= j 6 r.
3) For every i ∈ {1, 2, . . . , r} there exists j ∈ {1, 2, . . . , r} such that

T−1
i = Tj .
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The basis T0, T1, . . . , Tr are unique and are called the standard basis of A.
In this case, we adopt the notation A = 〈T0, T1, . . . , Tr〉 to convey two
essential facts: A is an S-ring and its standard basis are T0, T1, . . . , Tr.
Then the sets Ti, 0 6 i 6 r, are called the basic sets of A and we indicate
this by writing Bsets(A) = {T0, T1, . . . , Tr}.

An S-ring A′ ⊆ ZH is called S-subring of A, if every element z ∈ A′

is equal to sum of elements from A.

Let A = 〈T0, T1, . . . , Tr〉 be an S-ring over a group H. Following O.
Tamaschke [21], a subgroup F 6 H for which F ∈ A is called an A-
subgroup. There are two trivial A-subgroups: {1} and H. If Bsets(A)
= {{1}, H\{1}} then A is trivial S-ring over H.

For F is an A-subgroup, define AF := A∩ZF . It is easy to check that
AF is an S-ring over the group F and that Bsets(AF ) = {T ∈ Bsets(A) :
T ⊂ F}. Such S-rings AF are called induced S-subrings of A. If F is an A-
subgroup which is normal in H then the natural homomorphism π : H →
H/F can be canonically extended to a homomorphism ZH → ZH/F
which we shall also denote by π. We introduce the following notation:
T/F := π(T ) = {π(t) : t ∈ T} for T ⊂ H, A/F := π(A) = {π(x) :
x ∈ A}. We call A/F a quotient S-ring (over the factor group H/F ),
and from [21] A/F is an S-ring over H/F with basic sets are given by:
Bsets(A/F ) = {T/F : t ∈ Bsets(A)}.

The thin radical of an S-ring A is defined by the set Oθ(A) = {h ∈
H : {h} ∈ Bsets(A)}. It is easy to see that Oθ(A) is an A-subgroup.

Now, let G be an arbitrary group such that HR 6 G 6 Sym(H) and
let T0 = {1}, T1, . . . Td be the set of all G1-orbits, (where G1 is stabilizer
of the element 1). The vector space spanned by T0 = {1}, T1, . . . Td is
called the transitivity module of G and is denoted by V(H,G1). By ([22]),
the transitivity module V(H,G1) is an S-ring over H . But the converse is
not true, i.e., not every S-ring is the transitivity module of an appropriate
group. An S-ring over H will be called Schurian if it is the transitivity
module of some G 6 Sym(H) with HR 6 G.

An S-ring A over H is said to be cyclotomic if Bsets(A) =Orbit(K,H)
for K 6 Aut(H). In this case we write A = Cyc(K,H) and it is eassy to
see, A = V(K ·HR, H). So every cyclotomic S-ring is Schurian.

Definition 1. Let A be an S-ring over a groupH andN be an A-subgroup
such that N �H . Then A is a wreath product, notation: A = AN ≀ AH/N ,
if for every T ∈ Bsets(A) then T ⊂ N , or T is a union of N -cosets.

Definition 2. LetA be an S-ring over a groupH andE,F be A-subgroups
such that H = EF and E∩F = {e}. Then A is a tensor product, notation:
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A = AE ⊗ AF if for every T ∈ Bsets(A), if T * E ∪ F then T = RS
where R ∈ Bsets(A)∩E and S ∈ Bsets(A)∩F .

Consequently, if A is an S-ring over the direct product H = E × F
such that both E and F are A-subgroups and AE = ZE or AF = ZF ,
then A = AE ⊗AF .

We say that an S-ring A over a group H is a p-S-ring if H is a p-group,
and all basic sets T ∈ Bset(A) have p-power size. Following [9], If A be a
p-S-ring over elementary abelian group Znp then we have: If n = 1 then

A = ZH; And if n = 2 then A = ZCp ≀ ZCp or A = ZC2
p . And every

p-S-ring over Znp where n = 1, 2, 3 is cyclotomic.

Lemma 1. [11] Let H be an abelian group, G 6 Sym(H) such that
HR 6 G, And let A = V(H,G1). If E 6 H is an A-subgroup such that
H/E is a p-subgroup, Then A/E is a p-S-ring.

2.2. Isomorphisms of S-rings. Denote by Iso(A) the set of all iso-
morphisms from A to S-rings over H, that is:

Iso(A) =

{

f ∈ Sym(H) : f is an isomorphism from A
onto an S-ring over H

}

.

And let Iso1(A) = {f ∈ Iso(A) : 1f = 1}. Note that, Iso(A) ⊆ Sym(H),
but it is not necessarily a subgroup. It follows from the definition that
for any f ∈ Aut(A) and g ∈ Aut(H), their product fg is an isomorphism
from A to an S-ring over H. Therefore, Aut(A).Aut(H) ⊆ Iso(A). Now,
we say that A is a CI-S-ring, if Iso(A) = Aut(A)Aut(H). This definition
was given by Hirasaka and Muzychuk in [9] where the following theorem
is proved.

Theorem 2. Let H be an abellian group, then H is CI-group if and only
if every Schurian S-rings over H is CI-S-ring.

Therefore, instead of Theorem 1, we prove the following theorem:

Theorem 3. Let H = (Zp)2 × Zq × Zr, where p, q, r are primes such
that q and r divide p− 1, and r divides q − 1. Let A = V(H,G1) where
G 6 Sym(H) and HR 6 G then A is CI-S-ring.

Let G, G′ 6 Sym(H), then G and G′ are called 2-equivalent if
Orbit(G,H ×H)=Orbit(G′, H ×H), and we write G ≈

2
G′ in this case. If

A = V(H,G1) for some G 6 Sym(H) with HR 6 G then Aut(A) is the
largest group which is 2-equivalent to G. If A is an S-ring over H then we



“adm-n3” — 2019/10/20 — 9:35 — page 24 — #26

24 CI-property for the group (Zp)
2 × Zq × Zr

put AutH(A) = Aut(A)∩Aut(H). If K1, K2 6 Aut(H) then K1 and K2

are called Cayley equivalent if Orbit(K1,H) = Orbit(K2,H), and then we
write K1 ≈

Cay
K2. If A = Cyc(K,H) for some K 6 Aut(H) with HR 6 K,

then AutH(A) is the largest group which is Cayley equivalent to K. So a
cyclcotomic S-ring A over H is called Cayley minimal if

{K 6 Aut(H) : K ≈
Cay

AutH(A)} = {AutH(A)}.

It easy to see that the trivial S-ring ZH is Cayley minimal, and every
cyclotomic S-ring over Zn is Cayley minimal. If q|p − 1 then the group
Aut(Zp × Zq) can be embedded into Aut(Zp). Therefore, if q|p− 1 then
every S-ring over Zp × Zq is cyclotomic and Cayley minimal.

3. Generalized wreath product

Let A be an S-ring over a group H and E, F be A-subgroups such that
E 6 F and E is normal in H . Then A is a generalized wreath product (or
wedge product), A = AF ≀F/E AH/E if for every T ∈ Bsets(A) such that
T * F , T is a union of E-cosets. And A is non-trivial generalized wreath
product if E 6= 1 and F 6= H, in this case, S = F/E is called A-section.

Let H and H ′ be finite groups. For a bijection f : H → H ′ and a set
X ⊆ H , the induced bijection from X onto Xf is denoted by fX . For a set
△ ⊆ Sym(H) and a section S of H we set △S = {fS : f ∈ △, Sf = S}.
If S is an A-section then, AutH(A)S 6 AutS(AS). In 2013 Evdokimov
and Ponomarenko proved the following theorem [15].

Theorem 4. Let A be an S-ring over an Abelian group H. Suppose A =
AF ≀F/EAH/E for A subgroups E, F of H. Then A is Schurian if and only
if so are the S-rings AH/F and AF and there exist △F and △H/E satisfying

FR 6 △F 6 Aut(AF ) and (H/E)R 6 △H/E 6 Aut(AH/E), (△F )
F/E =

(△H/E)
F/E such that △F ≈

2
Aut(AF ) and △H/E ≈

2
Aut(AH/E). In this

case Aut(A) ≈
2
Aut(AF ) ≀F/E Aut(AH/E).

Therefore, we conclude the following.

Theorem 5. Let H be an abelian group such that Sylow subgroups of H
are elementary abelian, and let A be an S-ring over H, such that A =
AF ≀F/E AH/E for A subgroups E, F of H. Suppose AF and AH/E are
CI-S-rings and

AutF ((AF )
F/E) = AutF/E((AF/E)) = AutH/E((AH/E)

F/E)

then A is CI-S-ring.
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Proof. Let A′ be an S-ring over H, and f ∈ Iso(A,A′). By lemma (5.5)
of [18], A′ is F ′/E′-wreath product, where E′ = Ef and F ′ = F f . But H
is abelian group, so we can found an τ ∈ Aut(H) : Ef = Eτ , F f = F τ .
Therefore, we can take f.τ−1 without f . So A′ is F/E-wreath product.
And fF ∈ Iso(AF ,A

′

F ), f
H/E ∈ Iso(AH/E ,A

′

H/E). But AF and AH/E

are CI-S-rings. So fF = ϕσ1 : ϕ ∈ Aut(AF ), σ1 ∈ Aut(F ), and fH/E =
ψσ0 : ψ ∈ Aut(AH/E), σ0 ∈ Aut(H/E). By the condition of the theorem

we have fF/E = σ
F/E
1 = σ

F/E
0 , and so ϕF/E = ψF/E .

Because H is abelian group such that sylow subgroups of H are
elementary abelian, we can write H = D × F and F = V × E.

Now, let D = 〈x1〉×· · ·×〈xt〉 and (xiE)ψ = diviE, where di ∈ D and
vi ∈ V , i ∈ {1, 2, .., t}. We note that the elements di.vi : i = 0, 1, 2, . . . , t
generate the group D′, where D′ ∩ F = {e}. We can found α ∈ Aut(H)
such that αF = ϕ, (xi)

α = di.vi : i = 1, 2, . . . , t. Therefore we have
Eα = E, Fα = F and (dL)ψ = dαL.

Now, let T ∈ Bsets(A). If T ⊆ F then T f = Tα by the definition of α.
If T * F then T = d1v1E ∪ d2v2E · · · ∪ dtvtE. So,

Tα = (d1)
α(v1)

αE ∪ (d2)
α(v2)

αE ∪ · · · ∪ (dt)
α(vt)

αE

= (d1)
α(v1)

ϕE ∪ (d2)
α(v2)

ϕE ∪ · · · ∪ (dt)
α(vt)

ϕE

= (d1)
α(v1E)ϕ ∪ (d2)

α(v2E)ϕ ∪ · · · ∪ (dt)
α(vtE)ϕ.

But ϕF/E = ψF/E . So

Tα = (d1)
α(v1E)ψ ∪ (d2)

α(v2E)ψ ∪ · · · ∪ (dt)
α(vtE)ψ

= (d1E)α(v1E)ψ ∪ (d2E)α(v2E)ψ ∪ · · · ∪ (dtE)α(vtE)ψ

= (d1E)ψ(v1E)ψ ∪ (d2E)ψ(v2E)ψ ∪ · · · ∪ (dtE)ψ(vtE)ψ

= (d1v1E ∪ d2v2E ∪ · · · ∪ dtvtE)ψ = Tψ.

Consequently, Tα/E = Tψ/E = (T/E)ψ = (T/E)f
H/E

= (T/E)f . Since
T is a union of E-cosets, then T is a union of Eα-cosets, and Eα = E, we
found that Tα = T f . Consequently, T fα

−1

= T , so fα−1 ∈ Aut(A), and
f ∈ Aut(A)α ⊆ Aut(A).Aut(H). And, So A is CI-S-ring.

Now, let H be an abelian group such that Sylow subgroups of H
are elementary abelian, and suppose A be an S-ring over H, such that
A = AF ≀F/E AH/E , and AF , AH/E are CI-S-ring. Then we have

Lemma 2. If AF/E = Z(F/E) then A is CI-S ring.
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Proof. If AF/E = Z(F/E) then Aut(AF/E) is trivial. But we have

AutF ((AF )
F/E) 6 AutF/E(AF/E). So AutF ((AF )

F/E) = AutF/E(AF/E).
By theorem 5, A is CI-S-ring.

Lemma 3. If AF/E is Cayley minimal then A is CI-S ring.

Proof. We have AutF (AF )
F/E 6 AutF/E(AF/E). So, if AF/E is Cayley

minimal, then AutF (AF )
F/E = AutF/E(AF/E). Therefore, by theorem 5,

A is CI-S-ring.

Lemma 4. If AF/E = ZCp ≀ ZCp then A is CI-S ring.

Proof. If AF/E = ZCp≀ZCp, then AF/E is cyclotomic, and |Oθ(AF/E)| = p.
By proposition(4.3) of [6],we have AF/E is Cayley minimal and by lemma 3,
A is CI-S ring.

4. S-rings over (Cp)
2
× Cq × Cr

Let H =M ×P where M is an abelian group and P = Cp with prime
p coprime to the order of M . And let A be an S-ring over H, then we
have the next lemma:

Lemma 5. [16] If there exist a maximal A-subgroup N contained in M
such that N 6=M , then one of the following statements holds:

1) A = AN ≀ AH/N where rank(AH/N )=2.
2) A is a F/E-wreath product for A-subgroups F,E 6 H such that

P 6 E < H and F = PN .

Therefore, If M is not A-subgroup then the Hypothese of Lemma 5
is satisfied. So one of two statements of that lemma holds. If M is an
A-subgroup while P is not, then by lemma 1, A/M = ZCp. But the prime
p coprime to the order of M . So every T ∈ Bsets(A) with T ∩M = φ is
equal to M -coset. This gives us that A = AM ≀ A/M .

If M and P are A-subgroups, then by lemma 1, A/M = ZCp. But
AP = ZCp. So in this case A = AM ⊗ ZCp. Consequently, we have the
next lemma:

Lemma 6. Let H = (Cp)
2 × Cq × Cr and A is an S-ring over H. Then

one of the following statements holds:

1) A is F/E-wreath product for A-subgroups F,E 6 H.
2) There exist A-subgroups H1, H2 6 H such that A = AH1

⊗AH2
.
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5. Proof of theorem 3

Now let H = (Cp)
2 × Cq × Cr and G 6 Sym(H) such that HR 6 G.

Suppose A = V(H,G1). Then we have:

Lemma 7. A is CI-S-ring.

Proof. By lemma 6, suppose at first A is E/F -wreath product for A-
subgroups F ,E of H. Then |E/F | = 1, p, q, r or p2 or pq , pr , qr. If AF/E

is p-S-ring then we have:
Case (1): |E/F | = p, q, r. So AF/E = Z(F/E). By lemma 2, A is

CI-S-ring.
Case (2): |E/F | = p2. Then either AF/E = ZC2

p and by lemma 2, A
is CI-S-ring, or AF/E = ZCp ≀ ZCp, so AF/E is Cayley minimal and by
lemma 3, A is CI-S-ring. If AF/E is not p-S-ring then AF/E is an S-ring

over group of order p, q, r or p2 or pq , pr , qr. By our conditions on the
numbers p, q, r, AF/E is cyclotomic and so AF/E is Cayley minimal. By
lemma 3, A is CI-S-ring.

If |F/E| = 1, then A is a wreath product of two proper S-rings over
subgroups of H, but from [11] and [14] we can see that every proper
subgroup of H is CI-group, thus by theorm 2, every schurian S-ring over a
proper subgroup of H is a CI-S-ring, and A is CI-S-ring. now suppose A
is not E/F -wreath product. If A is a direct product A = A1 ×A2, where
A1, A2 are S-rings over subgroups of H, then A1 and A2 are CI-S-rings
by theorm 2, and then A is CI-S-ring.

By lemma 7 we complete the proof of theorem 3.
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