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ABSTRACT. In this paper we prove that the group (Z,)? x
Zq % Zy is Cl-group, where p, g, r are primes such that ¢ and r divide
p—1, and r divides ¢ — 1.

1. Introduction

A Cayley graph over a finite group H defined by a connection set S C H
has H as a set of nodes and arc set Cay(H, S) := {(z,y) : y.x~! € S}. Two
Cayley graphs Cay(H,S) and Cay(K,T) are Cayley isomorphic if there
exists a group isomorphism f : H — K which is a graph isomorphism too.

A subset S C H is called a Cl-subset if for each T' C H, the graphs
Cay(H, S), Cay(H,T) are isomorphic if and only if the sets 7" and S are
conjugate by an element of Aut(H). A group H is called a Cl-group if
each subset of H is a Cl-subset.

L. Babai and P. Frankl began to investigate arbitrary Cl-groups, see
[1,2]. They found several necessary conditions for a group to be a Cl-group
and asked for a complete classification of Cl-groups. During last few years
this problem was intensively studied by L. Nowitz, C.H. Li, M. Conder, S.
Praeger, M.Y. Xu, J.X. Meng and P.Palfy [4,12]

In order to finish the classification of Cl-groups one has to answer
two basic questions: Which groups are Cl-groups and when a coprime
product of two Cl-groups is a Cl-group. The first question was answered
affirmatively for many groups: Ds, (Babai, 2]), E(Z,,4) (Li-Palfy, [3]),
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Zy e < 3 (Dobson, [4]), Zg (Hirasaka-Muzychuk, [9]), Z2 x Zq (I. Kovacs
and M. Muzychuk, [11]), Zg (Yan Feng and I. Kovacs, [8]), Z,, and Za,
and Z4, where n is square-free odd (Muzychuk, [14]). The proofs of CI-
property for the groups H = Zj for n € {4,5} and H = Zg X Zq are based
on the method of S-rings. In fact, in these proofs it was checked that every
Schurian S-ring over H is a CI-S-ring. Due to the result of Hirasaka and
Muzychuk, this is sufficient for the proof that H is a Cl-group. In this
paper we prove the following.

Theorem 1. The group (Zy)? x Zq x Z, is Cl-group, where p,q,r are
primes such that ¢ and r divide p — 1, and r divides g — 1.

The text of the paper is organized in the following way. Section 2
contains a background of S-rings. In Section 3 we prove a necessary
condition for an S-ring over an abelian group H such that Sylow subgroups
of H are elementary abelian to be a CI-S-ring. In Section 4 we prove
Theorem 1.

2. Preliminaries

Let X be a nonempty finite set, Sym(X) denote to the group of all
permutations of X. And H is an arbitrary finite multiplicatively written
group with identity 1. If S C H and f € Sym(H), then

Cay(H, S)f = {(xf,yf) :(x,y) € Cay(H, S)}.

The automorphism group Aut(Cay(H,S)) of a Cayley graph Cay(H, S)
consists of all permutations f € Sym(H) which satisfy Cay(H,S)/ =
Cay(H, S). And this group always contains the regular group Hpr which
consists of the right shifts hgp : h € H the action of which on H is
determined as follows: "% = zh : x € H.

2.1. S-rings. Let H be a finite group. We denote by ZH the group
ring of H. For a subset T' C H, let T denote the group ring element
erH azx with: a, = 1 if x € T, and a, = 0 otherwise. Such elements
called simple quantities. A subring A of ZH is called a Schur ring (or
S-ring) over H if the following axioms are satisfied:

1) There exists a basis of A consisting of simple quantities Ty, 71, . . ., T

2) To={1}, H=U_Tiand T; NTj =¢ for 1 <i# j<r.

3) For every i € {1,2,...,r} there exists j € {1,2,...,r} such that
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The basis Ty, T4, ... ,T; are unique and are called the standard basis of A.
In this case, we adopt the notation A = (Tp,T1,...,T,) to convey two
essential facts: A is an S-ring and its standard basis are Ty, T1,... ,7;.
Then the sets T;, 0 < ¢ < r, are called the basic sets of A and we indicate
this by writing Bsets(A) = {To,T1, ..., T}

An S-ring A’ C ZH is called S-subring of A, if every element z € A’
is equal to sum of elements from A.

Let A = (Ty, Ty, ... ,T;) be an S-ring over a group H. Following O.
Tamaschke [21], a subgroup F' < H for which F € A is called an A-
subgroup. There are two trivial A-subgroups: {1} and H. If Bsets(.A)
= {{1}, H\{1}} then A is trivial S-ring over H.

For F'is an A-subgroup, define Ap := ANZF'. It is easy to check that
Ap is an S-ring over the group F' and that Bsets(Ap) = {T € Bsets(A) :
T C F'}. Such S-rings Ap are called induced S-subrings of A. If F'is an A-
subgroup which is normal in H then the natural homomorphism 7 : H —
H/F can be canonically extended to a homomorphism ZH — ZH/F
which we shall also denote by 7m. We introduce the following notation:
T/F :=n(T) ={xn(t) : t € T} for T C H, A/F := w(A) = {rn(x) :
x € A}. We call A/F a quotient S-ring (over the factor group H/F),
and from [21] A/F is an S-ring over H/F with basic sets are given by:
Bsets(A/F) = {T/F : t € Bsets(A)}.

The thin radical of an S-ring A is defined by the set Og(A) = {h €
H : {h} € Bsets(A)}. It is easy to see that Oy(A) is an A-subgroup.

Now, let G be an arbitrary group such that Hp < G < Sym(H) and
let Ty = {1}, T1,...Ty be the set of all G1-orbits, (where G is stabilizer
of the element 1). The vector space spanned by Ty = {1}, T4,...Ty is
called the transitivity module of G and is denoted by V(H, G1). By (|22]),
the transitivity module V(H, G1) is an S-ring over H. But the converse is
not true, i.e., not every S-ring is the transitivity module of an appropriate
group. An S-ring over H will be called Schurian if it is the transitivity
module of some G < Sym(H) with Hr < G.

An S-ring A over H is said to be cyclotomic if Bsets(.A) =Orbit(K, H)
for K < Aut(H). In this case we write A = Cyc(K, H) and it is eassy to
see, A=V(K - Hg, H). So every cyclotomic S-ring is Schurian.

Definition 1. Let A be an S-ring over a group H and N be an A-subgroup
such that N < H. Then A is a wreath product, notation: A = An VAy)n;,
if for every T € Bsets(A) then 7' C N, or T' is a union of N-cosets.

Definition 2. Let A be an S-ring over a group H and F, F' be A-subgroups
such that H = EF and ENF = {e}. Then A is a tensor product, notation:
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A= Ap ® Ap if for every T € Bsets(A), if T ¢ EUF then T = RS
where R € Bsets(A)NE and S € Bsets(A)NF.

Consequently, if A is an S-ring over the direct product H = E x F'
such that both F and F' are A-subgroups and Ap = ZF or Ap = ZF,
then A = Ap @ Ap.

We say that an S-ring A over a group H is a p-S-ring if H is a p-group,
and all basic sets T € Bset(.A) have p-power size. Following (9], If A be a
p-S-ring over elementary abelian group Z; then we have: If n =1 then
A =7ZH; And if n = 2 then A = ZC, 1 ZC), or A = ZC’;. And every
p-S-ring over Z; where n = 1,2,3 is cyclotomic.

Lemma 1. [11] Let H be an abelian group, G < Sym(H) such that
Hp < G, And let A =V(H,Gy). If E < H is an A-subgroup such that
H/E is a p-subgroup, Then A/FE is a p-S-ring.

2.2. Isomorphisms of S-rings. Denote by Iso(A) the set of all iso-
morphisms from A to S-rings over H, that is:

Iso(A) = { f € Sym(H) : f is an isomorphism from 4 } ‘

onto an S-ring over H

And let Tso; (A) = {f € Iso(A) : 1/ = 1}. Note that, Iso(A) C Sym(H),
but it is not necessarily a subgroup. It follows from the definition that
for any f € Aut(A) and g € Aut(H), their product fg is an isomorphism
from A to an S-ring over H. Therefore, Aut(A). Aut(H) C Iso(.A). Now,
we say that A is a CI-S-ring, if Iso(.A) = Aut(A) Aut(H). This definition
was given by Hirasaka and Muzychuk in [9] where the following theorem
is proved.

Theorem 2. Let H be an abellian group, then H is Cl-group if and only
if every Schurian S-rings over H is CI-S-ring.

Therefore, instead of Theorem 1, we prove the following theorem:

Theorem 3. Let H = (Z,)? X Zy X Z,, where p,q,7 are primes such
that q and r divide p — 1, and r divides ¢ — 1. Let A = V(H,G1) where
G < Sym(H) and Hr < G then A is CI-S-ring.

Let G, G’ < Sym(H), then G and G’ are called 2-equivalent if
Orbit(G, H x H)=0rbit(G', H x H), and we write G s G’ in this case. If

A=V(H,G;) for some G < Sym(H) with Hr < G then Aut(A) is the
largest group which is 2-equivalent to G. If A is an S-ring over H then we
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put Auty(A) = Aut(A) NAut(H). If Ky, Ko < Aut(H) then Ky and K

are called Cayley equivalent if Orbit(K;,H) = Orbit(Ko,H), and then we

write K Z K. If A= Cyc(K, H) for some K < Aut(H) with Hr < K,
ay

then Autg(.A) is the largest group which is Cayley equivalent to K. So a
cyclcotomic S-ring A over H is called Cayley minimal if

{K < Aut(H): K = Autg(A)} = {Auty(A)}.
ay

It easy to see that the trivial S-ring ZH is Cayley minimal, and every
cyclotomic S-ring over Z, is Cayley minimal. If ¢|p — 1 then the group
Aut(Z, x Zq) can be embedded into Aut(Z,). Therefore, if g|p — 1 then
every S-ring over Z, X Zq is cyclotomic and Cayley minimal.

3. Generalized wreath product

Let A be an S-ring over a group H and E, F' be A-subgroups such that
E < F and E is normal in H. Then A is a generalized wreath product (or
wedge product), A = Ap lp/p Apyp if for every T' € Bsets(A) such that
T ¢ F, T is a union of E-cosets. And A is non-trivial generalized wreath
product if £ # 1 and F' # H, in this case, S = F//FE is called A-section.

Let H and H' be finite groups. For a bijection f : H — H' and a set
X C H, the induced bijection from X onto X/ is denoted by f¥X. For a set
A C Sym(H) and a section S of H we set A° = {f°: fe A, S/ =S}
If S is an A-section then, Auty(A)° < Autg(Ag). In 2013 Evdokimov
and Ponomarenko proved the following theorem [15].

Theorem 4. Let A be an S-ring over an Abelian group H. Suppose A =
Arlp g Amye for A subgroups E, F' of H. Then A is Schurian if and only
if so are the S-rings Ay p and Ar and there exist Ap and Ay g satisfying

Fr < Ap < Aut(Ap) and (H/E)g < Ay < Aut(Ag g), (Ap)f/F =
(AH/E)F/E such that Ap ~ Aut(Ar) and Ay /g = Aut(Ap/g). In this
case Aut(A) 5 Aut(Ar) tp/p Aut(Ay g).

Therefore, we conclude the following.
Theorem 5. Let H be an abelian group such that Sylow subgroups of H
are elementary abelian, and let A be an S-ring over H, such that A =

Ar tp/g Ary/g for A subgroups E, F' of H. Suppose A and Ap/p are
CI-S-rings and

Autp((Ap)T/P) = Autp/p((Ap/E)) = AUtH/E((AH/E)F/E)

then A is CI-S-ring.
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Proof. Let A’ be an S-ring over H, and f € Iso(A, A’). By lemma (5.5)
of [18], A’ is F’/E'-wreath product, where E' = Ef and F' = F/. But H
is abelian group, so we can found an 7 € Aut(H) : B/ = E", F/ = F".
Therefore, we can take f.7—! without f. So A’ is F//E-wreath product.
And ' € Tso(Ar, AR), f1/F € Tso(Ap/p, Ay ). But Ap and Ag,p
are CI-S-rings. So f¥ = po; : ¢ € Aut(Ap), 0, € Aut(F), and fH/F =
Yoo 1P € Aut(Ay)p), 00 € Aut(H/E). By the condition of the theorem
we have fF/E = af/E = O'(I;/E, and so @f/E = F/E

Because H is abelian group such that sylow subgroups of H are
elementary abelian, we can write H =D X F and F =V x E.

Now, let D = (1) x --- x (z) and (2;E)¥ = d;v; £, where d; € D and
v; € V,ie{1,2,..,t}. We note that the elements d;.v; : i =0,1,2,...,¢
generate the group D', where D' N F = {e}. We can found o € Aut(H)
such that of = ¢, (2;)® = djv; : i = 1,2,...,t. Therefore we have
E*=F, F*=F and (dL)¥ = d“L.

Now, let 7' € Bsets(A). If T C F then T/ = T by the definition of a.
Iftr Q F then T' = dijvi EUdsvoE -+ - U dive . So,

T% = (d1)%(v1)*E U (d2)*(v2)*E U -+ - U (dy)* ()" E

= (d)*(v1)*E U (d2)*(v2)?E U - U (di)*(ve) E
= (d))*(01E)? U (d2)*(v2E)? U -+ - U (dy)* (v, E)?.

But of/E = F/E_So

i E)Y (1 E)Y U (daE)* (v E)Y U - - - U (dy E)* (v E)Y
A E)Y (11 E)’ U (doB)¥ (v2E) U -+ U (diE)Y (0 E)Y

T = (d))* (01 E)Y U (d2)* (02 )Y U - - - U (dy)* (v, E)¥
= (
= (
= (i EUdyvaE U --- Udy, E)Y = TY.
Consequently, T%/E = TV /E = (T/E)¥ = (T/E)fH/E = (T/E)/. Since
T is a union of E-cosets, then T is a union of F%-cosets, and E“ = F, we
found that T = T7. Consequently, T/ ' = T, so fa=! € Aut(A), and
f € Aut(A)a C Aut(A). Aut(H). And, So A is CI-S-ring. O

Now, let H be an abelian group such that Sylow subgroups of H
are elementary abelian, and suppose A be an S-ring over H, such that
A= Arp/p An/p, and A, Ay/p are CI-S-ring. Then we have

Lemma 2. If Ap/p = Z(F/E) then A is CI-S ring.
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Proof. If Ap/p = Z(F/E) then Aut(Ap/g) is trivial. But we have
AutF((AF)F/E) < AUtF/E(AF/E) So AutF((AF)F/E) = AUtF/E(AF/E)
By theorem 5, A is CI-S-ring. O

Lemma 3. If Ap/p is Cayley minimal then A is CI-S ring.

Proof. We have Autp(Ap)f/F < Autp p(Arp/g). So, if Ap/p is Cayley
minimal, then Autp(Ap)f/F = Autp p(Ap/g). Therefore, by theorem 5,
A is CI-S-ring. O

Lemma 4. If Ap/p = ZC, 1 ZC), then A is CI-S ring.

Proof. It Ap/p = ZCRZC), then A g is cyclotomic, and [Op(Ag,g)| = p.
By proposition(4.3) of [6],we have A, g is Cayley minimal and by lemma 3,
A is CI-S ring. O

4. S-rings over (Cp)? X C, x C,

Let H = M x P where M is an abelian group and P = (), with prime
p coprime to the order of M. And let A be an S-ring over H, then we
have the next lemma:

Lemma 5. [16] If there exist a mazimal A-subgroup N contained in M
such that N # M, then one of the following statements holds:
1) A= AN U Ag/N where rank(Ag/n) =2
2) A is a F/E-wreath product for A-subgroups F,E < H such that
P<E<H and F = PN.

Therefore, If M is not A-subgroup then the Hypothese of Lemma 5
is satisfied. So one of two statements of that lemma holds. If M is an
A-subgroup while P is not, then by lemma 1, A/M = ZC,. But the prime
p coprime to the order of M. So every T' € Bsets(A) with TN M = ¢ is
equal to M-coset. This gives us that A = Ay 2 A/M.

If M and P are A-subgroups, then by lemma 1, A/M = ZC,. But
Ap = ZC,. So in this case A = Ay; ® ZC),. Consequently, we have the
next lemma:

Lemma 6. Let H = (C,)? x Cy x Cy. and A is an S-ring over H. Then
one of the following statements holds:

1) A is F/E-wreath product for A-subgroups F,E < H.

2) There exist A-subgroups Hy, Hy < H such that A = Ay, ® Ap,.
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5. Proof of theorem 3

Now let H = (C,)? x Cy x C; and G < Sym(H) such that Hr < G.
Suppose A = V(H,G1). Then we have:

Lemma 7. A is CI-S-ring.

Proof. By lemma 6, suppose at first A is E/F-wreath product for A-
subgroups F,E of H. Then |E/F|=1,p,q,r or p* or pq,pr,qr. If Ar/E
is p-S-ring then we have:

Case (1): |E/F| = p,q,r. So Ap/p = Z(F/E). By lemma 2, A is
CI-S-ring.

Case (2): |[E/F| = p®. Then either Ap/p = ZC} and by lemma 2, A
is CI-S-ring, or Ap/p = ZCp L ZCy, so Ap/g is Cayley minimal and by
lemma 3, A is CI-S-ring. If Ag/p is not p-S-ring then Ap/p is an S-ring
over group of order p,q,r or p? or pq,pr,qr. By our conditions on the
numbers p, q,7, Ap/g is cyclotomic and so Ap/g is Cayley minimal. By
lemma 3, A is CI-S-ring.

If |F/E| =1, then A is a wreath product of two proper S-rings over
subgroups of H, but from [11] and [14] we can see that every proper
subgroup of H is Cl-group, thus by theorm 2, every schurian S-ring over a
proper subgroup of H is a CI-S-ring, and A is CI-S-ring. now suppose A
is not E'/F-wreath product. If A is a direct product A = A; x Ay, where
A1, Ag are S-rings over subgroups of H, then A; and Ay are CI-S-rings
by theorm 2, and then A is CI-S-ring. O

By lemma 7 we complete the proof of theorem 3.
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