Algebra and Discrete Mathematics
Volume 28 (2019). Number 1, pp. 20–28
(c) Journal "Algebra and Discrete Mathematics"

CI-property for the group $(\mathbb{Z}_p)^2 \times \mathbb{Z}_q \times \mathbb{Z}_r$

Eskander Ali and Ahed Hassoon

Communicated by I. Ya. Subbotin

ABSTRACT. In this paper we prove that the group $(\mathbb{Z}_p)^2 \times \mathbb{Z}_q \times \mathbb{Z}_r$ is CI-group, where p, q, r are primes such that q and r divide p-1, and r divides q-1.

1. Introduction

A Cayley graph over a finite group H defined by a connection set $S \subseteq H$ has H as a set of nodes and arc set $\operatorname{Cay}(H, S) := \{(x, y) : y : x^{-1} \in S\}$. Two Cayley graphs $\operatorname{Cay}(H, S)$ and $\operatorname{Cay}(K, T)$ are Cayley isomorphic if there exists a group isomorphism $f : H \to K$ which is a graph isomorphism too.

A subset $S \subseteq H$ is called a CI-subset if for each $T \subseteq H$, the graphs $\operatorname{Cay}(H, S)$, $\operatorname{Cay}(H, T)$ are isomorphic if and only if the sets T and S are conjugate by an element of $\operatorname{Aut}(H)$. A group H is called a CI-group if each subset of H is a CI-subset.

L. Babai and P. Frankl began to investigate arbitrary CI-groups, see [1,2]. They found several necessary conditions for a group to be a CI-group and asked for a complete classification of CI-groups. During last few years this problem was intensively studied by L. Nowitz, C.H. Li, M. Conder, S. Praeger, M.Y. Xu, J.X. Meng and P.Palfy [4,12]

In order to finish the classification of CI-groups one has to answer two basic questions: Which groups are CI-groups and when a coprime product of two CI-groups is a CI-group. The first question was answered affirmatively for many groups: D_{2p} (Babai, [2]), $E(\mathbb{Z}_p, 4)$ (Li-Palfy, [3]),

²⁰¹⁰ MSC: 05C25, 05C60.

Key words and phrases: CI-groups, Schur ring, wreath product.

 $\mathbb{Z}_p^e: e \leq 3$ (Dobson, [4]), \mathbb{Z}_p^4 (Hirasaka-Muzychuk, [9]), $\mathbb{Z}_p^2 \times \mathbb{Z}_q$ (I. Kovacs and M. Muzychuk, [11]), \mathbb{Z}_p^5 (Yan Feng and I. Kovacs, [8]), \mathbb{Z}_n and \mathbb{Z}_{2n} and \mathbb{Z}_{4n} where *n* is square-free odd (Muzychuk, [14]). The proofs of CIproperty for the groups $H = \mathbb{Z}_p^n$ for $n \in \{4, 5\}$ and $H = \mathbb{Z}_p^2 \times \mathbb{Z}_q$ are based on the method of S-rings. In fact, in these proofs it was checked that every Schurian S-ring over *H* is a CI-S-ring. Due to the result of Hirasaka and Muzychuk, this is sufficient for the proof that *H* is a CI-group. In this paper we prove the following.

Theorem 1. The group $(\mathbb{Z}_p)^2 \times \mathbb{Z}_q \times \mathbb{Z}_r$ is CI-group, where p, q, r are primes such that q and r divide p - 1, and r divides q - 1.

The text of the paper is organized in the following way. Section 2 contains a background of S-rings. In Section 3 we prove a necessary condition for an S-ring over an abelian group H such that Sylow subgroups of H are elementary abelian to be a CI-S-ring. In Section 4 we prove Theorem 1.

2. Preliminaries

Let X be a nonempty finite set, $\operatorname{Sym}(X)$ denote to the group of all permutations of X. And H is an arbitrary finite multiplicatively written group with identity 1. If $S \subseteq H$ and $f \in \operatorname{Sym}(H)$, then

$$Cay(H, S)^f := \{ (x^f, y^f) : (x, y) \in Cay(H, S) \}.$$

The automorphism group Aut(Cay(H, S)) of a Cayley graph Cay(H, S) consists of all permutations $f \in \text{Sym}(H)$ which satisfy Cay(H, S)^f = Cay(H, S). And this group always contains the regular group H_R which consists of the right shifts $h_R : h \in H$ the action of which on H is determined as follows: $x^{h_R} = xh : x \in H$.

2.1. S-rings. Let H be a finite group. We denote by $\mathbb{Z}H$ the group ring of H. For a subset $T \subseteq H$, let \underline{T} denote the group ring element $\sum_{x \in H} a_x \underline{x}$ with: $a_x = 1$ if $x \in T$, and $a_x = 0$ otherwise. Such elements called simple quantities. A subring \mathcal{A} of $\mathbb{Z}H$ is called a Schur ring (or S-ring) over H if the following axioms are satisfied:

- 1) There exists a basis of \mathcal{A} consisting of simple quantities $\underline{T_0}, \underline{T_1}, \ldots, \underline{T_r}$.
- 2) $T_0 = \{1\}, H = \bigcup_{i=0}^r T_i \text{ and } T_i \cap T_j = \phi \text{ for } 1 \leq i \neq j \leq r.$
- 3) For every $i \in \{1, 2, ..., r\}$ there exists $j \in \{1, 2, ..., r\}$ such that $\underline{T_i^{-1}} = \underline{T_j}$.

The basis $\underline{T}_0, \underline{T}_1, \ldots, \underline{T}_r$ are unique and are called the standard basis of \mathcal{A} . In this case, we adopt the notation $\mathcal{A} = \langle T_0, T_1, \ldots, T_r \rangle$ to convey two essential facts: \mathcal{A} is an S-ring and its standard basis are $\underline{T}_0, \underline{T}_1, \ldots, \underline{T}_r$. Then the sets $T_i, 0 \leq i \leq r$, are called the basic sets of \mathcal{A} and we indicate this by writing $\text{Bsets}(\mathcal{A}) = \{T_0, T_1, \ldots, T_r\}$.

An S-ring $\mathcal{A}' \subseteq \mathbb{Z}H$ is called S-subring of \mathcal{A} , if every element $z \in \mathcal{A}'$ is equal to sum of elements from \mathcal{A} .

Let $\mathcal{A} = \langle T_0, T_1, \ldots, T_r \rangle$ be an S-ring over a group H. Following O. Tamaschke [21], a subgroup $F \leq H$ for which $\underline{F} \in \mathcal{A}$ is called an \mathcal{A} -subgroup. There are two trivial \mathcal{A} -subgroups: {1} and H. If Bsets(\mathcal{A}) = {{1}, $H \setminus \{1\}$ then \mathcal{A} is trivial S-ring over H.

For F is an A-subgroup, define $A_F := A \cap \mathbb{Z}F$. It is easy to check that \mathcal{A}_F is an S-ring over the group F and that $\operatorname{Bsets}(\mathcal{A}_F) = \{T \in \operatorname{Bsets}(\mathcal{A}) : T \subset F\}$. Such S-rings \mathcal{A}_F are called induced S-subrings of \mathcal{A} . If F is an \mathcal{A} -subgroup which is normal in H then the natural homomorphism $\pi : H \to H/F$ can be canonically extended to a homomorphism $\mathbb{Z}H \to \mathbb{Z}H/F$ which we shall also denote by π . We introduce the following notation: $T/F := \pi(T) = \{\pi(t) : t \in T\}$ for $T \subset H, \mathcal{A}/F := \pi(\mathcal{A}) = \{\pi(x) : x \in \mathcal{A}\}$. We call \mathcal{A}/F a quotient S-ring (over the factor group H/F), and from [21] \mathcal{A}/F is an S-ring over H/F with basic sets are given by: $\operatorname{Bsets}(\mathcal{A}/F) = \{T/F : t \in \operatorname{Bsets}(\mathcal{A})\}.$

The thin radical of an S-ring \mathcal{A} is defined by the set $O_{\theta}(\mathcal{A}) = \{h \in H : \{h\} \in \text{Bsets}(\mathcal{A})\}$. It is easy to see that $O_{\theta}(\mathcal{A})$ is an \mathcal{A} -subgroup.

Now, let G be an arbitrary group such that $H_R \leq G \leq \text{Sym}(H)$ and let $T_0 = \{1\}, T_1, \ldots, T_d$ be the set of all G_1 -orbits, (where G_1 is stabilizer of the element 1). The vector space spanned by $T_0 = \{1\}, T_1, \ldots, T_d$ is called the transitivity module of G and is denoted by $\mathcal{V}(H, G_1)$. By ([22]), the transitivity module $\mathcal{V}(H, G_1)$ is an S-ring over H. But the converse is not true, i.e., not every S-ring is the transitivity module of an appropriate group. An S-ring over H will be called Schurian if it is the transitivity module of some $G \leq \text{Sym}(H)$ with $H_R \leq G$.

An S-ring \mathcal{A} over H is said to be cyclotomic if $\text{Bsets}(\mathcal{A}) = \text{Orbit}(K, H)$ for $K \leq \text{Aut}(H)$. In this case we write $\mathcal{A} = \text{Cyc}(K, H)$ and it is easy to see, $\mathcal{A} = \mathcal{V}(K \cdot H_R, H)$. So every cyclotomic S-ring is Schurian.

Definition 1. Let \mathcal{A} be an S-ring over a group H and N be an \mathcal{A} -subgroup such that $N \leq H$. Then \mathcal{A} is a wreath product, notation: $\mathcal{A} = \mathcal{A}_N \wr \mathcal{A}_{H/N}$, if for every $T \in \text{Bsets}(\mathcal{A})$ then $T \subset N$, or T is a union of N-cosets.

Definition 2. Let \mathcal{A} be an S-ring over a group H and E, F be \mathcal{A} -subgroups such that H = EF and $E \cap F = \{e\}$. Then \mathcal{A} is a tensor product, notation:

 $\mathcal{A} = \mathcal{A}_E \otimes \mathcal{A}_F$ if for every $T \in \text{Bsets}(\mathcal{A})$, if $T \nsubseteq E \cup F$ then T = RSwhere $R \in \text{Bsets}(\mathcal{A}) \cap E$ and $S \in \text{Bsets}(\mathcal{A}) \cap F$.

Consequently, if \mathcal{A} is an S-ring over the direct product $H = E \times F$ such that both E and F are \mathcal{A} -subgroups and $\mathcal{A}_E = \mathbb{Z}E$ or $\mathcal{A}_F = \mathbb{Z}F$, then $A = \mathcal{A}_E \otimes \mathcal{A}_F$.

We say that an S-ring \mathcal{A} over a group H is a p-S-ring if H is a p-group, and all basic sets $T \in Bset(\mathcal{A})$ have p-power size. Following [9], If \mathcal{A} be a p-S-ring over elementary abelian group \mathbb{Z}_p^n then we have: If n = 1 then $\mathcal{A} = \mathbb{Z}H$; And if n = 2 then $\mathcal{A} = \mathbb{Z}C_p \wr \mathbb{Z}C_p$ or $\mathcal{A} = \mathbb{Z}C_p^2$. And every p-S-ring over \mathbb{Z}_p^n where n = 1, 2, 3 is cyclotomic.

Lemma 1. [11] Let H be an abelian group, $G \leq \text{Sym}(H)$ such that $H_R \leq G$, And let $\mathcal{A} = \mathcal{V}(H, G_1)$. If $E \leq H$ is an \mathcal{A} -subgroup such that H/E is a p-subgroup, Then \mathcal{A}/E is a p-S-ring.

2.2. Isomorphisms of S-rings. Denote by $Iso(\mathcal{A})$ the set of all isomorphisms from \mathcal{A} to S-rings over H, that is:

$$\operatorname{Iso}(\mathcal{A}) = \left\{ \begin{array}{c} f \in \operatorname{Sym}(H) : f \text{ is an isomorphism from } \mathcal{A} \\ \text{onto an S-ring over } H \end{array} \right\}$$

And let $\operatorname{Iso}_1(\mathcal{A}) = \{f \in \operatorname{Iso}(\mathcal{A}) : 1^f = 1\}$. Note that, $\operatorname{Iso}(\mathcal{A}) \subseteq \operatorname{Sym}(H)$, but it is not necessarily a subgroup. It follows from the definition that for any $f \in \operatorname{Aut}(\mathcal{A})$ and $g \in \operatorname{Aut}(H)$, their product fg is an isomorphism from \mathcal{A} to an S-ring over H. Therefore, $\operatorname{Aut}(\mathcal{A})$. $\operatorname{Aut}(H) \subseteq \operatorname{Iso}(\mathcal{A})$. Now, we say that \mathcal{A} is a CI-S-ring, if $\operatorname{Iso}(\mathcal{A}) = \operatorname{Aut}(\mathcal{A}) \operatorname{Aut}(H)$. This definition was given by Hirasaka and Muzychuk in [9] where the following theorem is proved.

Theorem 2. Let H be an abellian group, then H is CI-group if and only if every Schurian S-rings over H is CI-S-ring.

Therefore, instead of Theorem 1, we prove the following theorem:

Theorem 3. Let $H = (\mathbb{Z}_p)^2 \times \mathbb{Z}_q \times \mathbb{Z}_r$, where p, q, r are primes such that q and r divide p - 1, and r divides q - 1. Let $\mathcal{A} = \mathcal{V}(H, G_1)$ where $G \leq \text{Sym}(H)$ and $H_R \leq G$ then \mathcal{A} is CI-S-ring.

Let $G, G' \leq \text{Sym}(H)$, then G and G' are called 2-equivalent if Orbit $(G, H \times H) = \text{Orbit}(G', H \times H)$, and we write $G \approx G'$ in this case. If $\mathcal{A} = \mathcal{V}(H, G_1)$ for some $G \leq \text{Sym}(H)$ with $H_R \leq G$ then $\text{Aut}(\mathcal{A})$ is the largest group which is 2-equivalent to G. If \mathcal{A} is an S-ring over H then we put $\operatorname{Aut}_H(\mathcal{A}) = \operatorname{Aut}(\mathcal{A}) \cap \operatorname{Aut}(H)$. If $K_1, K_2 \leq \operatorname{Aut}(H)$ then K_1 and K_2 are called Cayley equivalent if $\operatorname{Orbit}(K_1, H) = \operatorname{Orbit}(K_2, H)$, and then we write $K_1 \underset{Cay}{\approx} K_2$. If $\mathcal{A} = \operatorname{Cyc}(K, H)$ for some $K \leq \operatorname{Aut}(H)$ with $H_R \leq K$, then $\operatorname{Aut}_H(\mathcal{A})$ is the largest group which is Cayley equivalent to K. So a cyclcotomic S-ring \mathcal{A} over H is called Cayley minimal if

$$\{K \leq \operatorname{Aut}(H) : K \underset{\operatorname{Cav}}{\approx} \operatorname{Aut}_H(\mathcal{A})\} = \{\operatorname{Aut}_H(\mathcal{A})\}.$$

It easy to see that the trivial S-ring $\mathbb{Z}H$ is Cayley minimal, and every cyclotomic S-ring over \mathbb{Z}_n is Cayley minimal. If q|p-1 then the group $\operatorname{Aut}(\mathbb{Z}_p \times \mathbb{Z}_q)$ can be embedded into $\operatorname{Aut}(\mathbb{Z}_p)$. Therefore, if q|p-1 then every S-ring over $\mathbb{Z}_p \times \mathbb{Z}_q$ is cyclotomic and Cayley minimal.

3. Generalized wreath product

Let \mathcal{A} be an S-ring over a group H and E, F be \mathcal{A} -subgroups such that $E \leq F$ and E is normal in H. Then \mathcal{A} is a generalized wreath product (or wedge product), $\mathcal{A} = \mathcal{A}_F \wr_{F/E} \mathcal{A}_{H/E}$ if for every $T \in \text{Bsets}(\mathcal{A})$ such that $T \nsubseteq F, T$ is a union of E-cosets. And \mathcal{A} is non-trivial generalized wreath product if $E \neq 1$ and $F \neq H$, in this case, S = F/E is called \mathcal{A} -section.

Let H and H' be finite groups. For a bijection $f: H \to H'$ and a set $X \subseteq H$, the induced bijection from X onto X^f is denoted by f^X . For a set $\Delta \subseteq \text{Sym}(H)$ and a section S of H we set $\Delta^S = \{f^S : f \in \Delta, S^f = S\}$. If S is an \mathcal{A} -section then, $\text{Aut}_H(\mathcal{A})^S \leq \text{Aut}_S(\mathcal{A}_S)$. In 2013 Evdokimov and Ponomarenko proved the following theorem [15].

Theorem 4. Let \mathcal{A} be an S-ring over an Abelian group H. Suppose $\mathcal{A} = \mathcal{A}_F \wr_{F/E} \mathcal{A}_{H/E}$ for \mathcal{A} subgroups E, F of H. Then \mathcal{A} is Schurian if and only if so are the S-rings $\mathcal{A}_{H/F}$ and \mathcal{A}_F and there exist Δ_F and $\Delta_{H/E}$ satisfying $F_R \leq \Delta_F \leq \operatorname{Aut}(\mathcal{A}_F)$ and $(H/E)_R \leq \Delta_{H/E} \leq \operatorname{Aut}(\mathcal{A}_{H/E})$, $(\Delta_F)^{F/E} = (\Delta_{H/E})^{F/E}$ such that $\Delta_F \approx \operatorname{Aut}(\mathcal{A}_F)$ and $\Delta_{H/E} \approx \operatorname{Aut}(\mathcal{A}_{H/E})$. In this case $\operatorname{Aut}(\mathcal{A}) \approx \operatorname{Aut}(\mathcal{A}_F) \wr_{F/E} \operatorname{Aut}(\mathcal{A}_{H/E})$.

Therefore, we conclude the following.

Theorem 5. Let H be an abelian group such that Sylow subgroups of H are elementary abelian, and let \mathcal{A} be an S-ring over H, such that $\mathcal{A} = \mathcal{A}_F \wr_{F/E} \mathcal{A}_{H/E}$ for \mathcal{A} subgroups E, F of H. Suppose \mathcal{A}_F and $\mathcal{A}_{H/E}$ are CI-S-rings and

$$\operatorname{Aut}_F((A_F)^{F/E}) = \operatorname{Aut}_{F/E}((A_{F/E})) = \operatorname{Aut}_{H/E}((A_{H/E})^{F/E})$$

then \mathcal{A} is CI-S-ring.

Proof. Let \mathcal{A}' be an S-ring over H, and $f \in \operatorname{Iso}(\mathcal{A}, \mathcal{A}')$. By lemma (5.5) of [18], \mathcal{A}' is F'/E'-wreath product, where $E' = E^f$ and $F' = F^f$. But H is abelian group, so we can found an $\tau \in \operatorname{Aut}(H) : E^f = E^{\tau}, F^f = F^{\tau}$. Therefore, we can take $f.\tau^{-1}$ without f. So \mathcal{A}' is F/E-wreath product. And $f^F \in \operatorname{Iso}(\mathcal{A}_F, \mathcal{A}'_F), f^{H/E} \in \operatorname{Iso}(\mathcal{A}_{H/E}, \mathcal{A}'_{H/E})$. But \mathcal{A}_F and $\mathcal{A}_{H/E}$ are CI-S-rings. So $f^F = \varphi \sigma_1 : \varphi \in \operatorname{Aut}(\mathcal{A}_F), \sigma_1 \in \operatorname{Aut}(F)$, and $f^{H/E} = \psi \sigma_0 : \psi \in \operatorname{Aut}(\mathcal{A}_{H/E}), \sigma_0 \in \operatorname{Aut}(H/E)$. By the condition of the theorem we have $f^{F/E} = \sigma_1^{F/E} = \sigma_0^{F/E}$, and so $\varphi^{F/E} = \psi^{F/E}$.

Because H is abelian group such that sylow subgroups of H are elementary abelian, we can write $H = D \times F$ and $F = V \times E$.

Now, let $D = \langle x_1 \rangle \times \cdots \times \langle x_t \rangle$ and $(x_i E)^{\psi} = d_i v_i E$, where $d_i \in D$ and $v_i \in V, i \in \{1, 2, ..., t\}$. We note that the elements $d_i \cdot v_i : i = 0, 1, 2, \ldots, t$ generate the group D', where $D' \cap F = \{e\}$. We can found $\alpha \in \operatorname{Aut}(H)$ such that $\alpha^F = \varphi$, $(x_i)^{\alpha} = d_i \cdot v_i : i = 1, 2, \ldots, t$. Therefore we have $E^{\alpha} = E$, $F^{\alpha} = F$ and $(dL)^{\psi} = d^{\alpha}L$.

Now, let $T \in \text{Bsets}(\mathcal{A})$. If $T \subseteq F$ then $T^f = T^{\alpha}$ by the definition of α . If $T \nsubseteq F$ then $T = d_1 v_1 E \cup d_2 v_2 E \cdots \cup d_t v_t E$. So,

$$T^{\alpha} = (d_1)^{\alpha} (v_1)^{\alpha} E \cup (d_2)^{\alpha} (v_2)^{\alpha} E \cup \dots \cup (d_t)^{\alpha} (v_t)^{\alpha} E$$

= $(d_1)^{\alpha} (v_1)^{\varphi} E \cup (d_2)^{\alpha} (v_2)^{\varphi} E \cup \dots \cup (d_t)^{\alpha} (v_t)^{\varphi} E$
= $(d_1)^{\alpha} (v_1 E)^{\varphi} \cup (d_2)^{\alpha} (v_2 E)^{\varphi} \cup \dots \cup (d_t)^{\alpha} (v_t E)^{\varphi}.$

But $\varphi^{F/E} = \psi^{F/E}$. So

$$T^{\alpha} = (d_{1})^{\alpha} (v_{1}E)^{\psi} \cup (d_{2})^{\alpha} (v_{2}E)^{\psi} \cup \dots \cup (d_{t})^{\alpha} (v_{t}E)^{\psi}$$

= $(d_{1}E)^{\alpha} (v_{1}E)^{\psi} \cup (d_{2}E)^{\alpha} (v_{2}E)^{\psi} \cup \dots \cup (d_{t}E)^{\alpha} (v_{t}E)^{\psi}$
= $(d_{1}E)^{\psi} (v_{1}E)^{\psi} \cup (d_{2}E)^{\psi} (v_{2}E)^{\psi} \cup \dots \cup (d_{t}E)^{\psi} (v_{t}E)^{\psi}$
= $(d_{1}v_{1}E \cup d_{2}v_{2}E \cup \dots \cup d_{t}v_{t}E)^{\psi} = T^{\psi}.$

Consequently, $T^{\alpha}/E = T^{\psi}/E = (T/E)^{\psi} = (T/E)^{f^{H/E}} = (T/E)^{f}$. Since T is a union of E-cosets, then T is a union of E^{α} -cosets, and $E^{\alpha} = E$, we found that $T^{\alpha} = T^{f}$. Consequently, $T^{f\alpha^{-1}} = T$, so $f\alpha^{-1} \in \operatorname{Aut}(\mathcal{A})$, and $f \in \operatorname{Aut}(\mathcal{A}) \alpha \subseteq \operatorname{Aut}(\mathcal{A})$. Aut(H). And, So \mathcal{A} is CI-S-ring. \Box

Now, let H be an abelian group such that Sylow subgroups of H are elementary abelian, and suppose \mathcal{A} be an S-ring over H, such that $\mathcal{A} = \mathcal{A}_F \wr_{F/E} \mathcal{A}_{H/E}$, and \mathcal{A}_F , $\mathcal{A}_{H/E}$ are CI-S-ring. Then we have

Lemma 2. If $\mathcal{A}_{F/E} = \mathbb{Z}(F/E)$ then \mathcal{A} is CI-S ring.

Proof. If $\mathcal{A}_{F/E} = \mathbb{Z}(F/E)$ then $\operatorname{Aut}(\mathcal{A}_{F/E})$ is trivial. But we have $\operatorname{Aut}_F((\mathcal{A}_F)^{F/E}) \leq \operatorname{Aut}_{F/E}(\mathcal{A}_{F/E})$. So $\operatorname{Aut}_F((\mathcal{A}_F)^{F/E}) = \operatorname{Aut}_{F/E}(\mathcal{A}_{F/E})$. By theorem 5, \mathcal{A} is CI-S-ring. \Box

Lemma 3. If $\mathcal{A}_{F/E}$ is Cayley minimal then \mathcal{A} is CI-S ring.

Proof. We have $\operatorname{Aut}_F(\mathcal{A}_F)^{F/E} \leq \operatorname{Aut}_{F/E}(\mathcal{A}_{F/E})$. So, if $\mathcal{A}_{F/E}$ is Cayley minimal, then $\operatorname{Aut}_F(\mathcal{A}_F)^{F/E} = \operatorname{Aut}_{F/E}(\mathcal{A}_{F/E})$. Therefore, by theorem 5, \mathcal{A} is CI-S-ring.

Lemma 4. If $\mathcal{A}_{F/E} = \mathbb{Z}C_p \wr \mathbb{Z}C_p$ then \mathcal{A} is CI-S ring.

Proof. If $\mathcal{A}_{F/E} = \mathbb{Z}C_p \wr \mathbb{Z}C_p$, then $\mathcal{A}_{F/E}$ is cyclotomic, and $|O_{\theta}(\mathcal{A}_{F/E})| = p$. By proposition(4.3) of [6], we have $\mathcal{A}_{F/E}$ is Cayley minimal and by lemma 3, \mathcal{A} is CI-S ring.

4. S-rings over $(C_p)^2 \times C_q \times C_r$

Let $H = M \times P$ where M is an abelian group and $P = C_p$ with prime p coprime to the order of M. And let \mathcal{A} be an S-ring over H, then we have the next lemma:

Lemma 5. [16] If there exist a maximal A-subgroup N contained in M such that $N \neq M$, then one of the following statements holds:

- 1) $\mathcal{A} = \mathcal{A}_N \wr \mathcal{A}_{H/N}$ where $rank(\mathcal{A}_{H/N}) = 2$.
- 2) \mathcal{A} is a F/E-wreath product for \mathcal{A} -subgroups $F, E \leq H$ such that $P \leq E < H$ and F = PN.

Therefore, If M is not \mathcal{A} -subgroup then the Hypothese of Lemma 5 is satisfied. So one of two statements of that lemma holds. If M is an \mathcal{A} -subgroup while P is not, then by lemma 1, $\mathcal{A}/M = \mathbb{Z}C_p$. But the prime p coprime to the order of M. So every $T \in Bsets(\mathcal{A})$ with $T \cap M = \phi$ is equal to M-coset. This gives us that $\mathcal{A} = \mathcal{A}_M \wr \mathcal{A}/M$.

If M and P are A-subgroups, then by lemma 1, $A/M = \mathbb{Z}C_p$. But $\mathcal{A}_P = \mathbb{Z}C_p$. So in this case $\mathcal{A} = \mathcal{A}_M \otimes \mathbb{Z}C_p$. Consequently, we have the next lemma:

Lemma 6. Let $H = (C_p)^2 \times C_q \times C_r$ and \mathcal{A} is an S-ring over H. Then one of the following statements holds:

- 1) \mathcal{A} is F/E-wreath product for \mathcal{A} -subgroups $F, E \leq H$.
- 2) There exist \mathcal{A} -subgroups $H_1, H_2 \leq H$ such that $\mathcal{A} = \mathcal{A}_{H_1} \otimes \mathcal{A}_{H_2}$.

5. Proof of theorem 3

Now let $H = (C_p)^2 \times C_q \times C_r$ and $G \leq \text{Sym}(H)$ such that $H_R \leq G$. Suppose $\mathcal{A} = \mathcal{V}(H, G_1)$. Then we have:

Lemma 7. \mathcal{A} is CI-S-ring.

Proof. By lemma 6, suppose at first \mathcal{A} is E/F-wreath product for \mathcal{A} -subgroups F, E of H. Then |E/F| = 1, p, q, r or p^2 or pq, pr, qr. If $\mathcal{A}_{F/E}$ is p-S-ring then we have:

Case (1): |E/F| = p, q, r. So $\mathcal{A}_{F/E} = \mathbb{Z}(F/E)$. By lemma 2, \mathcal{A} is CI-S-ring.

Case (2): $|E/F| = p^2$. Then either $\mathcal{A}_{F/E} = \mathbb{Z}C_p^2$ and by lemma 2, \mathcal{A} is CI-S-ring, or $\mathcal{A}_{F/E} = \mathbb{Z}C_p \wr \mathbb{Z}C_p$, so $\mathcal{A}_{F/E}$ is Cayley minimal and by lemma 3, \mathcal{A} is CI-S-ring. If $\mathcal{A}_{F/E}$ is not *p*-S-ring then $\mathcal{A}_{F/E}$ is an S-ring over group of order p, q, r or p^2 or pq, pr, qr. By our conditions on the numbers $p, q, r, \mathcal{A}_{F/E}$ is cyclotomic and so $\mathcal{A}_{F/E}$ is Cayley minimal. By lemma 3, \mathcal{A} is CI-S-ring.

If |F/E| = 1, then \mathcal{A} is a wreath product of two proper S-rings over subgroups of H, but from [11] and [14] we can see that every proper subgroup of H is CI-group, thus by theorm 2, every schurian S-ring over a proper subgroup of H is a CI-S-ring, and \mathcal{A} is CI-S-ring. now suppose \mathcal{A} is not E/F-wreath product. If \mathcal{A} is a direct product $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$, where $\mathcal{A}_1, \mathcal{A}_2$ are S-rings over subgroups of H, then \mathcal{A}_1 and \mathcal{A}_2 are CI-S-rings by theorm 2, and then \mathcal{A} is CI-S-ring. \Box

By lemma 7 we complete the proof of theorem 3.

References

- Babai. L, Frankl. P, Isomorphisms of Cayley graphs I, Colloq. Math. Soc. J. Bolyai', Combinatorics Keszthely, 1976, pp. 35-52.
- [2] Babai. L, Frankl. P, Isomorphisms of Cayley graphs. II, Acta Mathematica Hungarica (34:1-2), 1979, pp. 177-183.
- Babai. L, Isomorphism problem for a class of point-symmetric structures, Acta Mathematica Hungarica (29:3-4), 1977, pp. 329-336.
- [4] Dobson. E, Isomorphism problem for Cayley graphs of Z³_p, Discrete Mathematics (147:1-3), 1995, pp. 87-94.
- [5] Bailey. RA, Cameron, Peter. J, Crested products of association schemes. Journal of the London Mathematical Society-Cambridge University Press, v.72, n 1,2005, pp. 1-24
- [6] Kovács. I; Grigory. R, CI-property for decomposable Schur rings over an elementary abelian group, arXiv preprint arXiv:1802.04571, 2018.

- [7] Klin. M; Poschel. R, The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings. Algebraic methods in graph theory, vols. I, II (Szeged 1978)
- [8] Feng.Q; Kovács. I, Elementary abelian groups of rank 5 are DCI-groups, arXiv preprint arXiv: 1705.02929, 2017.
- Hirasaka. M; Muzychuk. M, An elementary abelian group of rank 4 is a CI-group, Journal of Combinatorial Theory, Series A (94:2), 2001, pp. 339-362.
- [10] Kim. K, On p-Schur rings over abelian groups of order p³, Communications in Algebra (42:10), 2014, pp. 4456-4463.
- [11] Kovács. I; Muzychuk. M, The Group $(\mathbb{Z}_p)^2 \times \mathbb{Z}_q$ is a CI-Group, Communications in Algebra (37:10), 2009, pp. 3500-3515.
- [12] Li C. H, On isomorphisms of finite Cayley graphs—a survey, Discrete Mathematics (256:1-2), 2002, pp. 301–334.
- [13] Muzychuk. M, An elementary abelian group of large rank is not a CI-group, Discrete Mathematics (264:1-3), 2003, pp. 167–185.
- [14] Muzychuk. M, Adam's Conjecture is True in the Square-Free Case, Journal of Combinatorial Theory, Series A 72, 1995, pp. 118-134.
- [15] Evdokimov. S., Ponomarenko. I., Schurity of s-rings over a cyclic group and generalized wreath product of permutation groups. St. Petersburg Mathematical Journal, Vol. 24,3,2013,pp.431-460.
- [16] Evdokimov. S; Kovács. I, Ponomarenko.I, On schurity of finite abelian groups. Communications in Algebra, Vol. 44-1, 2016, pp.101-117.
- [17] Evdokimov. S; Kovács. I, Ponomarenko I, Characterization of cyclic Schur groups. St. Petersburg Mathematical Journal, Vol. 25,5, 2014, pp.755-773.
- [18] Evdokimov. S; Ponomarenko. I, Characterization of cyclotomic schemes and normal Schur rings over a cyclic group, Algebra and Analysis, 14(2002), 2, pp. 11–55
- [19] Spiga. P, Wang. Q, An answer to Hirasaka and Muzychuk: Every p-Schur ring over C³_p is Schurian, Discrete Mathematics (308:9), 2008, pp. 1760-1763.
- [20] Grigory. R, On Schur p-Groups of odd order, Journal of Algebra and Its Applications. Vol. 16, No. 2, 2017, pp. 1750045-1750074.
- [21] Tamaschke. O, a Generalization of Second Isomorphism Theorem in Group Theory, Atti Della Accademia Nazionale Dei Lincei Rendiconti-classe Di Scienze Fisichematematiche, Naturali (45:3-4), 1968.
- [22] Wielandt.H, Finite Permutation Groups, Academic Press, Berlin, 1964.
- [23] M. Klin, C. Pech, S. Reichard, COCO2P a GAP package, 0.14, 07.02.2015, http://www.math.tu-dresden.de/ pech/COCO2P.

CONTACT INFORMATION

E. Ali, A. Hassoon Department of Mathematics, Tishreen University, Latakia, Syria *E-Mail(s)*: Pr.Eskander.Ali@gmail.com, Ahed100@gmail.com

Received by the editors: 20.06.2018 and in final form 20.07.2019.