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Abstract. Let R be a ring, let M be a left R-module,
and let U, V, F be submodules of M with F proper. We call V an
F -supplement of U in M if V is minimal in the set F ⊆ X ⊆ M
such that U+X = M , or equivalently, F ⊆ V , U+V = M and U∩V
is F -small in V . If every submodule of M has an F -supplement,
then we call M an F -supplemented module. In this paper, we
introduce and investigate F -supplement submodules and (amply)
F -supplemented modules. We give some properties of these modules,
and characterize finitely generated (amply) F -supplemented modules
in terms of their certain submodules.

Introduction

All rings considered in this paper will be associative with an identity
element. Unless otherwise stated, R denotes an arbitrary ring and all
modules will be left unitary R-modules. Let M be a module. By X ⊆ M ,
we mean X is a submodule of M , and X $ M means X is a proper
submodule of M . As usual, Rad(M) denotes the radical of M . Throughout
the paper, unless otherwise stated, F will be a proper submodule, and we
follow the terminology and notation as in [2].

A submodule K ⊆ M is called small in M , denoted by K ≪ M , if,
for every submodule L ⊆ M , the equality K + L = M implies L = M .
The notion of a supplement submodule was introduced in [3] in order to
characterize semiperfect modules, that is projective modules whose factor
modules have projective covers. For submodules U and V of a module M ,
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V is said to be a supplement of U in M or U is said to have a supplement
V in M if U + V = M and U ∩ V ≪ V , and M is called supplemented if
every submodule of M has a supplement in M . See [4, §41] and [2] for
results and definitions related to supplements, supplemented modules and
small submodules.

Recently, several authors have studied different generalizations of small
submodules (see, for example, [6], [5], [1]). In [1], F -small submodules
are defined and studied as a generalization of small submodules. Let
F be a proper submodule of a module M . A submodule K ⊆ M is
called F -small in M , denoted K ≪F M , if, for every submodule L ⊆ M
containing F , the equality K + L = M implies L = M . Motivated by
the relation between supplement submodules and small submodules, we
introduce the notion of an F -supplement submodule. We call a submodule
V ⊆ M an F -supplement of U ⊆ M in M if V is minimal in the set
{L ⊆ M | U + L = M and F ⊆ L}, or equivalently, F ⊆ V , U + V = M
and U∩V ≪F V (Proposition 1). We say U ⊆ M has ample F -supplements
if, for every V ⊆ M with U + V = M , there is an F -supplement V ′ of U
with V ′ ⊆ V . If every submodule of M has an (ample) F -supplement, then
M is called an (amply) F -supplemented module. Like small submodules, of
course, for F = 0, supplement submodules and F -supplement submodules
coincide in a module. Also, any supplement submodule containing F is
always F -supplement, and the converse is true when F ≪ M (Remark 1).
So, for instance, for a finitely generated module M , if we take F = Rad(M),
then any submodule of M containing F is F -supplement if and only if it
is supplement in M .

In Section 1, we investigate F -small submodules and F -supplement
submodules, and we give some properties of F -supplement submodules
which are adapted from supplement submodules. For instance, for submod-
ules K ⊆ N ⊆ M , we show that if N is an F -supplement in M , then K is
an F -supplement in M if and only if K is an F -supplement in N (Theo-
rem 1). Also, we prove that if N is an F -supplement in M , then N/K is an
(F +K)/K-supplement in M/K, and the converse is true if, in addition,
K is an F -supplement in M (Propositions 4 and 5). Moreover, we show
that if V is an F -supplement in M , then RadF (V ) = V ∩RadF (M), where
RadF (M) is the intersection of all maximal submodules of M containing
F (Proposition 2).

In Section 2, we introduce and study F -supplemented modules. We
show that every finite (direct) sum of F -supplemented modules is F -
supplemented (Corollary 4), and that a module M is F -supplemented if
and only if M/F is supplemented (i.e. 0-supplemented) (Theorem 2). Also,
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we prove that if M is F -supplemented, then M/RadF (M) is semisimple
(Proposition 8). Finally, we characterize finitely generated F -supplemented
modules (Corollary 7). Namely, we prove the equivalence of the following
statements: (1) M is F -supplemented, (2) every maximal submodule
of M containing F has an F -supplement, (3) M is a sum of F -hollow
submodules (i.e. modules in which every proper submodule containing
F is F -small), (4) M is an irredundant sum of F -local submodules (i.e.
modules L with RadF (L) is the largest submodule of L containing F ).

In Section 3, we define and investigate amply F -supplemented modules.
We prove that M is amply F -supplemented if and only if every submodule
U ⊆ M is of the form U = X + Y , where X is F -supplemented and
Y ≪F M ; and if M is finitely generated, these are equivalent to the
statement that every maximal submodule of M containing F has ample
F -supplements in M (Theorem 4).

1. F -small and F -supplement submodules

In this section, we give some useful properties of F -small submodules
and some results on F -supplement submodules.

Clearly, small submodules and F -small submodules are the same for
F = 0. Moreover, small submodules are always F -small, but the converse
is not true in general.

Example 1. Consider the Z-module M = Z. Taking a submodule F = 4Z
of M , we see that 8Z is F -small in M since 8Z ⊆ F . However, 8Z is not
small in M since, for example, 8Z+ 3Z = M . In fact, 0 is the only small
submodule of M .

We collect some known properties of F -small submodules which will
be useful in the sequel in the following lemma (see [1]).

Lemma 1. Let M be a module and let K,L be submodules of M .
1) If f : M → N is a homomorphism of modules, then K ≪F M

implies f(K) ≪f(F ) N . In particular, if K ≪F M ⊆ N , then
K ≪F N .

2) If K ⊆ N ⊆ M , then N ≪F M if and only if K ≪F M and
N/K ≪(F+K)/K M/K.

3) K + L ≪F M if and only if K ≪F M and L ≪F M .

Let M be a module and let U, V be submodules of M . Recall that
V is said to be an F -supplement of U in M if V is minimal in the set
F ⊆ L ⊆ M with U + L = M .
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Proposition 1. Let M be a module and let U, V be submodules of M .
Then V is an F -supplement of U in M if and only if F ⊆ V , U +V = M
and U ∩ V ≪F V .

Proof. (⇒) Assume that U ∩ V + X = V with F ⊆ X ⊆ M . Then
M = U + V = U + X, and so X = V by the minimality of V . Thus
U ∩ V ≪F V .

(⇐) Assume thatU+Y = M for a submodule Y ofM with F ⊆ Y ⊆ V .
Then we have V = M ∩V = (U+Y )∩V = U ∩V +Y . Since U ∩V ≪F V
and F ⊆ Y , it follows that V = Y . This minimality of V shows that V is
an F -supplement of U in M .

As a generalization of the radical of a module, RadF (M) is defined
in [1, Definition 3.1] to be the intersection of all maximal submodules of
M that contain F . If there is no such maximal submodule of M , then
RadF (M) = M . Also, it was proved that RadF (M) is equal to the sum
of all F -small submodules of M (see [1, Theorem 3.3]).

Lemma 2. Let M be a module and let x ∈ M . Then x ∈ RadF (M) if
and only if Rx ≪F M .

Proof. (⇒) Let Rx + U = M with F ⊆ U ⊆ M . Assume that U 6= M .
Then, by Zorn’s Lemma, there is a submodule L ⊆ M maximal with
respect to U ⊆ L and x 6∈ L. Since L + Rx = M , it follows that L
is a maximal submodule of M . So, RadF (M) ⊆ L since F ⊆ L, and
this implies that x ∈ L. This contradiction shows that U = M . Hence
Rx ≪F M .

(⇐) Since RadF (M) is the sum of all F -small submodules of M and
Rx ≪F M , we have Rx ⊆ RadF (M). Hence x ∈ RadF (M).

Proposition 2. Let M be a module and let V be an F -supplement of U
in M . If K ≪F M , then K ∩V ≪F V and so RadF (V ) = V ∩RadF (M).

Proof. First, assume that (K ∩ V ) + X = V with F ⊆ X ⊆ V . Then
M = U + V = U + (K ∩ V ) +X = K + (U +X). Since F ⊆ U +X and
K ≪F M , we have U +X = M . Thus X = V by the minimality of V .
Hence K∩V ≪F V . Next, it is clear that RadF (V ) ⊆ V ∩RadF (M). Now,
let x ∈ V ∩RadF (M). Then x ∈ RadF (M) and so Rx ≪F M by Lemma 2.
Since Rx ⊆ V , it follows by the first part that Rx = V ∩Rx ≪F V . Thus
x ∈ RadF (V ).

Corollary 1. Let M be a module and let V be an F -supplement of U
in M . If RadF (M) ≪F M , then U is contained in a maximal submodule
of M containing F .
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Proof. By Proposition 2, we have RadF (V ) = V ∩ RadF (M) ≪F V .
Therefore, RadF (V ) 6= V , and so V has a maximal submodule V ′ that
contains F . So, M/(U + V ′) = (U + V )/(U + V ′) ∼= V/V ′, and U + V ′ is
the desired maximal submodule of M .

Corollary 2. Let M be a module, and let V be an F -supplement of U in M .
If U is a maximal submodule of M containing F , then U ∩ V = RadF (V )
is the unique maximal submodule of V that contains F .

Proof. Since U is a maximal submodule of M containing F , we have
RadF (M) ⊆ U . So, it follows by Proposition 2 that RadF (V ) = V ∩
RadF (M) ⊆ U∩V . Conversely, since U∩V ≪F V as V is an F -supplement
of U , we get U ∩ V ⊆ RadF (V ).

For modules which don’t have maximal submodules containing F (for
instance, for the Z-module Q), we have the following result.

Proposition 3. Let M be a module. Then RadF (M) = M if and only if
every finitely generated submodule of M is F -small in M .

Proof. (⇒) Let N be any finitely generated submodule of M . Then N =
Rm1 +Rm2 + · · ·+Rmk for some mi ∈ M . Since, by assumption, mi ∈
RadF (M), it follows that Rmi ≪F M for all i = 1, 2, . . . k by Lemma 2.
Therefore N ≪F M by Lemma 1-(3).

(⇐) Clearly, RadF (M) ⊆ M . To show that M ⊆ RadF (M), let
x ∈ M . Then Rx ≪F M by assumption, and so Rx ⊆ RadF (M). Thus
x ∈ RadF (M) as desired.

Corollary 3. Let M be a module. If RadF (M) = M , then every finitely
generated submodule of M has an F -supplement in M .

Proof. Since every finitely generated submodule U of M is F -small in M
by Proposition 3, then M is an F -supplement of U in M .

The following result shows F -supplements in submodules.

Theorem 1. Let K ⊆ N ⊆ M be submodules.

1) If K is an F -supplement in M , then K is an F -supplement in N .
2) If N is an F -supplement in M , then

(a) K is an F -supplement in M if and only if K is an F -supplement
in N ;

(b) K ≪F M if and only if K ≪F N .
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Proof. 1) Since K is an F -supplement in M , there is a submodule P ⊆ M
such that K + P = M and K ∩ P ≪F K. By modular law, we have
N = K +N ∩ P . Moreover, K ∩N ∩ P = K ∩ P ≪F K. Thus K is an
F -supplement of N ∩ P in N .

2) Suppose that N is F -supplement in M . Then there is a submodule
L ⊆ M such that N + L = M and N ∩ L ≪F N .

(a) (⇒) It follows by (1).
(⇐) Since K is an F -supplement in N , there is a submodule T ⊆ N
such thatK+T = N andK∩T ≪F K. So,K+(T+L) = N+L = M .
Assume that K ′ + (T + L) = M for a submodule F ⊆ K ′ ⊆ K.
Since F ⊆ K ′+T and N is F -supplement of L in M , it follows that
K ′ + T = N by the minimality of N . Now by the minimality of
K, we conclude that K ′ = K. This means that K is F -supplement
of T + L in M .

(b) (⇒) Assume that K +X = N for a submodule F ⊆ X ⊆ N . Then
K +X + L = N + L = M , and so X + L = M since F ⊆ X + L
and K ≪F M by assumption. Thus by modular law, we have
N = X +N ∩L. Since N ∩L ≪F N , it follows that X = N . Hence
K ≪F N .
(⇐) It is always true by Lemma 1-(1).

Supplement submodules and F -supplement submodules coincide in a
module under some extra conditions over F .

Remark 1. Clearly, supplement submodules and 0-supplement submod-
ules coincide in a module, and any supplement submodule containing F is
always F -supplement. However an F -supplement submodule need not be
supplement in general (since F -smallness need not imply smallness, see
Example 1). But, for example, if F ≪ M and V is an F -supplement of U
in M , then we have F ≪ V (by Theorem 1-(2b)), and so U ∩ V ≪F V
implies that U ∩ V ≪ V (by [1, Proposition 2.3]). This means that V is a
supplement of U in M .

Proposition 4. Let M be a module. If N is an F -supplement of U in
M , then for K ⊆ U , (N +K)/K is an (F +K)/K-supplement of U/K
in M/K.

Proof. Since N is an F -supplement of U in M , we have U +N = M and
U∩N ≪F N . So, we have (U/K)+(N+K)/K = (U+N+K)/K = M/K,
and by modular law, (U/K) ∩ (N + K)/K = (U ∩ N + K)/K. Since
U ∩N ≪F N , it follows by Lemma 1-(1) that (U ∩N +K)/K ≪(F+K)/K
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(N +K)/K (by considering the epimorphism f : N → (N +K)/K). Thus
(N +K)/K is an (F +K)/K-supplement of U/K in M/K.

The converse of the previous statement is true under a special condition.

Proposition 5. Let K ⊆ N ⊆ M be submodules. If K is an F -supplement
in M , and N/K is an (F + K)/K-supplement in M/K, then N is an
F -supplement in M .

Proof. First of all, since F ⊆ K, we see by assumption that N/K is a
supplement in M/K. Now, let K be an F -supplement of a submodule
K ′ in M . Then K +K ′ = M and K ∩K ′ ≪F K. Moreover, let N/K be
a supplement of N ′/K in M/K where K ⊆ N ′. Then we have N/K +
N ′/K = M/K and N/K ∩ N ′/K = (N ∩ N ′)/K ≪ N/K. Since M =
N ∩ N ′ + K ′ as K ⊆ N ∩ N ′, and N + N ′ = M it follows that M =
N +K ′ ∩N ′ by [2, 1.24]. Since N = K + (N ∩K ′) by modular law, we
get N ∩ (K ′ ∩N ′)/(K ∩K ′) ≪ N/(K ∩K ′) by [2, 2.3-(1)]. So, clearly, we
have N ∩ (K ′ ∩N ′)/(K ∩K ′) ≪F+(K∩K′)/(K∩K′) N/(K ∩K ′). Thus, the
fact that K ∩K ′ ≪F N , which follows from K ∩K ′ ≪F K, implies that
N∩(K ′∩N ′) ≪F N by Lemma 1-(2). This means that N is F -supplement
of K ′ ∩N ′ in M .

2. F -supplemented modules

In this section, we define the concept of F -supplemented modules and
we give a characterization for finitely generated F -supplemented modules.

A module M is called F -supplemented if every submodule of M has
an F -supplement in M .

Proposition 6. Let M be a module. Assume that U and M1 are submod-
ules of M , where M1 is F -supplemented. If M1 + U has an F -supplement
in M , then U also has an F -supplement in M .

Proof. Let X be an F -supplement of M1 + U in M . Since M1 is F -
supplemented, the submodule (X +U) ∩M1 has an F -supplement in M1,
say Y . We claim that X+Y is an F -supplement of U in M . First, we have
M = X +M1 +U = X + (Y + (X +U)∩M1) +U = (X + Y ) +U . Next,
since Y ⊆ M1, we have Y ∩(X+U) = (Y ∩M1)∩(X+U) = Y ∩[(X+U)∩
M1] ≪F Y , and since Y +U ⊆ M1+U , it follows that X∩(Y +U) ≪F X.
Therefore, the inclusion (X+Y )∩U ⊆ X ∩ (Y +U)+Y ∩ (X+U) implies
that (X + Y ) ∩ U ≪F X + Y by Lemma 1, as claimed.
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Remark 2. Since the zero submodule 0 is small in any module M , we
observe that M is always a supplement of 0 in M , and vice versa. Likewise,
since any submodule of M contained in F is F -small in M , we see that F
is F -small in M . So, M is an F -supplement of F in M by Proposition 1,
because F + M = M and F ∩ M = F ≪F M . In fact, F is also an
F -supplement of M in M since F ≪F F .

Proposition 7. If M1 and M2 are F -supplemented modules, then M =
M1 +M2 is also an F -supplemented module.

Proof. Let U ⊆ M . Since M1 + (M2 + U) has trivially an F -supplement
F in M , it follows, by Proposition 6, that there is an F -supplement for
M2 + U , and so there is an F -supplement for U in M .

Corollary 4. Every finite (direct) sum of F -supplemented modules is
F -supplemented.

Now, we investigate factor modules of F -supplemented modules.

Proposition 8. If M is an F -supplemented module, then M/RadF (M)
is semisimple (and so supplemented).

Proof. Let X/RadF (M) ⊆ M/RadF (M). Since M is F -supplemented,
there is an F -supplement Y of X in M , that is, X + Y = M and X ∩
Y ≪F Y . So, we have (X/RadF (M)) + (Y + RadF (M))/RadF (M) =
M/RadF (M), and (X/RadF (M)) ∩ (Y +RadF (M))/RadF (M) = X ∩
(Y +RadF (M))/RadF (M) = (X∩Y +RadF (M))/RadF (M) = 0, because
X ∩ Y ≪F Y implies that X ∩ Y ⊆ RadF (M). Thus X/RadF (M) is a
direct summand of M/RadF (M). Hence M/RadF (M) is semisimple.

Proposition 9. Let M be a module and let K ⊆ M be a submodule. If
M is F -supplemented, then M/K is (F +K)/K-supplemented.

Proof. Take any submodule N/K of M/K where K ⊆ N ⊆ M . Since M
is F -supplemented, N has an F -supplement in M , say V . Thus (V +K)/K
is an (F +K)/K-supplement of N/K in M/K by Proposition 4. Hence
M/K is (F +K)/K-supplemented.

Theorem 2. Let M be a module. Then M is F -supplemented if and only
if M/F is supplemented.

Proof. (⇒) Suppose that M is F -supplemented. Then, by Proposition 9,
we see that M/F is 0-supplemented, that is, supplemented.
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(⇐) Take any submodule U ⊆ M . Since M/F is supplemented, (U +
F )/F has a supplement in M/F , say V/F . Then [(U + F )/F ] + V/F =
M/F which implies that U+V = M , and [U ∩V )+F ]/F = [(U+F )/F ]∩
V/F ≪ V/F from which it follows that U∩V ≪F V by [1, Proposition 2.9].
Thus V is F -supplement of U in M . Hence M is F -supplemented.

Taking F = 0, we obtain the following corollary.

Corollary 5. A module M is 0-supplemented if and only if it is supple-
mented.

A nonzero module M is called hollow if every proper submodule is
small in M ; and local if it has a largest submodule (namely Rad(M)).
It is clear that local modules are hollow, and that any finitely generated
module is hollow if and only if it is local (see, for example, [2, p. 15]).

Let M be a nonzero module and let F be a proper submodule of M .
We call M an F -hollow module if every proper submodule containing F
is F -small in M ; and F -local if RadF (M) is the largest submodule of M
containing F (i.e. a proper submodule which contains all other proper
submodules containing F ). In this case, RadF (M) ≪F M .

Remark 3. Since M is hollow if and only if every proper submodule is
F -small in M (see [1, Proposition 2.21]), it follows easily that a hollow
module is F -hollow, and the converse is true when F = 0. Moreover, local
modules are always F -local (because, in this case, F ⊆ Rad(M) and so
Rad(M) = RadF (M)), and the converse is also true for F = 0.

In general, F -hollow (respectively F -local) modules need not be hollow
(respectively local).

Example 2. Let M be the Z-module Z, and let F = 4Z. Then we have
RadF (M) = 2Z, and so M is F -local which implies that M is F -hollow.
But, since Rad(M) = 0, M is not local, and so it is not hollow as a cyclic
module.

Now we give some results which are needed to characterize finitely
generated F -supplemented modules.

Proposition 10. A nonzero module M is F -local if and only if it is
F -hollow and RadF (M) 6= M .

Proof. (⇒) Let K be a proper submodule of M containing F . Since M
is F -local, K ⊆ RadF (M). Now since RadF (M) ≪F M , it follows that
K ≪F M by Lemma 1-(2), and that RadF (M) 6= M .
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(⇐) First, we claim that M = M/RadF (M) is simple. By assumption,
M 6= 0. Now, if N/RadF (M) $ M , then we have F ⊆ N $ M . Since
M is F -hollow, then N ≪F M , and so N ⊆ RadF (M). Hence N =
RadF (M). Next, if F ⊆ X $ M , then (X +RadF (M))/RadF (M) $ M .
So, X + RadF (M) = RadF (M) since M is simple, which implies that
X ⊆ RadF (M). Hence RadF (M) is the largest submodule of M that
contains F , that is, M is F -local.

Proposition 11. Let M be a module. If M/RadF (M) is semisimple and
RadF (M) ≪F M , then every proper submodule of M containing F is
contained in a maximal submodule.

Proof. Consider the natural epimorphism σ : M → M/RadF (M) = M .
Let F ⊆ U $ M . Since RadF (M) ≪F M , we have σ(U) 6= M . Thus
σ(U) is contained in a maximal submodule N of M (as M is semisimple).
Hence U is contained in the maximal submodule σ−1(N) of M .

Corollary 6. If M is F -supplemented and RadF (M) ≪F M , then every
proper submodule of M containing F is contained in a maximal submodule.

Proof. It follows from Propositions 8 and 11.

Proposition 12. Every F -hollow module M is F -supplemented.

Proof. Let U be any submodule of M . Since F is always an F -supplement
of M in M by Remark 2, we may assume that U 6= M . There are two
cases to consider. First, if F ⊆ U , then U ≪F M since M is F -hollow by
assumption. So, M is an F -supplement of U in M , because U +M = M
and U ∩M = U ≪F M . Next, assume that F * U . If U + F = M , then
F is an F -supplement of U in M since U ∩ F ⊆ F ≪F F . Otherwise,
U + F 6= M . Therefore, U + F ≪F M by assumption, from which we get
U ≪F M . So,M is an F -supplement of U in M as in the first case. Thus, in
each case, U has an F -supplement in M . Hence M is F -supplemented.

Proposition 13. Let M be a module. Every F -supplement of a maximal
submodule of M containing F is F -local.

Proof. Let U be a maximal submodule of M containing F . Assume that V
is an F -supplement of U in M . Then by Corollary 2, we have RadF (V ) =
V ∩ U is the unique maximal submodule of V containing F . In fact,
RadF (V ) is the largest proper submodule of V containing F , because, for
any submodule F ⊆ X ⊆ V with X * RadF (V ), we have X+RadF (V ) =
V since RadF (V ) is maximal in V , and so X = V since RadF (V ) ≪F V
as V is an F -supplement of U . Hence V is F -local.
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Let {Mi}I be a family of modules for some index set I. The sum
M =

∑
I Mi is called irredundant if, for every i0 ∈ I,

∑
i 6=i0

Mi 6= M
holds.

Theorem 3. For a module M , the following are equivalent.
1) M is a sum of F -hollow submodules and RadF (M) ≪F M .
2) Every proper submodule of M containing F is contained in a maximal

submodule, and
(a) every maximal submodule containing F has an F -supplement

in M , or
(b) every submodule K of M , with M/K is finitely generated, has

an F -supplement in M .
3) M is an irredundant sum of F -local modules and RadF (M) ≪F M .

Proof. (1) ⇔ (3) Let M =
∑

I Li with F -hollow submodules Li of M for
some index set I. Then M/RadF (M) =

∑
I(Li +RadF (M))/RadF (M).

Since (Li +RadF (M))/RadF (M) ∼= Li/(Li ∩ RadF (M)), we claim that
these factors are simple or zero. If Li ∩ RadF (M) 6= Li and X/(Li ∩
RadF (M)) is any proper submodule of Li/(Li ∩ RadF (M)), then we
have F ⊆ X $ Li as F ⊆ Li ∩ RadF (M). But, then X ≪F Li as
Li is F -hollow, and so X ⊆ RadF (Li) ⊆ Li ∩ RadF (M). This implies
that X = Li ∩ RadF (M), and Li/(Li ∩ RadF (M)) is simple as claimed.
Therefore, we obtain that M/RadF (M) = ⊕J (Li+RadF (M))/RadF (M)
for some subset J ⊆ I. Since RadF (M) ≪F M , it follows that M =

∑
J Li

with F -local modules Li by Proposition 10 (since RadF (Li) 6= Li).
Since (b) ⇒ (a) is clear, it suffices to prove the following implications:
(3) ⇒ (2)(b) Clearly, M/RadF (M) is semisimple (see (1) ⇔ (3)).

Since RadF (M) ≪F M , it follows by Proposition 11 that every proper
submodule of M containing F is contained in a maximal submodule.

Now, assume that K is a submodule of M with M/K is finitely
generated. By assumption, there are finitely many F -local (and so F -
hollow) submodules L1, L2, . . . , Ln with M = K + L1 + L2 + · · · + Ln.
Then by Proposition 12 and Corollary 4, it follows that L1+L2+ · · ·+Ln

is F -supplemented. Moreover, since M has trivially an F -supplement F
in M , by Proposition 6, K also has an F -supplement in M .

(2)(a) ⇒ (1) Let H =
∑

I Li with F -hollow submodules Li of M for
some index set I. Observe that F ⊆ Li for each i ∈ I. We show that
H = M . Suppose to the contrary that H 6= M . Since F ⊆ H, it follows
by assumption that H is contained in a maximal submodule N of M . By
assumption, N has an F -supplement in M , say L. Since F ⊆ H ⊆ N , by
Proposition 13, we obtain that L is F -local, and so it is F -hollow. Thus
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we get L ⊆ H ⊆ N by the choice of H, which implies that N = M as
N + L = M . This contradiction shows that H = M .

The following result gives a characterization for finitely generated
F -supplemented modules.

Corollary 7. For a finitely generated module M , the following statements
are equivalent.

1) M is F -supplemented.
2) Every maximal submodule containing F has an F -supplement in M .
3) M is a sum of F -hollow submodules.
4) M is an irredundant sum of F -local submodules.

Proof. Since M is finitely generated, first, we have RadF (M) ≪F M .
Indeed, assume that RadF (M) +X = M with F ⊆ X, and that X 6= M .
Then X is contained in a maximal submodule N of M . So, we have
RadF (M) +N = M . Since F ⊆ N , it follows that RadF (M) ⊆ N , and
so N = M . It is a contradiction. Next, for every submodule K of M , we
have M/K is finitely generated. Thus the proof follows immediately by
Theorem 3.

3. Amply F -supplemented modules

In this section, we introduce and characterize amply F -supplemented
modules.

Let M be a module. We say a submodule U ⊆ M has ample (or
enough) F -supplements in M if, for every V ⊆ M with U +V = M , there
is an F -supplement V ′ of U with V ′ ⊆ V . If every submodule of M has
ample F -supplements in M , then we call M amply F -supplemented.

Since for each submodule U ⊆ M , we have U +M = M , it follows
that every amply F -supplemented module is F -supplemented.

Proposition 14. Let M be an amply F -supplemented module. Then
1) Every F -supplement submodule of M is amply F -supplemented.
2) Every direct summand of M containing F is amply F -supplemented.

Proof. 1) Let V ⊆ M be an F -supplement of U ⊆ M . For X ⊆ V , assume
that V = X + Y . Then M = U + V = (U +X) + Y , and so there is an F -
supplement Y ′ of U +X in M with Y ′ ⊆ Y by assumption. We claim that
Y ′ is an F -supplement of X in V . Since X ∩ Y ′ ⊆ (U +X) ∩ Y ′ ≪F Y ′,
we have X ∩ Y ′ ≪F Y ′ by Lemma 1-(2). Now, since F ⊆ X + Y ′,
M = U +X + Y ′ implies that V = X + Y ′ by the minimality of V .
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2) Since any direct summand of M containing F is an F -supplement
in M in the obvious way, it is amply F -supplemented by (1).

Proposition 15. Let M be a module with M = U1+U2. If the submodules
U1, U2 have ample F -supplements in M , then so does U1 ∩ U2.

Proof. Let V ⊆ M with U1 ∩ U2 + V = M . Then by modular law, we
have U1 ∩U2+U2 ∩V = U2, and so U1+U2 ∩V = M . So, by assumption,
there is an F -supplement V ′

2 of U1 with V ′
2 ⊆ U2 ∩ V . Similarly, there is

also an F -supplement V ′
1 of U2 with V ′

1 ⊆ U1 ∩ V . Thus, for V ′
1 + V ′

2 ⊆ V ,
we obtain that U1 ∩ U2 + (V ′

1 + V ′
2) = M , and (V ′

1 + V ′
2) ∩ (U1 ∩ U2) =

(V ′
1 ∩ U2) + (V ′

2 ∩ U1) ≪F V ′
1 + V ′

2 by Lemma 1. Hence V ′
1 + V ′

2 is the
desired F -supplement of U1 ∩ U2 in M .

Proposition 16. Let M be a module, and U,K ⊆ M . If K ≪F M and
U +K has ample F -supplements, then U has also ample F -supplements.

Proof. Let V ⊆ M with U+V = M . Then M = (U+K)+V , and so there
is an F -supplement V ′ ⊆ V of U +K by assumption. Since K ≪F M
and F ⊆ V ′ +U , the equality M = V ′ +U +K implies that V ′ +U = M .
Moreover, V ′ ∩ U ⊆ V ′ ∩ (U +K) ≪F V ′ implies that V ′ ∩ U ≪F V ′ by
Lemma 1-(2). Hence V ′ is an F -supplement of U in M .

Now we give a characterization for amply F -supplemented modules.

Theorem 4. For a module M , the following statements are equivalent.
1) M is amply F -supplemented.
2) Every submodule U ⊆ M is of the form U = X + Y , where X is

F -supplemented and Y ≪F M .
3) For every submodule U ⊆ M , there is an F -supplemented submodule

X ⊆ U such that U/X ≪ M/X.
If M is finitely generated, then (1)− (3) are equivalent to:

4) Every maximal submodule containing F has ample F -supplements
in M .

Proof. (1) ⇒ (2) Clearly, M is F -supplemented. So, let V be an F -
supplement of U in M . Then U + V = M , and by assumption there is
an F -supplement X of V in M with X ⊆ U . Therefore, U = U ∩M =
U ∩ (X + V ) = X +U ∩ V , where U ∩ V ≪F M since U ∩ V ≪F V ⊆ M ,
and X is (amply) F -supplemented by Proposition 14-(1).

(2) ⇒ (3) Let U = X + Y , where X is F -supplemented and Y ≪F M .
Then U/X = (Y + X)/X ≪(F+X)/X M/X by Lemma 1-(1), that is,
U/X ≪ M/X since F ⊆ X implies that (F +X)/X = 0
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(3) ⇒ (1) Let U ⊆ M with U + V = M . By assumption, there is an
F -supplemented submodule X of V in M with V/X ≪ M/X. So, the
equality (U +X)/X + V/X = M/X implies that U +X = M . Now, the
submodule U ∩X ⊆ X has an F -supplement in X, say V ′. Therefore, we
get M = U + (U ∩X) + V ′ = U + V ′, and U ∩ V ′ = (U ∩X)∩ V ′ ≪F V ′.
Thus, V ′ is an F -supplement of U in M with V ′ ⊆ V . Hence M is amply
F -supplemented.

(1) ⇒ (4) Clear.
(4) ⇒ (1) Now suppose that M is finitely generated, and that all

maximal submodules of M containing F have ample F -supplements
(so F -supplements). Then M is F -supplemented by Corollary 7, and
M/RadF (M) is semisimple by Proposition 8. Therefore, for any submod-
ule U ⊆ M , we have M/(U+RadF (M)) is semisimple. Thus, Rad(M/(U+
RadF (M))) = 0, and so U +RadF (M) = ∩k

i=1Ni, where Ni’s are maximal
submodules of M containing U +RadF (M) (and so containing F ). From
assumption and Proposition 15, we obtain that U +RadF (M) has ample
F -supplements. Since RadF (M) ≪F M , Proposition 16 implies that U
also has ample F -supplements.
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