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ABSTRACT. Let R be a ring, let M be a left R-module,
and let U, V, F' be submodules of M with F' proper. We call V' an
F-supplement of U in M if V' is minimal in the set ¥ C X C M
such that U+ X = M, or equivalently, F C V., U+V = M and UNV
is F-small in V. If every submodule of M has an F-supplement,
then we call M an F-supplemented module. In this paper, we
introduce and investigate F-supplement submodules and (amply)
F-supplemented modules. We give some properties of these modules,
and characterize finitely generated (amply) F-supplemented modules
in terms of their certain submodules.

Introduction

All rings considered in this paper will be associative with an identity
element. Unless otherwise stated, R denotes an arbitrary ring and all
modules will be left unitary R-modules. Let M be a module. By X C M,
we mean X is a submodule of M, and X ; M means X is a proper
submodule of M. As usual, Rad(M) denotes the radical of M. Throughout
the paper, unless otherwise stated, F' will be a proper submodule, and we
follow the terminology and notation as in [2].

A submodule K C M is called small in M, denoted by K < M, if|
for every submodule . C M, the equality K + L = M implies L = M.
The notion of a supplement submodule was introduced in [3] in order to
characterize semiperfect modules, that is projective modules whose factor
modules have projective covers. For submodules U and V' of a module M,
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V' is said to be a supplement of U in M or U is said to have a supplement
VinMitU+V =Mand UNV <V, and M is called supplemented if
every submodule of M has a supplement in M. See [4, §41] and [2] for
results and definitions related to supplements, supplemented modules and
small submodules.

Recently, several authors have studied different generalizations of small
submodules (see, for example, [6], [5], [1]). In [1], F-small submodules
are defined and studied as a generalization of small submodules. Let
F be a proper submodule of a module M. A submodule K C M is
called F-small in M, denoted K < M, if, for every submodule L C M
containing F', the equality K + L = M implies L = M. Motivated by
the relation between supplement submodules and small submodules, we
introduce the notion of an F-supplement submodule. We call a submodule
V C M an F-supplement of U C M in M if V' is minimal in the set
{LCM|U+L=M and F C L}, or equivalently, FCV, U+V =M
and UNV < V (Proposition 1). We say U C M has ample F-supplements
if, for every V. C M with U +V = M, there is an F-supplement V' of U
with V! C V. If every submodule of M has an (ample) F-supplement, then
M is called an (amply) F-supplemented module. Like small submodules, of
course, for F' = 0, supplement submodules and F-supplement submodules
coincide in a module. Also, any supplement submodule containing F' is
always F-supplement, and the converse is true when F' < M (Remark 1).
So, for instance, for a finitely generated module M, if we take F' = Rad(M),
then any submodule of M containing F' is F-supplement if and only if it
is supplement in M.

In Section 1, we investigate F-small submodules and F-supplement
submodules, and we give some properties of F-supplement submodules
which are adapted from supplement submodules. For instance, for submod-
ules K € N C M, we show that if N is an F-supplement in M, then K is
an F-supplement in M if and only if K is an F-supplement in N (Theo-
rem 1). Also, we prove that if N is an F-supplement in M, then N/K is an
(F + K)/K-supplement in M /K, and the converse is true if, in addition,
K is an F-supplement in M (Propositions 4 and 5). Moreover, we show
that if V' is an F-supplement in M, then Radp (V) = VNRadp(M), where
Radp(M) is the intersection of all maximal submodules of M containing
F (Proposition 2).

In Section 2, we introduce and study F-supplemented modules. We
show that every finite (direct) sum of F-supplemented modules is F-
supplemented (Corollary 4), and that a module M is F-supplemented if
and only if M/F is supplemented (i.e. O-supplemented) (Theorem 2). Also,
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we prove that if M is F-supplemented, then M/ Radp(M) is semisimple
(Proposition 8). Finally, we characterize finitely generated F-supplemented
modules (Corollary 7). Namely, we prove the equivalence of the following
statements: (1) M is F-supplemented, (2) every maximal submodule
of M containing F' has an F-supplement, (3) M is a sum of F-hollow
submodules (i.e. modules in which every proper submodule containing
F is F-small), (4) M is an irredundant sum of F-local submodules (i.e.
modules L with Radr(L) is the largest submodule of L containing F').

In Section 3, we define and investigate amply F-supplemented modules.
We prove that M is amply F-supplemented if and only if every submodule
U C M is of the form U = X + Y, where X is F-supplemented and
Y <« M; and if M is finitely generated, these are equivalent to the
statement that every maximal submodule of M containing F' has ample
F-supplements in M (Theorem 4).

1. F-small and F-supplement submodules

In this section, we give some useful properties of F-small submodules
and some results on F-supplement submodules.

Clearly, small submodules and F-small submodules are the same for
F = 0. Moreover, small submodules are always F-small, but the converse
is not true in general.

Example 1. Consider the Z-module M = Z. Taking a submodule F' = 4Z
of M, we see that 8Z is F-small in M since 8Z C F. However, 87 is not
small in M since, for example, 8Z + 3Z = M. In fact, 0 is the only small
submodule of M.

We collect some known properties of F-small submodules which will
be useful in the sequel in the following lemma (see [1]).

Lemma 1. Let M be a module and let K, L be submodules of M.
1) If f : M — N is a homomorphism of modules, then K <p M
implies f(K) <gpy N. In particular, if K <p M C N, then
K <p N.
2) If K C N C M, then N <p M if and only if K <p M and
N/K L(F+K)/K M/K.
3) K+ L<p M ifand only if K <p M and L <p M.

Let M be a module and let U,V be submodules of M. Recall that
V' is said to be an F-supplement of U in M if V' is minimal in the set
FCLCMwithU+L=M.
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Proposition 1. Let M be a module and let U,V be submodules of M.
Then V' is an F-supplement of U in M if and only if F CV, U+V =M
andUNV < V.

Proof. (=) Assume that UNV + X = V with F € X C M. Then
M =U+4+V =U+ X, and so X = V by the minimality of V. Thus
UNnV<rpV.

(<) Assume that U+Y = M for asubmodule Y of M with F CY C V.
Then we have V. =MNV = (U+Y)NV =UNV+Y.Since UNV <p V
and F C Y, it follows that V' =Y. This minimality of V' shows that V is
an F-supplement of U in M. ]

As a generalization of the radical of a module, Radp(M) is defined
in [1, Definition 3.1] to be the intersection of all maximal submodules of
M that contain F'. If there is no such maximal submodule of M, then
Radp(M) = M. Also, it was proved that Radp (M) is equal to the sum
of all F-small submodules of M (see [1, Theorem 3.3|).

Lemma 2. Let M be a module and let v € M. Then x € Radp(M) if
and only if Rx <p M.

Proof. (=) Let Rx +U = M with FF C U C M. Assume that U # M.
Then, by Zorn’s Lemma, there is a submodule L C M maximal with
respect to U C L and =z ¢ L. Since L + Rx = M, it follows that L
is a maximal submodule of M. So, Radp(M) C L since F' C L, and
this implies that = € L. This contradiction shows that U = M. Hence
Rr <p M.

(<) Since Radp(M) is the sum of all F-small submodules of M and
Rz <p M, we have Rx C Radp(M). Hence z € Radp(M). O

Proposition 2. Let M be a module and let V' be an F-supplement of U
in M. If K <p M, then KNV <p V and so Radp(V) = VNRadp(M).

Proof. First, assume that (K NV)+ X =V with F C X C V. Then
M=U+4V=U+(KnNV)+X =K+ (U+ X). Since F CU + X and
K < M, we have U + X = M. Thus X = V by the minimality of V.
Hence KNV < V. Next, it is clear that Radp(V) C VNRadp(M). Now,
let z € VNRadp(M). Then = € Radp(M) and so Rx < M by Lemma 2.
Since Rx C V, it follows by the first part that Rz = V N Rx <z V. Thus
x € Radp(V). O

Corollary 1. Let M be a module and let V' be an F-supplement of U
in M. If Radp (M) <p M, then U is contained in a mazimal submodule
of M containing F.
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Proof. By Proposition 2, we have Radp(V) = V N Radp(M) <p V.
Therefore, Radp(V) # V, and so V has a maximal submodule V’ that
contains F. So, M/(U+V')=U+V)/(U+V')=V/V' and U + V' is
the desired maximal submodule of M. O

Corollary 2. Let M be a module, and let V' be an F-supplement of U in M.
If U is a mazximal submodule of M containing F', then U NV = Radp(V)
1s the unique mazimal submodule of V' that contains F.

Proof. Since U is a maximal submodule of M containing F', we have
Radp(M) C U. So, it follows by Proposition 2 that Radp(V) = V N
Radp(M) C UNV. Conversely, since UNV < V as V is an F-supplement
of U, we get UNV C Radp(V). O

For modules which don’t have maximal submodules containing F' (for
instance, for the Z-module Q), we have the following result.

Proposition 3. Let M be a module. Then Radp(M) = M if and only if
every finitely generated submodule of M is F'-small in M.

Proof. (=) Let N be any finitely generated submodule of M. Then N =
Rmq + Rmo + -+ + Rmy, for some m; € M. Since, by assumption, m; €
Radp(M), it follows that Rm; <p M for all i =1,2,...k by Lemma 2.
Therefore N < M by Lemma 1-(3).

(<) Clearly, Radp(M) € M. To show that M C Radp(M), let
x € M. Then Rx <p M by assumption, and so Rx C Radp(M). Thus
x € Radp(M) as desired. O

Corollary 3. Let M be a module. If Radp(M) = M, then every finitely
generated submodule of M has an F'-supplement in M.

Proof. Since every finitely generated submodule U of M is F-small in M
by Proposition 3, then M is an F-supplement of U in M. 0J

The following result shows F-supplements in submodules.

Theorem 1. Let K C N C M be submodules.
1) If K is an F-supplement in M, then K is an F-supplement in N.
2) If N is an F-supplement in M, then
(a) K is an F-supplement in M if and only if K is an F-supplement
m N;
(b) K <p M if and only if K <p N.
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Proof. 1) Since K is an F-supplement in M, there is a submodule P C M
such that K + P = M and K N P <r K. By modular law, we have
N =K+ NnNP. Moreover, KNNNP=KNP <Kp K. Thus K is an
F-supplement of NN P in N.

2) Suppose that N is F-supplement in M. Then there is a submodule
L C M suchthat N+ L =M and NNL <g N.

(a) (=) It follows by (1).

(<) Since K is an F-supplement in N, there is a submodule T'C N
such that K4+T = N and KNT' <p K. So, K+(T+L) = N+L = M.
Assume that K’ + (T'+ L) = M for a submodule F C K’ C K.
Since F' C K'+T and N is F-supplement of L in M, it follows that
K'+T = N by the minimality of N. Now by the minimality of
K, we conclude that K’ = K. This means that K is F-supplement
of T+ L in M.

(b) (=) Assume that K + X = N for a submodule ' C X C N. Then
K+X+L=N+L=M,andso X +L =M since FC X + L
and K <p M by assumption. Thus by modular law, we have
N=X+NnNL.Since NNL <g N, it follows that X = N. Hence
K <r N.

(<) It is always true by Lemma 1-(1). O

Supplement submodules and F-supplement submodules coincide in a
module under some extra conditions over F.

Remark 1. Clearly, supplement submodules and 0-supplement submod-
ules coincide in a module, and any supplement submodule containing F' is
always F'-supplement. However an F'-supplement submodule need not be
supplement in general (since F-smallness need not imply smallness, see
Example 1). But, for example, if F' < M and V is an F-supplement of U
in M, then we have F' < V (by Theorem 1-(2b)), and so UNV < V
implies that U NV < V (by |1, Proposition 2.3|). This means that V' is a
supplement of U in M.

Proposition 4. Let M be a module. If N is an F-supplement of U in
M, then for K CU, (N + K)/K is an (F + K)/K -supplement of U/ K
in M/K.

Proof. Since N is an F-supplement of U in M, we have U + N = M and
UNN < N. So,we have (U/K)+(N+K)/K = (U+N+K)/K = M/K,
and by modular law, (U/K)N (N + K)/K = (UNN + K)/K. Since
UNN < N, it follows by Lemma 1-(1) that (UNN + K)/K <(p4+K)/K
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(N + K)/K (by considering the epimorphism f: N — (N + K)/K). Thus
(N+ K)/K is an (F + K)/K-supplement of U/K in M/K. O

The converse of the previous statement is true under a special condition.

Proposition 5. Let K C N C M be submodules. If K is an F-supplement
in M, and N/K is an (F + K)/K-supplement in M/K, then N is an
F-supplement in M.

Proof. First of all, since F' C K, we see by assumption that N/K is a
supplement in M /K. Now, let K be an F-supplement of a submodule
K'in M. Then K + K' = M and K N K’ < K. Moreover, let N/K be
a supplement of N'/K in M/K where K C N’. Then we have N/K +
N'/K = M/K and NJKNN'/K = (NNN')/K < N/K. Since M =
NNN +K as K C NNN',and N + N = M it follows that M =
N+ K'n N’ by |2, 1.24]. Since N = K + (N N K') by modular law, we
get NN(K'NN')/(KNK') < N/(KNK') by |2, 2.3-(1)]. So, clearly, we
have NN (K'NN') /(KN K'") <py ki) (knky N/(K N K'). Thus, the
fact that K N K’ < N, which follows from K N K’ < K, implies that
NN(K'NN’) <p N by Lemma 1-(2). This means that N is F-supplement
of KN N’ in M. O

2. F-supplemented modules

In this section, we define the concept of F-supplemented modules and
we give a characterization for finitely generated F-supplemented modules.

A module M is called F-supplemented if every submodule of M has
an F'-supplement in M.

Proposition 6. Let M be a module. Assume that U and My are submod-
ules of M, where My is F'-supplemented. If My 4+ U has an F-supplement
m M, then U also has an F-supplement in M.

Proof. Let X be an F-supplement of M; 4+ U in M. Since M; is F-
supplemented, the submodule (X + U) N M; has an F-supplement in M,
say Y. We claim that X 4+Y is an F-supplement of U in M. First, we have
M=X+M+U=X+Y+(X+U)NM)+U=(X+Y)+U. Next,
since Y C My, we have YN(X+U) = (YNM)N(X+U) =YN[(X+U)N
M) <p Y, and since Y +U C M; +U, it follows that XN (Y +U) <r X.
Therefore, the inclusion (X +Y)NU C XN (Y +U)+Y N(X +U) implies
that (X +Y)NU < X +Y by Lemma 1, as claimed. O
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Remark 2. Since the zero submodule 0 is small in any module M, we
observe that M is always a supplement of 0 in M, and vice versa. Likewise,
since any submodule of M contained in F is F-small in M, we see that F'
is F-small in M. So, M is an F-supplement of F' in M by Proposition 1,
because '+ M = M and FNM = F «<p M. In fact, F' is also an
F-supplement of M in M since F <p F.

Proposition 7. If My and Ms are F-supplemented modules, then M =
My + My is also an F-supplemented module.

Proof. Let U C M. Since Mj + (M + U) has trivially an F-supplement
F in M, it follows, by Proposition 6, that there is an F-supplement for
Ms + U, and so there is an F-supplement for U in M. [

Corollary 4. FEvery finite (direct) sum of F-supplemented modules is
F-supplemented.

Now, we investigate factor modules of F-supplemented modules.

Proposition 8. If M is an F-supplemented module, then M/Radpr(M)
is semisimple (and so supplemented).

Proof. Let X/Radp(M) C M/Radp(M). Since M is F-supplemented,
there is an F-supplement Y of X in M, that is, X +Y = M and X N
Y <r Y. So, we have (X/Radp(M)) + (Y + Radp(M))/Radp (M) =
M/Radp(M), and (X/Radp(M))N (Y +Radp(M))/Radp(M) =X N
(Y4+Radp(M))/Radp(M) = (XNY+Radrp(M))/Radp(M) = 0, because
X NY <«r Y implies that X NY C Radp(M). Thus X/ Radp(M) is a
direct summand of M/ Radp(M). Hence M/ Radp(M) is semisimple. [

Proposition 9. Let M be a module and let K C M be a submodule. If
M is F-supplemented, then M /K is (F + K)/K -supplemented.

Proof. Take any submodule N/K of M/K where K C N C M. Since M
is F-supplemented, N has an F-supplement in M, say V. Thus (V+K)/K
is an (F'+ K)/K-supplement of N/K in M/K by Proposition 4. Hence
M/K is (F + K)/K-supplemented. O

Theorem 2. Let M be a module. Then M is F-supplemented if and only
if M/F is supplemented.

Proof. (=) Suppose that M is F-supplemented. Then, by Proposition 9,
we see that M/F' is 0-supplemented, that is, supplemented.
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(<) Take any submodule U C M. Since M/F' is supplemented, (U +
F)/F has a supplement in M/F, say V/F. Then [(U+ F)/F]+ V/F =
M /F which implies that U+V = M, and [UNV)+F|/F = [(U+F)/F]N
V/F < V/F from which it follows that UNV < V by [1, Proposition 2.9].
Thus V is F-supplement of U in M. Hence M is F-supplemented. O

Taking F' = 0, we obtain the following corollary.

Corollary 5. A module M is 0-supplemented if and only if it is supple-
mented.

A nonzero module M is called hollow if every proper submodule is
small in M; and local if it has a largest submodule (namely Rad(M)).
It is clear that local modules are hollow, and that any finitely generated
module is hollow if and only if it is local (see, for example, |2, p. 15]).

Let M be a nonzero module and let F' be a proper submodule of M.
We call M an F-hollow module if every proper submodule containing F'
is F-small in M; and F-local if Radp(M) is the largest submodule of M
containing F' (i.e. a proper submodule which contains all other proper
submodules containing F'). In this case, Radp (M) <p M.

Remark 3. Since M is hollow if and only if every proper submodule is
F-small in M (see [1, Proposition 2.21]), it follows easily that a hollow
module is F-hollow, and the converse is true when F' = 0. Moreover, local
modules are always F-local (because, in this case, F' C Rad(M) and so
Rad(M) = Radp(M)), and the converse is also true for F' = 0.

In general, F-hollow (respectively F-local) modules need not be hollow
(respectively local).

Example 2. Let M be the Z-module Z, and let F' = 4Z. Then we have
Radp(M) = 2Z, and so M is F-local which implies that M is F-hollow.
But, since Rad(M) = 0, M is not local, and so it is not hollow as a cyclic
module.

Now we give some results which are needed to characterize finitely
generated F-supplemented modules.

Proposition 10. A nonzero module M is F-local if and only if it is
F-hollow and Radp(M) # M.

Proof. (=) Let K be a proper submodule of M containing F'. Since M
is F-local, K C Radp(M). Now since Radp(M) <p M, it follows that
K <r M by Lemma 1-(2), and that Radp(M) # M.
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(<=) First, we claim that M = M/ Rad (M) is simple. By assumption,
M # 0. Now, if N/Radp(M) & M, then we have F C N & M. Since
M is F-hollow, then N <p M, and so N C Radp(M). Hence N =
Radp(M). Next, if F € X G M, then (X + Radp(M))/Radp(M) G M.
So, X + Radp(M) = Radp(M) since M is simple, which implies that
X C Radp(M). Hence Radp(M) is the largest submodule of M that
contains F', that is, M is F-local. [

Proposition 11. Let M be a module. If M/ Radp(M) is semisimple and
Radp(M) <p M, then every proper submodule of M containing F is
contained in a maximal submodule.

Proof. Consider the natural epimorphism o : M — M/ Radp(M) = M.
Let F C U & M. Since Radp(M) <r M, we have o(U) # M. Thus
o(U) is contained in a maximal submodule N of M (as M is semisimple).
Hence U is contained in the maximal submodule o~!(N) of M. O

Corollary 6. If M is F-supplemented and Radp(M) <p M, then every
proper submodule of M containing F' is contained in a mazimal submodule.

Proof. Tt follows from Propositions 8 and 11. O

Proposition 12. FEvery F'-hollow module M is F-supplemented.

Proof. Let U be any submodule of M. Since F' is always an F-supplement
of M in M by Remark 2, we may assume that U # M. There are two
cases to consider. First, if ¥ C U, then U <r M since M is F-hollow by
assumption. So, M is an F-supplement of U in M, because U + M = M
and UNM =U <p M. Next, assume that F ¢ U. If U + F = M, then
Fis an F-supplement of U in M since U N F C F <p F. Otherwise,
U+ F # M. Therefore, U + F <r M by assumption, from which we get
U <p M. So, M is an F-supplement of U in M as in the first case. Thus, in
each case, U has an F-supplement in M. Hence M is F-supplemented. []

Proposition 13. Let M be a module. Every F-supplement of a maximal
submodule of M containing F' is F'-local.

Proof. Let U be a maximal submodule of M containing F'. Assume that V'
is an F-supplement of U in M. Then by Corollary 2, we have Radp (V) =
V N U is the unique maximal submodule of V' containing F'. In fact,
Radp (V) is the largest proper submodule of V' containing F', because, for
any submodule F C X C V with X ¢ Radp(V), we have X + Radp(V) =
V since Radp(V) is maximal in V', and so X =V since Radp(V) <p V
as V is an F-supplement of U. Hence V is F-local. 0J
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Let {M;}; be a family of modules for some index set I. The sum
M = )", M; is called irredundant if, for every ig € I, Zi#o M; # M
holds.

Theorem 3. For a module M, the following are equivalent.
1) M is a sum of F-hollow submodules and Radp(M) <p M.
2) Ewvery proper submodule of M containing F' is contained in a mazimal
submodule, and
(a) every mazimal submodule containing F' has an F-supplement
m M, or
(b) every submodule K of M, with M/K is finitely generated, has
an F-supplement in M.
3) M is an irredundant sum of F-local modules and Radp(M) <p M.

Proof. (1) < (3) Let M =", L; with F-hollow submodules L; of M for
some index set I. Then M/Radp(M) = > ,(L; + Radp(M))/Radpr(M).
Since (L; + Radp(M))/ Radp(M) = L;/(L; NRadp(M)), we claim that
these factors are simple or zero. If L; N Radp(M) # L; and X/(L; N
Radp(M)) is any proper submodule of L;/(L; N Radgp(M)), then we
have F € X G L; as F' C L; N Radp(M). But, then X <p L; as
L; is F-hollow, and so X C Radp(L;) € L; N Radp(M). This implies
that X = L, "Radp(M), and L;/(L; " Radp(M)) is simple as claimed.
Therefore, we obtain that M/ Radp(M) = &;(L;+Radp(M))/ Radp(M)
for some subset J C I. Since Radp (M) <p M, it follows that M =" ; L;
with F-local modules L; by Proposition 10 (since Radr(L;) # L;).

Since (b) = (a) is clear, it suffices to prove the following implications:

(3) = (2)(b) Clearly, M/Radp(M) is semisimple (see (1) < (3)).
Since Radp(M) <r M, it follows by Proposition 11 that every proper
submodule of M containing F' is contained in a maximal submodule.

Now, assume that K is a submodule of M with M/K is finitely
generated. By assumption, there are finitely many F-local (and so F-
hollow) submodules Ly, Lo, ..., L, with M = K + Ly + Lo+ --- + Ly,.
Then by Proposition 12 and Corollary 4, it follows that L1+ Lo +---+ L,
is F-supplemented. Moreover, since M has trivially an F-supplement F
in M, by Proposition 6, K also has an F-supplement in M.

(2)(a) = (1) Let H =) ; L; with F-hollow submodules L; of M for
some index set I. Observe that F C L; for each i € I. We show that
H = M. Suppose to the contrary that H # M. Since F' C H, it follows
by assumption that H is contained in a maximal submodule N of M. By
assumption, N has an F-supplement in M, say L. Since ' C H C N, by
Proposition 13, we obtain that L is F-local, and so it is F-hollow. Thus
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we get L € H C N by the choice of H, which implies that N = M as
N + L = M. This contradiction shows that H = M. O

The following result gives a characterization for finitely generated
F-supplemented modules.

Corollary 7. For a finitely generated module M, the following statements
are equivalent.

1) M is F-supplemented.
2) Every mazximal submodule containing F has an F-supplement in M.
3) M is a sum of F-hollow submodules.
4) M is an irredundant sum of F-local submodules.

Proof. Since M is finitely generated, first, we have Radp(M) <p M.
Indeed, assume that Radp(M) + X = M with F' C X, and that X # M.
Then X is contained in a maximal submodule N of M. So, we have
Radp(M)+ N = M. Since F' C N, it follows that Radp(M) C N, and
so N = M. It is a contradiction. Next, for every submodule K of M, we
have M/K is finitely generated. Thus the proof follows immediately by
Theorem 3. O

3. Amply F-supplemented modules

In this section, we introduce and characterize amply F-supplemented
modules.

Let M be a module. We say a submodule U C M has ample (or
enough) F-supplements in M if, for every V. C M with U +V = M, there
is an F-supplement V'’ of U with V/ C V. If every submodule of M has
ample F-supplements in M, then we call M amply F-supplemented.

Since for each submodule U C M, we have U + M = M, it follows
that every amply F-supplemented module is F-supplemented.

Proposition 14. Let M be an amply F-supplemented module. Then
1) Every F-supplement submodule of M is amply F-supplemented.
2) Ewvery direct summand of M containing F is amply F-supplemented.

Proof. 1) Let V'.C M be an F-supplement of U C M. For X C V, assume
that V=X +Y. Then M =U+V = (U+ X)+Y, and so there is an F-
supplement Y/ of U + X in M with Y’ C Y by assumption. We claim that
Y’ is an F-supplement of X in V. Since X NY' C (U+ X)NY' <p Y/,
we have X NY’ <p Y’ by Lemma 1-(2). Now, since FF C X + Y,
M = U + X + Y’ implies that V = X + Y’ by the minimality of V.
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2) Since any direct summand of M containing F' is an F-supplement
in M in the obvious way, it is amply F-supplemented by (1). O

Proposition 15. Let M be a module with M = Uy +Us. If the submodules
Uy, Us have ample F-supplements in M, then so does Uy N Us.

Proof. Let V. C M with Uy NUy +V = M. Then by modular law, we
have Uy NUy+Us NV = Us, and so Uy +Us NV = M. So, by assumption,
there is an F-supplement V4 of Uy with VJ C Uy N V. Similarly, there is
also an F-supplement V] of Uy with V/ C Uy N V. Thus, for V] + Vj C V,
we obtain that Uy N Uz + (V] + V4) = M, and (V] + VJ) N (U1 NUs) =
(VinUz) + (Vo NU1) <F V] + V3 by Lemma 1. Hence V| + Vj is the
desired F-supplement of Uy NUs in M. 0J

Proposition 16. Let M be a module, and U, K C M. If K <p M and
U + K has ample F-supplements, then U has also ample F-supplements.

Proof. Let V.C M withU+V = M. Then M = (U+K)+V, and so there
is an F-supplement V' C V of U + K by assumption. Since K <p M
and F C V' + U, the equality M = V' + U + K implies that V' +U = M.
Moreover, V' NU CV'N (U + K) < V' implies that V' N U <p V' by
Lemma 1-(2). Hence V' is an F-supplement of U in M. O

Now we give a characterization for amply F-supplemented modules.

Theorem 4. For a module M, the following statements are equivalent.

1) M is amply F-supplemented.

2) Ewvery submodule U C M is of the form U = X +Y, where X is
F-supplemented and Y <p M.

3) For every submodule U C M, there is an F-supplemented submodule
X CU such that U/ X < M/X.
If M is finitely generated, then (1) — (3) are equivalent to:

4) FEvery mazximal submodule containing F' has ample F-supplements
mn M.

Proof. (1) = (2) Clearly, M is F-supplemented. So, let V be an F-
supplement of U in M. Then U +V = M, and by assumption there is
an F-supplement X of V in M with X C U. Therefore, U =UNM =
UN(X+V)=X4+UNV,where UNV «<p M since UNV <V C M,
and X is (amply) F-supplemented by Proposition 14-(1).

(2) = (3) Let U = X +Y, where X is F-supplemented and Y < M.
Then U/X = (Y + X)/X <(pyx)/x M/X by Lemma 1-(1), that is,
U/X < M/X since FF C X implies that (F 4+ X)/X =0
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(3) = (1) Let U C M with U +V = M. By assumption, there is an
F-supplemented submodule X of V' in M with V/X <« M/X. So, the
equality (U + X)/X +V/X = M/X implies that U + X = M. Now, the
submodule U N X C X has an F-supplement in X, say V. Therefore, we
get M=U+UNX)+V' =U+V,andUNV' =UNX)NV' <p V'
Thus, V' is an F-supplement of U in M with V/ C V. Hence M is amply
F-supplemented.

(1) = (4) Clear.

(4) = (1) Now suppose that M is finitely generated, and that all
maximal submodules of M containing F' have ample F-supplements
(so F-supplements). Then M is F-supplemented by Corollary 7, and
M/ Radp(M) is semisimple by Proposition 8. Therefore, for any submod-
ule U C M, we have M /(U +Radp(M)) is semisimple. Thus, Rad(M /(U +
Radp(M))) = 0, and so U +Radp(M) = NE_; N;, where N;’s are maximal
submodules of M containing U + Radr(M) (and so containing F'). From
assumption and Proposition 15, we obtain that U + Radr(M) has ample
F-supplements. Since Radp(M) <p M, Proposition 16 implies that U
also has ample F-supplements. O
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