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Abstract. The concept of multivariate bijective map of
an affine space Kn over commutative Ring K was already used
in Cryptography. We consider the idea of nonbijective multivari-
ate polynomial map Fn of Kn into Kn represented as ”partially

invertible decomposition” F
(1)
n F

(2)
n . . . F

(k)
n , k = k(n), such that

knowledge on the decomposition and given value u = F (v) allow
to restore a special part v′ of reimage v. We combine an idea of
”oil and vinegar signatures cryptosystem” with the idea of linguistic
graph based map with partially invertible decomposition to intro-
duce a new cryptosystem. The decomposition will be induced by
pseudorandom walk on the linguistic graph and its special quotient
(homomorphic image). We estimate the complexity of such general
algorithm in case of special family of graphs with quotients, where
both graphs form known families of Extremal Graph Theory. The
map created by key holder (Alice) corresponds to pseudorandom se-
quence of ring elements. The postquantum version of the algorithm
can be obtained simply by the usage of random strings instead of
pseudorandom.
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1. On multivariate cryptography

and special multivariate transformations

Multivariate cryptography (see [4]) is one of the directions of Postquan-

tum Cryptography, which concerns with algorithms resistant to hypothetic

attacks conducted by Quantum Computer. The encryption tools of Multi-

variate Cryptography are nonlinear multivariate transformations of affine

space Kn, where K is a finite commutative ring. Nowadays this modern

direction of research requires new examples of algorithms with theoretical

arguments on their resistance to attacks conducted by ordinary computer

(Turing machine) and new tasks for cryptanalists.

Essential part of known results on Multivariate Cryptography is de-

voted to studies of quadratic encryption maps. For instance, for many mod-

ifications of Imai - Matsumoto Cryptosystems the successful cryptanalisis

was found.

The idea of the usage of nonbijective quadratic maps were proposed

in “unbalanced oil and vinegar” system. Nowadays this idea is strongly

supported by publication [3] devoted to security analisis of direct attacks

on modified unbalanced oil and vinegar systems. It looks like such sys-

tems and rainbow signatures schemes may lead to promising Public Key

Schemes of Multivariate Encryption (see [17], [18]).

In current paper we proposed different approach. The principle differ-

ence of our examples is that the degree of polynomial map is > 3. We will

seriously modify approach of [26] for the creation of bijective map of Kn,

where K is a general commutative ring, with invertible decomposition.

The modifications allow us to produce nonbijective maps of Kn. suitable

for the construction of multivariate cryptosystems. In difference with

”unbalanced oil and vinegar” method the partition of variables is defined

by homomorphism of algebraic graphs. We will analyze the options of

direct attacks attacks in future publications.

Recall, that Cremona group C(Kn) is a totality of invertible maps f

of affine space Kn over a Commutative ring K into itself, such that the

inverse map f−1 is also a polynomial one.

Let us refer to the sequence of general polynomial maps Fn on Kn,

n = 1, 2, . . . as a family of polynomial degree, if the degree of each trans-

formation is a parameter s of the size O(nt).

We say that a family Fn, n = 1, 2, . . . is a family of linear degree in

the case t = 1. We refer to a family Fn as a family of bounded degree

if t = 0. Assume that a transformation F = Fn is written in the form:
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xi → fni (x1, x2, . . . , xn), i = 1, 2, . . . , n, where each fni ∈ K[x1, x2, . . . , xn]

is determined by the list of their monomial terms with respect to some

chosen order.

We refer to the sequence Fn ∈ C(Kn) as a family of polynomial density

d if total quantity of all monomial expressions within all fni is given as

O(nd) for some independent constant d.

Proposition 1. Let Fn, n = 1, 2, . . . be a family of polynomial degree s

and of polynomial density d. Then the value of Fn in the point x ∈ Kn

can be computed by O(ns+d) elementary steps.

A family of elements Fn ∈ C(Kn), n > 1 is called stable if each

multiple iteration of Fn with itself has degree 6 degFn.

We say that a family Fn ∈ C(Kn) has an invertible decomposi-

tion of speed d if Fn can be written as a composition of elements

F
(1)
n , F

(2)
n , . . . , F

(k)
n , k = k(n) and this decomposition will allow us to

compute the value of y = Fn(x) and the re-image of given y in time

k(n)O(nd) (see [26] which partially reflects authors talk at the Central

European Conference on Cryptology 2014).

The idea of usage of nonbijective polynomial transformations of Kn

onto Kn is already known. For instance, well known multivariate con-

struction of ” oil and vinegar variables” were presented by J. Patarin [16].

This scheme and its modifications (unbalanced oil and vinegar system, in

particular) were investigated in [5], [6], [2].

Below we introduce the simplest method of convertion of a computable

bijective map with invertible decomposition into nonbijective family with

partially computable decomposition.

Let us assume that Kn is presented as direct sum of affine subspaces

W1 and W2. We say that the family of multivariate map Fn : Kn → Kn

has partialy invertible decomposition Fn = F
(1)
n F

(2)
n . . . F

(k)
n , k = k(n)

if the knowledge on this presentation allows to find the projection π of

reimage v of Fn(v) = u onto subspace W1 in polynomial time.

Let us assume that nonlinear transformations Fn form a family of

polynomial degree and density. Assume that it has partially invertible

decomposition. Alice keeps this decomposition secret. She makes the

map Fn, given in standard form, and the partition onto W1 and W2

(in chosen special basis) public. Public user Bob writes his message

p = (p1, p2, . . . , pm), where m = m(n) = dim(W1). He writes a pseu-

dorandom string (r1, r2, . . . , rt), t = t(n) = dim(W2), He forms vector
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v = (p1, p2, . . . , pm, r1, r2, . . . , rt), t + m = n. Bob computes c = Fn(v)

and sends it to Alice.

Alice uses the knowledge on decomposition (private key) to compute

the plaintext (p1, p2, . . . , pm).

First, we consider an affine deformation of a multivariate family Fn :

Kn → Kn of polynomial density and polynomial degree: Let T1 and T2

be affine transformation of an Kn, i. e. polynomial maps of Kn into Kn

of degree one. We refer to Gn = T1FnT2 as affine deformation of the

family Fn. We say, that affine transformation is a regular one if the family

of Gn is also a family of polynomial degree and polynomial density. In

the simplest case, when degree of Fn is bounded by independent constant,

an arbitrary deformation is a regular one. If T1 is monomial map, i.e. it is

a composition of diagonal and permutational linear transformation, then

arbitrary affine deformation of such kind will be regular one.

Let Fn be a multivariate map of polynomial degree, polynomial density

with invertible decomposition F
(1)
n F

(2)
n . . . F

(k)
n , k = k(n). Let W1 be

invariant subspace for Fn and nonbijective linear transformation T1.

Assume, that T1|W2
is nonbijective linear transformation, τ2 is a bi-

jective affine transformation of Kn. Let e1, e2, . . . , em be the basis of W1

and em+1, em+2, . . . , en be the basis of W2 is its completion to the basis of

Kn. Then T1FnT2 has partially invertible decomposition T1f1f2 . . . fkT2.

Really, if Gn(v) = u is given, then the knowledge on the decomposition

allows us to make the following steps.

1) Compute T−1
2 (u) = u′.

2) Compute the reimage z of u′ for Fn for which Fn(z) = u′.

3) Let T−1 be the inverse of T = T1|W1
.

4) Take z′ = z|W1
and compute p = T−1(z′), which coincides with the

projection v|W .

We use the linguistic graphs and their special quotients to generate

families of multivariate maps with partially invertible decomposition by

the described above general scheme.

2. On linguistic graphs

as tools of multivariate cryptography

The motivation of linguistic graph came from the observation that

the restrictions of the incidence relation of geometry of simple group of

Lie type on disjoint union of two maximal Schubert cell can be given via

triangular system of algebraic equations (see [23], [24], [28]). Walks in
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linguistic graphs have been used for the creation of stream ciphers since

1998. The first examples of such ciphers are given in [27],[29],[30]. For the

estimation of the security level and feasibility studies for key exchange

protocols the symbolic computations are very useful. After presentation

of graph based bijective enciphering transformation as standard map H

of kind

z1 → h1(z1, z2, . . . , zn),

z2 → h2(z1, z2, . . . , zn),

. . . , (1)

zn → hn(z1, z2, . . . , zn)

one can evaluate its degree (see [43], [44]). Other parameters such as

order, number of fixed points, cycle structures can be investigated via

numerical (non symbolic) computations.

The recent results on stream ciphers and key exchange protocols the

reader can find in surveys [32,34,36,41,42] (see also [8, 10–12,19–22,33,

35,38–40]).

We will use walks in incidence structures corresponding linguistic

graphs and their flags as tools for generation of noninvertible transforma-

tion of flag variety. For this purpose we take a special homomorphic image

Γ1 (symplectic quotient) of linguistic graph Γ defined over commutative

ring K. Flag space of Γ2 can be identified with affine space Kn. Element π

of symmetric group Sn acting naturally on Kn shifts symplectic quotient

Γ1 of Γ2 to the symplectic quotient Γ1
π of “deformated” linguistic graph

Γπ2 . Pair Γ1, Γ2 defines the partition of flag space Kn into direct sum of

W1 = K ñ and W2 = Kn−ñ.

The key owner Alice will create a public rule as a composition of

the most preferable singular linear map T1 with invariant space W1 such

that T1|W1
is invertible, some permutation π ∈ Sn, nonlinear map N

corresponding to the chosen walk on the flags of incidence structure Γπ2 ,

and the “shutter” T2, which is invertible affine transformation of Kn.

Alice will use tools of Computer Algebra to generate the composition in

the standard form (1).

A public user Bob will use “window” W1 to write his plaintext m

and W2 to put pseudorandom string v of elements from K. He gets

a randomised plaintext m̃ as concatenation of m and v. He computes

ciphertext c = H(m̃) and sends it to Alice.
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The private key of Alice consists of symplectic pair I, I ′ of linguistic

graphs, linear maps T1 and π, chosen pseudorandom walk in Γπ2 and “the

shutter” T2. It allows her to restore the plaintext m, but not a random

string v.

Notice, that transformation H is a composition of linear map T
′

1 = T1π,

nonlinear map N and affine shutter T2. So it has similarity with Imai

Matsumoto encryption map (see [9]). If K = Ql Alice can “hide” ring

K and write public rule transformation Qnl with the modified trick of

Imai-Matsumoto algorithm.

Section 2 is devoted to the concept of the pair consisting of a linguistic

graph and its symplectic quotient. In section 3 we consider a general

scheme of generation of pseudo public multivariate map on variety of

vertices (or flags) of general linguistic graph. We use term pseudo public

because the complexity and level of security depends on the choice of

the graph. The idea of this method of symbolic walks on algebraic graph

encryption (shortly SWAGE) is presented in [31] together with an example

for the case of known linguistic graphs of large girth D(k, q) and their

generalisation for the case of general commutative ring (see also [30]

for the D(k, q) graphs case). The final form of SWAGE on numerical

level is presented in [40] together with the generalised method for special

incidence structures of arbitrary rank. In section 3 the reader can find

SWAGE descryption given both on symbolic and numerical methods.

So, the method of generation of nonlinear map as mentioned above map

N and computation of N−1 is given. Detailed descryption of general

algorithm for the case of K = Ql is given. The section 3 is devoted to the

examples of cryptosystems. We use the known graphs of large girth D(k, q)

([13], [14], [15]) and extremal graphs A(k, q)( see [38], [20], [41], [42]) and

there generalisations D(k,K) and A(k,K), where K is commutative ring.

Incidence structure Γ2 will correspond to representative of graphs from

family D(k,K), n = 2, 3, . . . and linguistic quotient Γ1 corresponds to

some graph from the family A(k′,K). The degrees of obtained public

keys will be evaluated by some constants. The last section contains some

remarks on the main results of the previous sections.

3. Linguistic graphs and their symplectic quotients

The missing definitions of graph-theoretical concepts which appear

in this paper can be found in [1]. All graphs we consider are simple , i.e.

undirected without loops and multiple edges. Let V (G) and E(G) denote
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the set of vertices and the set of edges of G, respectively. Then |V (G)|

is called the order of G, and |E(G)| is called the size of G. When it is

convenient we shall identify G with the corresponding anti-reflexive binary

relation on V (G), i.e. E(G) is a subset of V (G) × V (G) and write v G u

for the adjacent vertices u and v (or neighbors). We assume that V (G) is

a finite or an infinite set. The majority of examples will be locally finite

graphs G, i.e. each vertex v has finite number of neighbours (x ∈ V (G),

such that xG v). We refer to |{x ∈ V (G)|xG v}| as degree of the vertex v.

The sequence of distinct vertices v0, v1, . . . , vt, such that vi G vi+1 for

i = 1, . . . , t − 1 is the path in the graph. A path in G is called simple

if all its vertices are distinct. The graph is connected if each two of its

vertices are joined by some path. The length of a path is a number of its

edges. The distance between two vertices u and v of the graph, denoted by

dist(u, v), is the length of the shortest path between them. The diameter

of the graph, denoted by diam(G), is the maximal distance between two

vertices u and v of the graph. Let Cm denote the cycle of length m, i.e. the

sequence of distinct vertices v0, . . . , vm such that viGvi+1, i = 1, . . . ,m−1

and vm G v1. The girth of a graph G, denoted by g = g(G), is the length

of the shortest cycle in G.

The incidence structure is the set V with partition sets P (points)

and L (lines) and symmetric binary relation I such that the incidence

of two elements implies that one of them is a point and another one is a

line. We shall identify I with the simple graph of this incidence relation

(bipartite graph).

We refer to a triple consisting of set V , its partition V = P ∪ L and

symmetric and antireflexive binary relation I (incidence) on the set V ,

such that xIy implies x ∈ P , y ∈ L or x ∈ L and y ∈ P as incidence

structure. The pair {x, y}, x ∈ P , y ∈ L such that xIy is called a flag of

incidence structure I.

Let K be a finite commutative ring. We refer to an incidence structure

with a point set P = Ps,m = Ks+m and a line set L = Lr,m = Kr+m as

linguistic incidence structure Im if point

(x) = (x1, x2, . . . , xs, , xs+1, xs+2, . . . , xs+m)

is incident to line

[y] = [y1, y2, . . . , yr, yr+1, yr+2 . . . , yr+m]
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if and only if the following relations hold

ξ1xs+1 + ζ1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr)

ξ2xs+2 + ζ2yr+2 = f2(x1, x2, . . . , xs, xs+1, y1, y2, . . . , yr, yr+1)

. . .

ξmxs+m + ζmyr+m = fm(x1, x2, . . . , xs+m−1, y1, y2, . . . , yr+m−1)

where ξj and ζj , j = 1, 2, . . . ,m are not zero divisors, and fj are multi-

variate polynomials with coefficients from K. Brackets and parenthesis

allow us to distinguish poins from lines (see [7]).

The colour ρ(x) = ρ((x)) (ρ(y) = ρ([y])) of point (x) (line [y]) is

defined as projection of an element (x) ([y]) from a free module on its

initial s (relatively r) coordinates. As it follows from the definition of

linguistic incidence structure for each vertex of incidence graph there

exists unique neighbour of a chosen colour. We also consider a linguistic

incidence structures defined by infinite number of equations.

Let M = {m1,m2, . . . ,md} be a subset of {1, 2, . . .m} (set of indexes
for equations), d 6 m with the standard order. Assume that equations
indexed by elements from M of following kind

ξm1
xm1

+ ζm1
ym1

= fm1
(x1, x2, . . . , xs, y1, y2, . . . , yr)

ξm2
xm2

+ ζm2
ym2

= fm2
(x1, x2, . . . , xs, xm1

y1, y2, . . . , yr, ym1
)

. . .

ξmd
xmd

+ ζmd
ymd

= fmd
(x1, . . . , xs, xm1

, . . . , xmd−1
, y1, . . . , yr, ym1

, . . . , ymd−1
)

define another linguistic incidence structure IM . Then the natural projec-

tions

π1 : (x) → (x1, x2, . . . , xs, xm1
, xm2

, . . . , xmd
),

π2 : [y] → [y1, y2, . . . , yr, ym1
, ym2

, . . . , ymd
]

of free modules define the natural homomorphism φ of incidence structure

Im onto IM . We will use the same symbol ρ for the colouring of linguistic

graph IM . It is clear, that ρ(x) = ρ(φ(x)) and ρ(y) = ρ(φ(y)). So, φ is a

colour preserving homomorphism of incidence structure(bipartite graph)

onto the other one. We refer to φ as symplectic homomorphism and graph

IM = φ(Im) as symplectic quotient of linguistic graph Im. In the case of

linguistic graphs defined by infinite number of equations we may consider

cases of symplectic quotients defined by the infinite subset M .
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The triangular structure of the system of equations insures existence

of many symplectic quotients. Let us consider an example of symplectic

quotient which is not connected with a general triangular structure of a

linguistic incidence system.

Let I be a graph of a linguistic incidence structure with a set of a vertex

set V = P ∪ L over a commutative ring K. We introduce the adjacency

relation FI on the set of flags F(V ) of incidence structure I as a flag

relation (or flag linguistic graph): the intersection of two distinct flags is a

non empty set (singleton). All vertices forming two flags F1 = {(x1), [y1]}

and F2 = {(x2), [y2]} could be located at the same connected component

of I, or all of them are from distinct connected components of I. Assume

that system of equations

G1(x) = g1,

G2(x) = g2,

. . . ,

Gt(x) = gt,

where gi ∈ K are some constants, defines the connectivity invariants

specified for points (x) ∈ P in linguistic incidence structure I. For elements

(x1), (x2) ∈ P from the same connectivity component in grpah I the

following relations hold

Gi(x1) = Gi(x2), i = 1, 2, . . . , t.

The existence of i such that Gi(x1) 6= Gi(x2) implies that (x1) and

(x2) are points from different connected components of graph I.

4. Symbolic keys and pseudorandom walks on flag space

Let Vs,r,m = Ps,m ∪ Lr,m, Im = Im(K), m = 2, 3, . . . be a family of

linguistic incidence structures with the point set Ps,m = Ks+m and the

line set Ls,m = Kr+m, where parameters s and r are constants and K

is a fixed commutative ring. The sets of colours for points and lines are

Ks and Kr, respectively. We assume that subset M = {i1, i2, . . . , id},

d = d(m) 6 m defines the symplectic quotient IM for each linguistic

structure Im = Im(K). Let G1, G2, . . . , Gt be connectivity invariants of

incidence structures Im.
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Let FIm be the flag relation and F(Vs,r,m) = F(Vm(K)) be the variety

of flags for incidence structure Im. The information on the flag {(x), [y]}

can be given by the pair (x) ∈ Ks+m, ρ(y) ∈ Kr or, alternatively, by the

pair [y] ∈ Kr+m and ρ(x) ∈ Ks. So, F(Vs,r,m) is isomorphic to Km+r+s.

Let NP,a, a ∈ Ks be the operator of a change of the point of the flag

F = {(x), [y]} defined by the rule

NP,a({(x), [y]}) = {(x′), [y]},

where (x′)Im[y] and ρ(x′) = a. Similarly, NL,a, a ∈ Ks is the operator of

a change of the line of the flag F = {(x), [y]} specified by the rule

NL,b({(x), [y]}) = {(x), [y′]},

where [y′]Im(x) and ρ(y′) = b. It is clear that application of the com-

position of NP,a1
, NL,b1

, NP,a2
, NL,b2

, . . . , NP,ak
, NL,bk

to the flag F

corresponds to the walk in our linguistic graph with the starting point

(p) or the walk in the graph FIm with starting vertex {(x), [y]}.

Let F = {(x), [y]} be a general flag of our linguistic structure Im, i.e.

(x) = (x1, x2, . . . , xs, xs+1, xs+2, . . . , xs+m),

[y] = [y1, y2, . . . , yr, yr+1, yr+2 . . . , yr+m]

are incident. It is convenient for us to shift indeces and write points and

lines as

(x) = (x1, x2, . . . , xs, xs+r+1, xs+r+2, . . . , xs+r+m),

[y] = [ys+1, ys+2, . . . , yr+s, yr+s+1, . . . , ys+r+m].

We assume that our incidence structure has the symplectic quotient IM
corresponding to subset M = {js+r+i1 , js+r+i2 , . . . , js+r+id}. Let π be a

permutation on {1, 2, . . . , s, s+1, s+2, . . . , s+r, s+r+1, s+r+2, . . . , s+

r +m}. Then we can consider deformated incidence structures Iπm with

points

π(x) = (xπ(1), xπ(2), . . . , xπ(s), xπ(s+r+1), xπ(s+r+2), . . . , xπ(s+r+m))

and lines of kind

π(y) = [yπ(s+1), yπ(s+2), . . . , yπ(s+r), yπ(s+r+1), yπ(s+r+2), . . . , yπ(s+r+m)]
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with the incidence conditions

ξ1xπ(s+r+1) + ζ1yπ(s+r+1) = f1(xπ(1), xπ(2), . . . , xπ(s), yπ(s+1), . . . , yπ(s+r))

ξ2xπ(s+r+2) + ζ2yπ(s+r+2) = f2(xπ(1), . . . , xπ(s), xπ(s+r+1), yπ(s+1), . . . ,

yπ(s+r), yπ(s+r+1))

. . .

ξmxπ(s+r+m) + ζmyπ(s+r+m) = fm(xπ(1), . . . , xπ(s), xπ(s+r+1), . . . xπ(s+r+m−1),

yπ(s+1),. . . ,yπ(s+r), yπ(s+r+1), . . . , yπ(s+r+m−1))

Obviously linguistic incidence structure Im is isomorphic to Iπm and

symplectic quotient IM of graph Im corresponding to subset

M = {r + s+ i1, r + s+ i2, . . . , r + s+ id}

is isomorphic to symplectic quotient IπM of graph Iπm related to the subset

π(M) = {π(r + s+ i1), π(r + s+ i2), . . . , π(r + s+ id)}.

The above mentioned action of symmetric group on linguistic structure
allows us without a loss of generality assume that symplectic quotient
IM of Im corresponds to subset M = {r + s+ 1, r + s+ 2, . . . , r + s+ d}
with natural order of elements. So, the canonical homomorphism of Im
onto IM is given by

(x1, . . . , xs, xr+s, xr+s+1, . . . , xr+s+m) →(x1, . . . , xs, xr+s, xr+s+1, . . . , xr+s+d)

(ys+1, . . . , yr+s, yr+s+1, . . . , yr+s+m) →(ys+1, . . . , yr+s, yr+s+1, . . . , yr+s+d)

We assume that x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . ,

xs+r+m is the list of independent variables which gives us the entire

information on the flag F of incidence structure Im. We assume that

connectivity invariants G1, G2, . . . , Gt are written in terms of coordinates

of the point (x). We refer to a tuple

Tr(F ) = 〈x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, G1(x), G2(x), . . . , Gt(x)〉

as a trace of a flag F = {(x), [y]} i.e.

Tr(F ) = 〈ρ(x), ρ(y), G1(x), G2(x), . . . , Gt(x)〉 .

Let Q be a subring of K, such that K is isomorphic to free module Ql.

We introduce parameter n by equality n = (r+s+t)l (the dimension of flag

variety over commutative ring Q). Assume that Q[z1, z2, . . . , zn]l is a to-
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tality of all polynomials over Q maps from Qn into K. We choose the fixed

basis in K = Ql and identify a map P from Q[z1, z2, . . . , zn]l with the set

of polynomials p1(z1, z2, . . . , zn), p2(z1, z2, . . . , zn), . . . , pl(z1, z2, . . . , zn),

where pi are multivariate polynomials from Q[z1, z2, . . . , zn].

Let D1, D2, . . . , Dh, Dh+1 and E1, E2, . . . , Eh be two lists of elements

where Di, Ej ∈ Q[z1, z2, . . . , zn]l, i = 1, 2, . . . , h + 1, j = 1, 2, . . . , h. We

refer to concatenation of both lists (writing second list after the first one)

as a symbolic key.

We take the flag F = {(x), [y]} specified by parameters of kind x1, x2,

. . . , xs, ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+m with spectrum

Tr(F ) = 〈x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, G1(x), G2(x), . . . , Gt(x)〉 .

Each coordinate of the flag F is a tuple of kind (α1, α2, . . . αl) ∈ Ql.

We concatenate all these tuples with the preservation of order and form

a string of parameters β1, β2, . . . , βn from Q. After that we compute

specializations of coordinates

di = Di(β1, β2, . . . , βn),

where i = 1, 2, . . . , h, h+ 1 and

ej = Ej(β1, β2, . . . , βn),

where j = 1, 2, . . . , h of our symbolic key. Chosen base of Ql = K

allows us to treat coordinates of the string d1, d2, . . . , dh, dh+1 as ele-

ments of Ks and coordinates of e1, e2, . . . , eh as string from Kr. String

(d1, d2, . . . , dh, dh+1, e1, e2, . . . , eh) is our numerical key.

Finally, we compute decomposition N of operators NP,d1
, FL,e1

, NP,d2
,

NL,e2
, . . . , NP,dh

, NL,eh
, NP,ed+1

.

The application of N to the flag F corresponds to the walk in graph
FIm with the starting point F and the final point N(F ).

Notice, that the colours of the point and the line forming F ′ = N(F ) =

{(x′), [y′]} are dh+1 ∈ Ks and eh ∈ Kr, respectively. Under certain

conditions we may restore the trace of the flag F from given F ′. We have

Gi(x) = Gi(x
′)

because both flags are from the same connected component. Additionally,

(x′

1, x
′

2, . . . , x
′

s) = Dh+1(x1, . . . , xs, ys+1, . . . , ys+r, G1(x′), . . . , Gt(x
′)),
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(y′

s+1, y
′

s+2, . . . , y
′

s+r) = Eh(x1, . . . , xs, ys+1, . . . , ys+r, G1(x′), . . . , Gt(x
′)).

We may choose function Dh+1 and Eh such that the above written

system of equations has a unique solution independently from values

Gi(x
′), i = 1, 2, . . . , t.

Obviously the first choice here is a linear in variables x1, x2, . . . ,

xs, ys+1, ys+2, . . . , ys+r system of equations. Then we can reconstruct

our walk in reverse order corresponding to the composition of NP,eh−1
,

NL,dh−1
, NP,eh−2

, . . . , NL,e1
, NP,d1

.

4.1. Multivariate transformations based on symbolic keys

The above mentioned map defined by symbolic key has multivariate

nature. The plainspace is the totality of tuples

(x1, x2, . . . , xs, y1, y2, . . . , yr, xs+r+1, xs+r+2, . . . , xs+r+m).

For each functionDi(z1,z2,. . . ,zs,zs+1,zs+2,. . . ,zs+r,zs+r+1, . . . ,zs+r+t) we

consider the specialization of variables z1 = x1, z2 = x2, . . . , zs = xs,

zs+1 = y1, zs+2 = y2, . . . , zs+r = yr, zs+r+1 = G1(x), zs+r+2 = G2(x), . . . ,

zs+r+t = Gt(x). In such way we construct function D′
i depending on the

general tuple (x1, x2, . . . , xs, y1, y2, . . . , yr, xr+s+1, xs+r+2, . . . , xs+r+m) of

the plainspace. Similarly we apply the same specialisation to each Ei
and get transformation E′

i. Transformations NP,D′

i
and NL,E′

j
are multi-

variate bijections on Kr+s+m. The formal composition of NP,D′

1
, NL,E′

1
,

NP,D′

2
, NL,E′

2
, . . . , NP,D′

h
, NL,E′

h
, NP,D′

h+1
is a symbolic presentation of

the map N .

5. The general algorithms of the two windows multivari-

ate cryptosystem depending on random variables

Suppose that two users Alice and Bob want to communicate securely

over an open channel in which all messages are potentially overheard.

Suppose that Alice and Bob for secure communication the two windows

multivariate cryprosystem depending of random parameters; so, Alice

generates a couple of keys (public and private ones). We show that lack

of knowledge of the private key prevents Bob or possible intruders to

decrypt intercepted messages.
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5.1. The key generation algorithm

Let us assume that Alice has a flag linguistic graph FIm and flag

symplectic quotient FIM corresponding to M = {s+r+1, s+r+2, . . . , s+

r+d} with natural order of elements.. So, the windows space W = W1⊕W2

of flags can be identified with tuples

F =(x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+d,

xs+r+d+1xs+r+d+2, . . . , xs+r+m).

It is convenient for Alice to partite Kr+s+m into direct sum W1 = Ks+r+d

and W2 = Km−d. She fixes the basis and identifies “two windows spaces”

W1 (window for plaintext) and W2 (window for random extention of

plaintext) with totalities of tuples of kind

(x1, x2, . . . , xs, ys+1, ys+2, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+d) ∈ W1,

(xs+r+d+1, xs+r+d+2, . . . , xs+r+m) ∈ W2.

She will choose the permutation π to deformate the flag linguistic

graph FIm and its flag symplectic quotient FIM . Alice will use the fact

that K = Ql. So, she can work with fixed base of K = Ql and identify

W , W1 and W2 with free modules over Q of dimensions (s + r + m)l,

(s+ r + d)l and (m− d)l, respectively.

We can now discribe an algorithm of key generation for our two

windows multivariate cryptosystem depending on random variables.

Key generation. Alice should do the following steps:

1) Choose the comutative ring Q and their extention K = Ql.

2) Define space W = Qk, where k = (s + r + m)l and fixe the base

and consider the decomposition W = W1 ⊗W2, where W1 = Qk1 ,

W2 = Qk2 , k1 = (s+ r + d)l and k2 = (m− d)l.

3) Choose the most preferable singular linear transformation T1 : W →

W such that T1|W1
= T is not singular.

4) Take the tuple z = (z1, z2, . . . , zk) ∈ W an compute w = T1(z).

5) Treat tuple w ∈ W as a flag F1 in linguistic graph FIm of kind

F1 = (x1, . . . , xs, ys+1, . . . , ys+r, xs+r+1, xs+r+2, . . . , xs+r+m)

6) Take permutation π defined on set of indexes {1, 2, . . . , s+ r +m}

to deformate linguistic graph FIm.
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7) Compute flag F2 ∈F Iπm with the trace x′
1, x′

2, . . . , x′
s, y

′
s+1, . . . ,

y′
s+r, G1(F2), G2(F2), . . . , Gt(F2) i.e.

F2 = π(F1) = (x′

1, x
′

2 . . . , x
′

s, y
′

s+1, . . . , y
′

s+r, x
′

s+r+1, x
′

s+r+2, . . . , x
′

s+r+m)

8) Choose the symbolic key corresponding to the symbolic way in lin-

guistic graph FIπm i.e. list of polynomial functionsDi(v1,v2,. . .,vr+s+t),

i = 1, 2, . . . , h+ 1, Ej(v1, v2, . . . , vr+s+t), j = 1, 2, . . . , h .

9) Compute specializations

D′
i(F2) = Di(x

′
1, . . . , x

′
s, y

′
s+1, . . . , y

′
s+r, G1(F2), . . . , Gt(F2)),

i = 1, 2, . . . , h+ 1,

E′
j(F2) = Ej(x

′
1, . . . , x

′
s, y

′
s+1, . . . , y

′
s+r, G1(F2), . . . , Gt(F2)),

j = 1, 2, . . . , h.

corresponding to the substitution vi = x′
i, i+1, 2, . . . , s, vs+j = y′

s+j ,

j = 1, 2, . . . , r, vs+r+e = Gi(F2), e = 1, 2, . . . , t.

10) Determine multivariate transformation N corresponding to chosen

symbolic key, i.e.

N = NP,D′

1
NL,E′

1
. . . NP,D′

h
NL,E′

h
NP,D′

h+1
.

11) Compute flag F3 = N(F2) of the graph FIπm.

12) Treat the flag F3 as a tuple u ∈ Qk.

13) Choose a invartible affine transformation T2 : Qk → Qk and compute

c = T2(u).

14) Using symbolic computation determine a multivariate transforma-

tions H : W → W as a composition of T , N and T2. It is clear that

the transformation H : W → W is polynomial over Q of kind

z1 → h1(z1, z2, . . . , zk),

z2 → h2(z1, z2, . . . , zk),

. . . ,

zk → hk(z1, z2, . . . , zk), where hi ∈ Q[z1, z2, . . . , zk].

It implies that the public key of presented cryptosystem includes the

following:

(1) The commutative ring Q including its additive and multiplicative

structure.
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(2) The subdivision of the text space W = Qk into the direct sum of

W1 = Qk1 as window plaintext and W2 = Qk2 as window random

extention of plaintext.

(3) The transformation H : W → W defined by the list of multivariate

polynomials h1,h2,. . . , hk ∈ Q[z1, z2, . . . , zk].

The private key includes:

(1) Information about the structures of ring K isomorphic to free

module Ql and the fact that k = (s + r + m)l, k1 = (s + r + d)l,

k2 = (m− d)l.

(2) Singular linear transformation T1 : W → W such that T1|W1
= T is

not singular.

(3) Flag linguistic graph FIm and its symplectic quotient FIM corre-

sponding to subset M = {js+r+i1 , js+r+i2 , . . . , js+r+id}.

(4) Permutation π defined on {1, 2, . . . , s+ r +m}

(5) Deformed linguistic incidence structure FIπm of FIm and deformed

symplectic quotient FIπM of graph FIM , where

M = {r + s+ i1, r + s+ i2, . . . , r + s+ id}

and

π(M) = {π(r + s+ i1), π(r + s+ i2), . . . , π(r + s+ id)}.

(6) Symbolic key as list of transformations D1, D2, Dh+1, E1, E2, . . . ,

Eh and its specializations D′
1, D′

2, D′
h+1, E′

1, E′
2, . . . , E′

h determines

multivariate transformation N corresponding to way in graph FIπm
i.e.

N = NP,D′

1
NL,E′

1
. . . NP,D′

h
NL,E′

h
NP,D′

h+1
.

(7) An invariable affine transformation T2 : W → W .

5.2. Encryption and decryption algorithm

Suppose that Bob encrypts a message (plaintext) m for Alice, which

Alice decrypt.

Encryption. Bob should do the following steps:

1) Obtain Alice’s authentical public key (Q, k, k1, k2, H).

2) Represent the message m as a tuple from the window plaintext

W1 = Qk1 .
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3) Choose a random extention v of plaintext m form W2 = Qk2 and

make concatenation m and v i.e. m̃ = m||v.

4) Compute H(m̃) = c.

5) Send the ciphertext c to Alice.

Decryption. To restore the plaintext m from the ciphertext c, Alice

should do the following steps:

1) Use the invertible affine transformation T2 to compute T−1
2 (c) = u.

2) Write u as a flag F3 from graph FIπm.

3) Use symbolic key and trace of flag F3 to determine a numerical key

as list of elements d1, d2, . . . , dh,dh+1, e1, e2, . . . , eh from K.

4) Compute N−1(F3) = F2 via computation of reverse walk in FIπm
determined by numerical key.

5) Compute F1 = π−1(F2) as flag from FIm.

6) Get projections of flag F1 onto flag F from symplectic quotient FIM
of flag linguistic graph FIm.

7) Write flag F as a tuple z from W1 = Qk1 .

8) Compute plaintext m = T−1(z).

We will show the existence of families of linguistic graphs, for which

we can estimate polynomial complexity of the algorithms for both corre-

spondents and present certain arguments on security.

6. On the family of graphs of large girth

with special symplectic quotients

Let PD and LD be two copies of Cartesian power K
N, where K is the

commutative ring and N is the set of positive integer numbers. Elements

of PD will be called points and those of LD lines.

To distinguish points from lines we use parentheses and brackets. If

x ∈ V , then (x) ∈ PD and [x] ∈ LD. It will be also advantageous to adopt

the notation for co-ordinates of points and lines introduced in [30] for the

case of general commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,1, p2,2, p
′

2,2, p2,3, . . . , pi,i, p
′

i,i, pi,i+1, pi+1,i, . . .),

[l] = [l1,0, l1,1, l1,2, l2,1, l2,2, l
′

2,2, l2,3, . . . , li,i, l
′

i,i, li,i+1, li+1,i, . . .].
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The elements of P and L can be thought as infinite ordered tuples of

elements from K, such that only finite number of components are different

from zero.

Now we define a linguistic incidence structure (PD, LD, ID) defined

by infinite system of equations as follows. We say that the point (p) is

incident with the line [l], and we write (p)I[l], if the following relations

between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i,

l′i,i − p′

i,i = li,i−1p0,1,

li,i+1 − pi,i+1 = li,ip0,1,

li+1,i − pi+1,i = l1,0p
′

i,i

(2)

(These four relations are defined for i > 1, p′
1,1 = p1,1, l′1,1 = l1,1). The

incidence structure (PD, LD, ID) we denote as D(K). Now we speak of

the incidence graph of (PD, LD, ID), which has the vertex set PD ∪ LD
and edge set consisting of all pairs {(p), [l]} for which (p)I[l].

For each positive integer k > 2 we obtain a symplectic quotient

(PD,k, LD,k, ID,k) as follows. First, PD,k and LD,k are obtained from PD
and LD, respectively, by simply projecting each vector into its k initial

coordinates. The incidence ID,k is then defined by imposing the first

k−1 incidence relations and ignoring all others. The incidence graph

corresponding to the structure (PD,k, LD,k, ID,k) is denoted by D(k,K).

To facilitate notation in the future results on “connectivity invariants”,

it will be convenient for us to define p−1,0 = l0,−1 = p1,0 = l0,1 = 0,

p0,0 = l0,0 = −1, p′
0,0 = l′0,0 = −1, p′

1,1 = p1,1, l
′
1,1 = l1,1) and to assume

that our equations are defined for i > 0.

Notice, that for i = 0, the written above four conditions are satisfied

by every point and line, and for i = 1 the first two equations coincide and

give l1,1 − p1,1 = l1,0p0,1.

Let k > 6, t = [(k + 2)/4], and let u = (uα, u11, · · · , utt, u
′
tt,

ut,t+1, ut+1,t, · · · ) be a vertex of D(k,K) (α ∈ {(1, 0), (0, 1)}, it does not

matter whether u is a point or a line). For every r, 2 6 r 6 t, let

ar = ar(u) =
∑

i=0,r

(uiiu
′

r−i,r−i − ui,i+1ur−i,r−i−1),

and a = a(u) = (a2, a3, · · · , at). Similarly, we assume a = a(u) =

(a2, a3, · · · , at, . . . ) for the vertex u of infinite graph D(K).
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Let ηk (η) be the equivalence relation:

uηkv ⇔ a(u) = a(v) (uηv ⇔ a(u) = a(v))

on the vertex set of graph D(k,K) (D(K)), respectively .

Proposition 2 ([37]). Let K be the commutative ring.

(i) For any t′ − 1 ring elements xi ∈ K, 2 6 t′ 6 [(k + 2)/4], there

exists a vertex v of D(k,K) for which a(v) = (x2, . . . , xt′) = (x).

(ii) The equivalence class Ck for the equivalence relation ηk on the set

K
k ∪ K

k is isomorphic to the affine variety K
t ∪ K

t , t = [4/3k] + 1

for k = 0, 2, 3 mod 4, k = [4/3n] + 2 for k = 1 mod 4.

(iii) the vertex set Ck is the union of several connected components of

D(k,K).

Let C be the equivalence class on η on the vertex set D(K), then the

induced subgraph with the vertex set C is the union of several connected

components of D(K).

We shall use notation C(t,K) (C(K)) for the induced subgraph of

D(k,K) (D(K)) with the vertex set Ck (vertex set C, respectively).

The graph C(t,K) in the case of K = Fq, q is odd, coincides with

CD(k, q) which was introduced in [15].

The following statement was proven in [39].

Theorem 1. Let K be commutative ring with unity of characteristic d,

d 6= 2. Then graphs C(t,K), t > 2 and C(K) are connected.

If K = Fq, q is odd, then the graph C(Fq) is a q-regular tree. In cases

char(K) = 2 the questions of the description of connected components of

C(t,K) and C(K) are open.

Below we consider the family of infinite linguistic graphs A(K) formed

by quotients of D(K) where K is a commutative ring.

Let PA and LA be two copies of Cartesian power K
N, where K is the

commutative ring and N is the set of positive integer numbers. Elements

of PA will be called points and those of LA lines.

To distinguish points from lines we use parentheses and brackets. If

x ∈ V , then (x) ∈ PA and [x] ∈ LA. It will be also advantageous to adopt

the notation for co-ordinates of points and lines introduced in [23] for the

case of a general commutative ring K:

(p) = (p0,1, p1,1, p1,2, p2,2, p2,3, . . . , pi,i, pi,i+1, . . .),

[l] = [l1,0, l1,1, l1,2, l2,2, l2,3, . . . , li,i, li,i+1, . . .].
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The elements of PA and LA can be thought of as infinite ordered

tuples of elements from K, such that only a finite number of components

are different from zero.

Now we define an incidence structure (PA, LA, IA) as follows. We say

that the point (p) is incident with the line [l], and we write (p)IA[l], if

the following relations between their co-ordinates hold:

li,i − pi,i = l1,0pi−1,i,

li,i+1 − pi,i+1 = li,ip0,1

The incidence structure (PA, LA, IA) we denote as A(K). It is

clear that the set od indices {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), . . . ,

(i− 1, i), (i, i), . . .} is a subset in {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 2)′,

. . . , (i− 1, i), (i, i− 1), (i, i), (i, i)′, . . .)}. So graph A(K) is a symplectic

quotient of linguistic incidence structure D(K).

For each positive integer k > 2 we obtain a symplectic quotient

(PA,k, LA,k, IA,k) as follows. First, PA,k and LA,k are obtained from PA
and LA respectively by simply projecting each vector into its k initial

coordinates with the respect to the above order. The incidence IA,k is then

defined by imposing the first k−1 incidence equations and ignoring all oth-

ers. The incidence graph corresponding to the structure (PA,k, LA,k, IA,k)

is denoted by A(k,K).

For each positive integer k > 2 we consider the standard symplectic

projection φA,k of (PA,k, LA,k, IA,k) onto (PA,k−1, LA,k−1, IA,k−1) defined

as simple projection of each vector from PA,k and LA,k onto its k − 1

initial coordinates with respect to the above order. It is clear that A(2,K)

and A(3,K) coincides with the D(2,K) and D(3,K), respectively.

Proposition 3. Graph A(2n + 2,K) is a symplectic quotient of the

linguistic graph D(4n+ 1,K), n > 2, and A(2n+ 3,K) is a symplectic

quotient of D(4n+ 3).

Proof. We can arrange indices for points and lines of D(4n + 3,K), as

{(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3), . . . , (n + 1, n + 1), (n+ 1, n+ 2),

(2, 1), (2, 2)′, (3, 2), (3, 3)′, . . . (n+ 1, n), (n+ 1, n+ 1)′}. So the projection

of a point and a line onto the first 2m+ 3 coordinates is the symplectic

homomorphism. In the case of k = 4n + 1 one can partite the set of

indices into disjoint union of {(1, 0), (0, 1), (1, 1), (1, 2), (2, 2), . . . ,

(n, n+ 1), (n+ 1, n+ 1)} and {(2, 1), (2, 2)′, (3, 2), . . . , (n, n)′, (n+ 1, n)}.

So, the projection of the point and the line onto first set contains 2n+ 2

coordinates is a symplectic homomorphism.
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Notice, that graphs of kind D(4n+3,K) have n connectivity invariants

a2, a3, . . . , an, an+1 and graphs D(4n + 1,K) have n − 1 connectivity

invariants a2, a3, . . . , an.

The free module K4n+2 (totality of flags for D(4n + 1,K)) can be

identified with the totality of functions {f : ΩD,4n+1 → K}. The natural

base is formed by functions eh, h ∈ ΩD,4n+1 such that eh(x) = 1 for

x = h and eh(x) = 0 otherwise. Tuple (z0,1, z1,0, . . . , zn+1,n+1) is a linear

combination of eh, h ∈ ΩD,4n+1, where ΩD,4n+1 is set of indexes with an

order given in the following way

((1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′, (2, 3), (3, 2), (3, 3), . . . ,

(n, n)′, (n, n+ 1), (n+ 1, n), (n+ 1, n+ 1))

7. The examples of cryptosystems

with complexity estimates

We give examples of linguistic graphs and related symbolic keys, which

can be used in above described cryptosystem. More specifically, in our

examples we will use a pair of graphs D(4n + 1,K) and A(2n + 2,K)

corresponding to the incidence structures (PD,4n+1, LD,4n+1, ID,4n+1) and

(PA,2n+1, LA,2n+2, IA,2n+2) defined over a commutative ring K (case of

pair D(4n+3), A(2n+3) is very similar). Recall, that graph D(4n+1,K)

have a connectivity invariants G1 = a2, G2 = a3, . . . , Gt = an, where

t = n− 1. The deformated graph has same connectivity invariants.

We assume, that we deal with the deformated linguistic graphs of

kind I = IψD,4n+1, where permutation ψ change the standard order on the

set ΩD,4n+1 in the definition of graph D(4n+ 1,K) determines new set

Ω of elements of ΩD,4n+1 with the order of elements (0, 1), (1, 0), (1, 1),

(1, 2), (2, 2), . . . , (n, n+ 1), (n+ 1, n+ 1), (2, 1), (2, 2)′, (3, 2), . . . , (n, n)′,

(n+1, n). The homomorphism of deformated flag systems for D(4n+1,K)

and A(2n+ 2,K) is just projections of tuples of length 4n+ 2 onto their

initial 2n+ 3 coordinates.

More specifically, at the beginning we work with flag linguistic graphs
FIψD,4n+1 and FIψA,2n+2 and next we deal with FID,4n+1 and FIψA,2n+2 .

First, Alice works with flag F1 ∈F IψD,4n+1, which corresponds to

concatenation of tuples

m′ = (y1,0, x0,1, x1,1, x1,2, x2,2, . . . , xn,n+1, xn+1,n+1) ∈F IψA,M
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(it corresponds to plaintext m) and

v′ = (x2,1, x
′

2,2, x2,3, . . . , x
′

n,n, x
′

n+1,n+1)

(it corresponds to random extention of plaintext v).

Next, she works with flag F2 = {(x), [y]} ∈F ID,4n+1, where ρ(x) =

x0,1, ρ(y) = y1,0 and

(x) = (x0,1, x1,1, x1,2, x2,1, x2,2, . . . , x
′

n,n, xn,n+1, xn+1,n, xn+1,n+1).

i.e. F2 corresponds to the tuple

(x0,1, y1,0, x1,1, x1,2, x2,1, x2,2, . . . , x
′

n,n, xn,n+1, xn+1,n, xn+1,n+1).

Moreover, in this case we haveW = K4n+1,W1 = K2n+2 W2 = K2n−1 and

the permutation π = ψ−1 on the set of indices Ω defines π(Ω) = ΩD,4n+1.

Example 1. For the simplicity, we assume that K = Ql and l = 1. Alice

chooses two pseudorandom sequences of ring elements α1, α2, . . . , αh+1

and β1, β2, . . . , βh. She forms the symbolic key as Di(z1, z2, . . . , zt+1) =

z1 + αi, i = 1, 2, . . . , h + 1, and Ei(z1, z2, . . . , zt+1) = z2 + βi, i =

1, 2, . . . , h + 1. Next, she computes its specializations D′
i(x0,1) = x0,1 +

αi, i = 1, 2, . . . , h+ 1, E′
j(y1,0) = y1,0 + βj , j = 1, 2, . . . , h, corresponding

to the substitution z1 = x0,1, z2 = y1,0 and determines the transformation

N = NP,D′

1
NL,E′

1
NP,D′

2
NL,E′

2
. . . NP,D′

h
NL,E′

h
NP,D′

h+1

for the flag incidence system FID,4n+2. She executes by the tools of
Computer Algebra the following transformation on K4n+2. She com-
putes H as a composition of maps T , ψ−1, N and T2, where W1 is
invariant subspace of T . Recall that W1 is a totality of w such that
w2,1 = 0, w′

2,2 = 0, w3,2 = 0, . . . , w′
n,n = 0, wn+1,n = 0. It means that T1 is

a linear transformation of kind

z0,1 → t0,1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z1,0 → t0,1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z1,1 → t1,1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z1,2 → t1,2(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

z2,2 → t2,2(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1, zn+1,n+1)

. . .

zn,n+1 → tn,n+1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1zn+1,n+1)
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zn+1,n+1 → tn+1,n+1(z0,1, z1,0, z1,1, z1,2, z2,2 . . . , zn,n+1zn+1,n+1)

z2,1 → t2,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

z′

2,2 → t′2,2(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

z3,2 → t3,2(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

. . .

z′

n,n → tn,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

zn+1,n → tn+1,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

where tβ, β ∈ Ω are linear forms.

After the multiplication of vector z from the right on permutational

matrix corresponding to ψ−1 = π Alice gets the string of expressions

tψ(β), written in accordance with the initial order on Ω (see the definition

of graph D(4n + 1,K)). So, new tuple can be treated in natural way

as a flag of D(4n+ 1,K). After the application of N acting on flags of

D(4n+ 1,K) tuple tβ will be transformed in

fβ(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n).

So, Alice will get the transformation in the form

zα → fπ(α)(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n),

where α ∈ {(1, 0), (0, 1), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2)′, (2, 3), (3, 2),
(3, 3), . . . , (n, n)′, (n, n+ 1), (n+ 1, n), (n+ 1, n+ 1)}. The final transfor-
mation will change zα on certain linear combination of zβ , β ∈ Ω and we
get the list of public rules

z0,1 → h0,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

z1,0 → h0,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

z1,1 → h1,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

. . .

zn,n+1 → hn,n+1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

zn+1,n+1 → hn+1,n+1(z0,1, z1,0, z1,1,. . . ,zn,n+1zn+1,n+1z2,1, z
′

2,2,. . . ,z
′

n,n, zn+1,n)

z2,1 → h2,1(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

. . .

z′

n,n → hn,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

zn+1,n → hn+1,n(z0,1, z1,0, z1,1, . . . , zn,n+1zn+1,n+1z2,1, z
′

2,2, . . . , z
′

n,n, zn+1,n)

We can prove that the transformation is a cubical map.
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Notice that complexity of the use of this multivariate encryption H

for Bob can be estimated via complexity of computation of the value

of general cubical map in 4n+ 2 variables in given point of affine space

K4n+2. So, it equals (4n+ 2)4 (or O(n4)).

The complexity of decryption for Alice is different. We assume that

Alice has already computed invertible matrices. She needs to compute the

value of two linear maps in given vector. It takes O(n2) elementary steps.

The computation of N−1 takes O(nh), where 2h+ 1 is the length of the

walk on the graph. In practical case when h = O(m) the complexity of

decryption procedure is O(n2). Notice, that if matrices are sparse ( number

of nonzero parameters for each row or column as well as parameter h are

bounded by independent constant) the complexity of decryption is O(n).

Example 2. We generalise the previous example in the following way. Let

a2(x), a3(x), . . . , an−1(x) be the list of invariants of the graphD(4n+1,K).

Alice chooses function f(z1, z2, z3, . . . , zn) ∈ K[z1, z2, z3, . . . , zn] with the

property: for all tuples (b2, . . . , bn+1) ∈ Kn+1 the equation

f(z1, b2, b3, . . . , bn+1) = a

has a unique solution z1 = α ∈ K (the free module K4n+2 can be

substituted for submanifold M isomorphic to Reg(K))K4n+1 consisting

of tuples such that y1,0 belongs to the totality Reg(K) of all invertible

elements of finite commutative ring K).

Alice computes f(x0,1, y1,0, a2(x), a3(x), . . . , an−1(x)) = g(x, y1,0),

She chooses pseudorandom parameters α1,α2, . . . ,αh+1 and β1, β2, . . . ,

βh (or two random tuples generated by Quantum Computer) and generates

the specialised symbolic key as D′
i(x0,1, y1,0, a2(x), a3(x), . . . , an−1(x)) =

g(x, y1,0) + αi, i = 1, 2, . . . , h+ 1, E′
j(y1,0) = y1,0 + βj , j = 1, 2, . . . , h, and

determines multivariate transformation N .

We can evaluate degree of N as 3deg (g(x, y1,0)).

Examples of some functions g of small degree:

(a) g(x, y1,0) = x0,1y1,0 +λ2a2(x) +λ3a3(x) + · · · +λn−1an−1(x). Recall,

that we may use manifold M of all tuples, where y1,0 is a regular

element of ring K. Alice can use the pseudorandom (or even random)

sequence λi for construction of the map.

(b) g(x, y1,0) = x3
0,1 +y1,0(λ2a2(x)+λ3a3(x)+ . . . λn−1an−1(x))+αy2

1,0 +

βy1,0+γ. We assume that the ring K is chosen such that the equation

z3 = a has a unique solution in variable z.
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Let us assume that deg(g(x, y1,0)) = d. Then Bob can encrypt for

polynomial time O(m3d+1). The complexity of decryption for Alice now

is maximum of complexities of computation of g(x, y1,0) and O(n2). Let

us take a “sparse” polynomial expression g(x, y1,0), i.e. the multivariate

polynomial, which can be computed for O(n2) elementary steps. Then

the complexity of decryption for Alice will be still O(n2).

It is easy to generalise above written examples for the case K = Ql

with l > 1.

Example 3. Let us consider the case K = Ql, where Q is some subring

K. We fix the base and write ring element as (x1, x2, . . . , xl). Assume

that the product of two (x1, x2, . . . , xl) and (y1, y2, . . . , yl) is given by

quadratic polynomial map h : K l ×K l → K l like in case K = Q[x]/m(x),

where m(x) is a polynomial map from Q[x] of degree l.

So, we choose polynomial g(z1
1 , z

2
1 , . . . z

l
1, z

1
2 , z

2
2 , . . . z

l
2, . . . , z

1
t+1,

z2
t+1, . . . z

l
t+1) in l(t+ 2) variables over Q instead of function f as in

the previous algorithm.

A nice example can be obtained as

g(x, ρ(y))=(ρ(x)A−ρ(x))×ρ(y)+a2(x)A2+a3(x)A3+. . . an−1(x)An−1+d,

where A is a matrix without eigenvalue 1, ρ(x) = (x1
0,1, x

2
0,1, . . . x

l
0,1) ∈ Ql,

ρ(y) = (y1
1,0, y

2
1,0, . . . , y

l
1,0) ∈ Ql, ai(x) ∈ Ql, matrices Ai,i > 2 correspond

to arbitrary maps of Ql into itself, d ∈ Ql.

In that case Bob can also encrypt for polynomial time from parameter

n and Alice can decrypt essentially faster.

8. Remarks and Conclusion

The idea of the usage of symbolic keys in the case of D(n, q) based

encryption was considered in [30]. General multivariate maps based on

symbolic key for a linguistic graph as cryptographical tools was proposed

in [31]. Degree estimates of multivariate maps on the flag space of D(n,K)

corresponding to symbolic key of kind x0,1 + αi, y1,0 + βi, i = 1, 2, . . . k,

where αi and βi are constants from K were obtained in [44] (see also

[43]). Discussions of computer simulations of D(n,K) or A(n,K) based

algorithms for different cases of rings on the symbolic level or private keys

algorithms the reader can find in [7], [8], [10], [11], [12]. Time evaluation

of public rule generation, time execution of private key decryption, mixing
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properties of encryption, results of order evaluation for bijection encryption

maps can be found there. The descryption of connectivity invariants ai,

i = 2, 3 . . . of D(n, q), the reader can find in [15], their generalisation

for arbitrary commutative ring are given in [27], [35]. In the case of odd

characteristics connectivity invariants give a full descryption of actual

connected components. This fact is proven in [37]. If charK = 2 then ai
does not give us complete list of invariants (counterexample for K = F2

is discussed in [29]).

The generalisation of private key algorithm on Schubert incidence

structures of arbitrary rank is presented in [40].

The main topic of current paper is a presentation of graph based

multivariate cryptosystems which use nonbijective maps. So straight

forward linearisation attacks are not formally applicable there.

Authors were the participants of the International Algebraic Conference

dedicated to 100-th anniversary of l. A. Kaluzhnin (July 7-12, 2014, Kyiv,

Ukraine). Our paper is dedicated to the memory of Lev Kaluznin and his

achievements in Mathematics.
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