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Uncountably many 2-generated just-infinite

branch pro-2 groups

Mustafa Gökhan Benli, Rostislav Grigorchuk1

Abstract. The aim of this note is to prove that there are
2ℵ0 non-isomorphic 2 generated just-infinite branch pro-2 groups.

1. Introduction

In 1937 B. Neumann [Neu37] proved that there are 2ℵ0 non-isomorphic
2-generated abstract groups (see [dlH00, Chapter III]). In 1983 the second
author suggested a construction of continuously many 2-generated torsion
2-groups Mω of intermediate growth and showed that among these there
are 2ℵ0 distinct groups not only up to isomorphism but up to the weaker
equivalence relation, quasi-isometry. One of the important features of the
groups Mω is the fact that they are branch just-infinite groups.

Recall that a group is just-infinite if it is infinite but every proper
quotient is finite. Just-infinite groups lie on the border between finite and
infinite groups. Every finitely generated infinite group can be mapped onto
a just-infinite group. The class of branch groups was introduced by the
second author in [Gri00]. These groups act on a spherically homogeneous
rooted tree such that the rigid stabilizers of levels have finite index (see
next section for definitions). The class of just-infinite groups naturally
splits into three subclasses [Gri00]. One of these subclasses is the class of
just-infinite branch groups. The other two classes are related to hereditarily
just-infinite groups and simple groups.

Branch groups and just-infinite groups were also defined within the
category of profinite groups where now a dichotomy holds: Every just-
infinite profinite group either is of branch type or is related to hereditarily
just-infinite groups [Wil00].

1The second author was supported by NSF grant DMS-1207699
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A natural question is about the cardinality of the class of finitely
generated profinite groups. More precisely, one can fix the number of
generators to 2 and restrict the consideration to pro-p groups where p
is a prime. Suprisingly, it seems that there are no results in literature
showing that the cardianlity of this class is 2ℵ0 . This question was raised
recently in private conservations of the second author with A. Lubotzky
and D. Segal. As a result, D. Segal suggested an elegant construction
of 2ℵ0 2-generator centre-by-metabelian pro-p groups [D. Segal, private
communication]. A. Lubotzky asked an analoguous question for finitely
presented profinite groups which was answered in [Sno15], where for each
m > 3, 2ℵ0 non-isomorphic finitely presented metabelian pro-p groups
are constructed.

The main result of this paper is the following:

Main Theorem. There exist 2ℵ0 non-isomorphic 2 generated just-infinite

branch pro-2 groups.

Unlike the groups of [Sno15], our examples are not finitely presented
(by arguments from [Ben12]), but have additional properties of being
branch and just-infinite. It is not known if there are finitely presented
branch groups. It would be interesting to know the cardinality of the class
of finitely generated hereditarily just-infinite pro-p groups, that is, pro-p
groups with all subgroups of finite index being just-infinite groups.

The proof of the main theorem is based on a number of previous
results, in particular the results of L. Lavreniuk and V. Nekrashevych
from [LN02].

Although we do not do this here, the same techniques and construction
of p-groups of [Gri85] may be used to prove the same result for the class
of pro-p groups, for any prime p.

2. Preliminaries

2.1. Profinite groups and profinite completions

We refer to [RZ10] for a detailed account on profinite groups. We recall
some basic material related to profinite groups and completions.

Let C b a class of finite groups. An inverse limit of a (surjective)
inverse system of groups in C is called a pro-C group. Equivalently, G
is a pro-C group if it is compact, totally disconnected and for any open
normal subgroup N , G/N lies in the class C. When the class C is the
class of all finite groups (respectively, the class of all finite p-groups for
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a prime p), then we will get the class of profinite groups (respectively,
pro-p groups).

Given a group G, let NC(G) be the collection of finite index normal
subgroups N of G, for which G/N lies in the class C. The pro-C topology
on G is the topology having the collection {N ∈ NC(G)} as a neigh-
bourhood basis around the identity element in G. This is the coarsest
topology on G making it a topological group for which the canonical
maps G → G/N, N ∈ NC(G) are continuous (here G/N has the discrete
topology). Assume that NC(G) is filtered from below, that is for any
N1, N2 ∈ NC(G) there is N ∈ NC(G) such that N 6 N1 ∩ N2 (observe
that this is true if C is the class of finite groups or the class of finite
p-groups, for a prime p). In this case, NC(G) is a directed set with order
N1 � N2 if N2 ⊂ N1, and {G/N, PN,H , N � H ∈ NC(G)} is an inverse
system where PN,H : G/H → G/N are the conical homomorphisms. The
inverse limit of this inverse system is called the pro-C completion of G
and is denoted by ĜNC(G). If C is the class of finite groups (resp. the
class of finite p-groups) the profinite completion (resp. the pro-p com-
pletion) of G will be denoted by Ĝ (resp. Ĝp). If G is residually C, that
is

⋂
n∈NC(G) N = 1, then one has a continuous embedding G → ĜNC(G)

with dense image.

Definition 1.

1) A group G is called just-infinite if every proper quotient of G is
finite.

2) A profinite group G is called just-infinite if every proper quotient
by a closed normal subgroup is finite.

Every finitely generated infinite group can be mapped onto a just-
infinite group and every finitely generated pro-p group can be mapped
onto a just-infinite pro-p group [Gri00]. By an important result N. Nikolov
and D. Segal [NS07], in a finitely generated profinite group a subgroup
is open if and only if has finite index. Therefore, if φ : G → H is a
homomorphism between profinite groups and G is finitely generated, then
φ is continuous.

2.2. Groups of tree automorphisms and the congruence sub-

group property

We refer to [Gri00,Nek05] for detailed accounts on groups acting on
rooted trees. Let X = {0, 1, . . . , d − 1} be a finite set with d elements and
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let X∗ denote the set of finite words (sequences) over X. Elements of X∗

are naturally in bijection with the vertices of a rooted regular d-ary tree in
which the root is identified with the empty word and vertices at distance
n from the root with words of length n. We will denote the length of an
element u ∈ X∗ by |u| and will say that u lies in level |u| of the tree. We
will not distinguish between X∗ and the tree it describes.

The group Aut(X∗) consists of all graph automorphisms of X∗. Equiv-
alently, Aut(X∗) consists of all bijections of X∗ which fix the empty word
and preserve prefixes, that is, if two words have common prefix of length
n, so do their images. It follows that an automorphism must preserve the
level of a vertex. We will say a subgroup G 6 Aut(X∗) is level transitive

if it acts transitively on each level of the tree.
Given g ∈ Aut(X∗) and u ∈ X∗, the section of g at u is the automor-

phism gu uniquely determined by

g(uv) = g(u)gu(v) for all v ∈ X∗

There is an isomorphism

Aut(X∗) ∼= Sd ⋉ Aut(X∗)d

g 7→ (πg; g0, . . . , gd−1)
(1)

where Sd is the symmetric group on X and πg is the permutation deter-
mined by the action of g onto X.

Let X(n) denote the set of words of length at most n in X∗. X(n)

describes the finite rooted tree of vertices up to level n. For each n,
we have a map rn : Aut(X(n+1)) → Aut(X(n)) given by restriction. It
follows that Aut(X∗) is isomorphic to the inverse limit of the inverse
system {Aut(X(n)), rn}, and hence is a profinite group. Given distinct
g, h ∈ Aut(X∗), define a metric (in fact an ultra metric) on Aut(X∗) as
follows: d(g, h) = 2−m(g,h) where m(g, h) is the maximum number n such
that the actions of g and h on X∗ agree up to level n. A straightforward
argument shows that the topology generated by this metric is the same as
the topology on Aut(X∗) as a profinite group. For n > 1, the n-th level
stabilizer St(n) is the subgroup fixing (point wise) every vertex on level
n. Each level has finitely many vertices, from which it follows that for
each n, St(n) is of finite index and since

⋂
n>1 St(n) = 1, Aut(X∗) (and

hence any subgroup of it) is residually finite.

Definition 2. A subgroup G 6 Aut(X∗) is said to have the congru-
ence subgroup property, if every finite index subgroup of G contains the
subgroup StG(n) for some n.
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If G 6 Aut(X∗) has the congruence subgroup property then Ĝ ∼= G
where the latter denotes the closure of G in Aut(X∗) (see [Gri00, Theo-
rem 9] and [RZ10, Lemma 1.1.9]).

For u ∈ X∗ let us denote the subtree at u by uX∗. The rigid stabilizer

of G 6 Aut(X∗) at u is the subgroup RistG(u) consisting of elements
which act trivially outside of the sub-tree uX∗. The rigid stabilizer of level
n is the subgroup RistG(n) = 〈RistG(u) | |u| = n〉 =

∏
|u|=n RistG(u).

Definition 3. A level transitive subgroup G 6 Aut(X∗) is called a branch
group (resp. weakly branch group), if for all n, the subgroup RistG(n)
has finite index in G (resp. is nontrivial).

The class of branch groups plays an important role in the description
of just-infinite groups and contains many groups with unsual properties.
We refer to [Gri00] for a detailed account on branch groups. We also
note that many branch profinite groups have a universal embedding
property [GHZ00]. The following gives a criterion for a branch group to
be just-infinite:

Theorem 1 ([Gri00, Theorem 4]). A branch group G is just-infinite if

and only if for each u ∈ X∗, RistG(u) has finite abelianization.

2.3. Grigorchuk groups2

We recall a construction of groups from [Gri84].
Throughout this section we fix X = {0, 1}. Let Ω = {0, 1, 2}N be

the set of all infinite sequences over {0, 1, 2} and let σ : Ω → Ω be the
shift given by σ(ω1ω2 . . .) = ω2ω3 . . .. For each ω ∈ Ω we will define the
automorphisms bω, cω, dω recursively as follows.

For v ∈ X∗

bω(0v) = 0β(ω1)(v) cω(0v) = 0ζ(ω1)(v) dω(0v) = 0δ(ω1)(v)
bω(1v) = 1bτ(ω)(v) cω(1v) = 1cσω(v) dω(1v) = 1dσω(v),

where
β(0) = a β(1) = a β(2) = e
ζ(0) = a ζ(1) = e ζ(2) = a
δ(0) = e δ(1) = a δ(2) = a

and e denotes the identity. Also define the following automorphism a:

a(0v) = 1v and a(1v) = 0v

2The first author insists on this terminology which is standard.
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Note that from the definition, the following relations are immediate:

a2 = b2
ω = c2

ω = d2
ω = bωcωdω = e.

For ω = ω1ω2 . . . ∈ Ω, let Gω be the subgroup of Aut(X∗) generated
by a, bω, cω, dω. The isomorphism (1) restricts to an embedding Gω →
S2 ⋉ (Gσω × Gσω) for which

a 7→ (01) (e, e)
bω 7→ (β(ω1), bσω)
cω 7→ (ζ(ω1), cσω)
dω 7→ (δ(ω1), dσω)

The groups {Gω, ω ∈ Ω} have a plethora of interesting and unusual
properties related to various notions such as growth and amenability. We
will mention some properties which will be used in the proof of the main
theorem.

Let Ω∞ ⊂ Ω be the subset consisting of sequences in which the symbols
0, 1, 2 appear infinitely often.

Theorem 2. For ω ∈ Ω∞, Gω is a just-infinite 2-group which is branch

and has the congruence subgroup property.

Proof. The facts that Gω is a 2-group and is just infinite are established
in [Gri84]. The branch property is also implicitly proven and used in
[Gri84] (this property was not defined at time of [Gri84]). Explicit proofs
can be found in [Per02] or in [BGN15]. The congruence subgroup property
is proven in [Per00].

It was shown already in [Gri84] that the family {Gω | ω ∈ Ω} contains
2ℵ0 non-isomorphic groups. The complete solution of isomorphism problem
for the groups Gω was given by V. Nekrashevych [Nek05] based on the
results of [LN02].

Theorem 3 ([Nek05, Theorem 2.10.13]). For ω, η ∈ Ω∞, Gω is isomor-

phic to Gη if and only if ω is obtained from η by an application of a

permutation π ∈ Sym{0, 1, 2} coordinate wise.

The ideas in the proof of this theorem will be used by us as well.
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3. Proof of the main theorem

Let Lω = 〈abω, dω〉 6 Gω. It follows from the relations a2 = b2
ω =

c2
ω = d2

ω = bωcωdω = e that Lω is a normal subgroup of index 2 in Gω.

Lemma 1. Let ω ∈ Ω, u ∈ X∗ with |u| = n. Then, for all g ∈ Lσnω there

exists h ∈ StLω
(u) such that hu = g.

Proof. Induction on n.
Suppose n = 1, then if ω starts with 0 we have

(abω)2 7→ (bσωa, abσω)
(bωa)2 7→ (abσω, bσωa)

dω 7→ (1, dσω)
adωa 7→ (dσω, 1)

If ω starts with 1 we have

(abω)2 7→ (bσωa, abσω)
(bωa)2 7→ (abσω, bσωa)

dω 7→ (a, dσω)
adωa 7→ (dσω, a)

and if ω starts with 2 we have

(abω)2 7→ (bσω, bσω)
dω 7→ (a, dσω)

adωa 7→ (dσω, a)
dω(abω)2 7→ (abσω, cσω)

adωa(abω)2 7→ (cσω, abσω)

which show that the claim is true for n = 1. Assume now n > 1 and let
u = vx for x ∈ X. By induction assumption, there is k ∈ StL

σn−1ω
(x)

such that kx = g and again by induction assumption there is h ∈ StLω
(v)

such that hv = k. Then clearly h ∈ StLω
(u) and hu = hvx = kx = g.

Lemma 2. The action of Lω is level transitive.

Proof. Let u, v ∈ X∗ be of length n. By induction on n, if n = 1, then
abω(u) = v. Suppose n > 1 and let xu, yv ∈ X∗ be of length n. If x = y, let
g ∈ Lσω such that g(u) = v (such g exists by the induction assumption).
By the previous Lemma, there is h ∈ StLω

(x) such that hx = g. Then
h(xu) = h(x)hx(u) = xg(u) = xv. If x 6= y, let g ∈ Lσω such that
g ((abω)x(u)) = v. Again by the previous Lemma, there is h∈StLω

(y) such
that hy =g. Then (habω)(xu)=h(y(abω)x(u))=yg((abω)x(u))=yv.
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Lemma 3. If ω ∈ Ω∞ then Lω is a branch group.

Proof. Let u ∈ X∗ with |u| = n. Since Lω has finite index in Gω,
RistLω

(u) = RistGω
(u) ∩ Lω has finite index in RistGω

(u). There-
fore RistLω

(n) =
∏

|u|=n RistLω
(u) has finite index in RistGω

(n) =∏
|u|=n RistGω

(u). Since Gω is branch, RistGω
(n) has finite index in Gω

and hence RistLω
(n) has finite index in Lω.

Lemma 4. If ω ∈ Ω∞, Lω is just-infinite and has the congruence subgroup

property.

Proof. Gω has the congruence subgroup property and hence Lω (having
finite index in Gω) has this property. As mentioned in Theorem 1, a
branch group G is just infinite if and only if each RistG(u) has finite
abelianization and clearly this is satisfied in Lω since it is a periodic
(torsion) group.

It follows that the profinite completions L̂ω are isomorphic to the
closures L̄ω in Aut(X⋆) and by [Gri00, Theorem 2 and Corollary on Page
150], the groups L̂ω are just-infinite branch profinite (in fact pro-2) groups.
We will show that given ω ∈ Ω∞, there is only one η ∈ Ω∞ \ {ω} such
that L̂ω

∼= L̂η, by using rigidity results and ideas of [LN02,Nek05].

Definition 4. Let G1, G2 6 Aut(X∗) be level transitive. An isomorphism
φ : G1 → G2 is called saturated if there exists a sequence of subgroups
Hn 6 G1 such that:

1) Hn 6 StG1
(n) and φ(Hn) 6 StG2

(n),

2) for all v ∈ X∗ with |v| = n, Hn and φ(Hn) act level transitively on
the sub-tree vX∗.

Proposition 1 ([Nek05, Proposition 2.10.7]). Let G1, G2 6 Aut(X∗) be

weakly branch groups and let φ : G1 → G2 be a saturated isomorphism.

Then φ is induced by an automorphism of the tree X∗.

For ω ∈ Ω define inductively L0,ω = Lω and Ln,ω = L2
n−1,ω for n > 1.

Lemma 5. Let ω ∈ Ω and u ∈ X∗ with |u| = n. Then for any g ∈ Lσnω

there exists h ∈ StLn,ω
(u) such that hu = g.
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Proof. Induction on n. Suppose n = 1 and ω starts with 0 (the other
cases being similar). Let r = (abω)2 and s = (abωdω)2 = (acω)2. Note
r, s ∈ StL1,ω

(1). We have

r 7→ (bσωa, abσω)
ra 7→ (abσω, bσωa)

(rs−1)abωa 7→ (adσω, dσω)
(rs−1)abω 7→ (dσω, adσω)

hence the claim is true for n = 1. Now suppose n > 1 and let u = vx for
v ∈ X∗ and x ∈ X. Let g ∈ Lσnω = Lσσn−1ω. By induction assumption,
there exists k ∈ StL

1,σn−1ω
(x) such that kx = g. Since k ∈ L1,σn−1ω, k is

of the form

k = t2
1 · · · t2

m for some ti ∈ Lσn−1ω

Again by the induction assumption, there exits hi ∈ StLn−1,ω
(v) such

that (hi)v = ti for i = 1, 2, . . . , m. Since hi ∈ Ln−1,ω we have h2
i ∈ Ln,ω.

Now

(h2
1 · · · h2

m)u =(h2
1 · · · h2

m)vx =((h1)2
v · · · (hm)2

v)x =(t2
1 · · · t2

m)x =kx =g.

Lemma 6. For all ω ∈ Ω and n,

i) Ln,ω 6 StLω
(n)

ii) For all v ∈ X∗ with |v| = n, Ln,ω acts level transitively on the

sub-tree vX∗.

Proof. The first assertion follows from a straightforward induction. For
the second assertion, let vu1, vu2 ∈ vX∗ where |u1| = |u2|. Since Lσnω acts
level transitively, there is g ∈ Lσnω such that g(u1) = u2. By Lemma 5
there exists h ∈ StLn,ω

(v) such that hv = g. Hence h(vu1) = vu2.

Theorem 4. Let ω = ω1ω2 . . . and η = η1η2 . . . be two sequences in

Ω∞. Then the groups L̂ω and L̂η are isomorphic if and only if ω = η or

ωi = π(ηi) for all i, where π = (12) ∈ Sym{0, 1, 2}.

Proof. If ωi = π(ηi) then by the definition of the groups, dω = dη and
bω = cη = bηdη and hence abω = abηdη ∈ Lη. Therefore, in this case
Lω = Lη as subgroups of Aut(X∗).

Now suppose that φ : L̂ω → L̂η is an isomorphism. As mentioned

above, we have L̂ω
∼= Lω for any ω ∈ Ω∞ and each Lω is a branch group.

Let H0 = Lω and Hn = H2
n−1 for n > 1 and K0 = Lη and Kn = K2

n−1
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for n > 1. By Lemma 6 and continuity of φ we see that φ(Hn) = Kn

and Hn satisfies the conditions of Definition 4 and hence φ is a saturated
isomorphism. It follows from Proposition 1 that φ is induced by an
automorphism and hence L̄ω and L̄η are conjugate in Aut(X∗).

Given a vertex v ∈ X∗ and g ∈ Aut(X∗), we say that g is active
at v if gv acts non-trivially on the first the level. Consider the function
p : Aut(X∗) → Z

N
2 where p(g)n is the number of active vertices for g on

level n modulo 2. It is straightforward to check that p is a continuous group
homomorphism (in fact one can check that this gives the abelianization). It
follows that p(Lω) = p(Lη). But by continuity we have p(Lω) = p(Lω) =
p(Lω) and hence p(Lω) = p(Lη). It remains to observe that one can
reconstruct the sequence ω from p(Lω) up to the permutation π.

We have

p(abω) = (1, β(ω1), β(ω2), . . .)

p(dω) = (0, δ(ω1), δ(ω2), . . .)

where β(0) = β(1) = 1, β(2) = 0 and δ(0) = 0, δ(1) = δ(2) = 1. Note that
non-trivial elements of p(Lω) are {p(abω), p(dω), p(abω) + p(dω)}. Given
such a set of three sequences, the only sequence whose first entry is 0
corresponds to p(dω) and one of the remaining ones corresponds to p(abω).
If δ(ωi) = 0 then ωi = 0. If δ(ωi) = 1 then depending on the choice
of the sequence corresponding to p(abω), we will have either wi = 1 or
wi = 2.
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