Algebra and Discrete Mathematics Volume **19** (2015). Number 1, pp. 1–7 © Journal "Algebra and Discrete Mathematics"

On subgroups of finite exponent in groups

Orest D. Artemovych

Communicated by V. I. Sushchansky

ABSTRACT. We investigate properties of groups with subgroups of finite exponent and prove that a non-perfect group G of infinite exponent with all proper subgroups of finite exponent has the following properties:

- (1) G is an indecomposable p-group,
- (2) if the derived subgroup G' is non-perfect, then G/G'' is a group of Heineken-Mohamed type.

We also prove that a non-perfect indecomposable group G with the non-perfect locally nilpotent derived subgroup G' is a locally finite p-group.

1. Introduction

A group G is called *locally graded* if every its non-trivial finitely generated subgroup contains a proper subgroup of finite index. If the derived subgroup G' is proper in G, then G is called *non-perfect*, and is called *perfect* otherwise. Recall that a group with the maximal condition on subgroups is called *Noetherian*. An infinite group with all proper quotients to be finite is called *just infinite* (see e.g. [7] and [13]). If A and B are subgroups of G and $A \triangleleft B$, then the quotient B/A is a section of G. If any non-trivial section of G is non-perfect, then G is called *absolutely imperfect*.

We prove the following

²⁰¹⁰ MSC: 20F50, 20F26, 20E26.

Key words and phrases: locally finite group, finitely generated group, exponent, group of Heineken-Mohamed type.

Proposition 1.1. A group G of finite exponent satisfies the following properties:

- (1) if G is a locally graded group, then it is finite or non-simple locally finite,
- (2) if G is an absolutely imperfect group, then it is locally finite.

Recall that a group G in which any two proper subgroups generate a proper subgroup is called *indecomposable*.

Proposition 1.2. Let G be a non-perfect indecomposable group. If the derived subgroup G' of it is a non-perfect locally nilpotent (in particular, hypercentral) group, then G is a locally finite p-group.

A. Arikan and H. Smith [1] have investigated groups with all proper subgroups of finite exponent and, in particular, have proved that a nonperfect group of infinite exponent with proper subgroups of finite exponent is countable and semi-radicable (i.e., $G = G^n$ for any positive integer n). Our next result is

Theorem 1.3. Let G be a non-perfect group of infinite exponent group with all proper subgroups of finite exponent. Then G has the following properties:

- (1) G is an indecomposable p-group,
- (2) if the derived subgroup G' is non-perfect, then G/G'' is a group of Heineken-Mohamed type.

Remember that a group with all proper subgroups to be nilpotent and subnormal is called *a group of Heineken-Mohamed type* [8]. Any group of Heineken-Mohamed type is indecomposable and absolutely imperfect.

Throughout this paper p will always denote a prime, $\mathbb{C}_{p^{\infty}}$ the quasicyclic p-group. For a group G, G', G'' will indicate the terms of derived series of G and G^n the subgroup of G generated by the nth powers of all elements in $G, G^{\mathcal{F}}$ the finite residual of G (i.e., the intersection of all normal subgroups of finite index in G).

Any unexplained terminology is standard as in [10] and [11].

2. Preliminary results

A group G with an descending chain $\{H_n\}_{n=1}^{\infty}$ of normal subgroups H_n of finite index in G such that

$$\bigcap_{n=1}^{\infty} H_n = 1$$

is called *residually finite*. From the solution of the restricted Burnside problem it follows the following

Theorem A. A residually finite group of finite exponent is finite.

If $H \neq 1$ is a non-trivial normal subgroup of G, then the quotient group G/H is called *proper*. If every proper quotient group of G is non-perfect, then we say that G is *imperfect*.

Lemma 2.1. Let G be an imperfect group. If all its proper normal subgroups are locally finite and all its proper quotient groups are of finite exponent, then G is a locally finite group.

Proof. By H_0 we denote the subgroup of G generated by all its proper normal subgroups. Then H_0 is locally finite. If $H_0 \neq G$, then

$$(G/H_0)' \neq G/H_0$$

and therefore $G' \leq H_0$. Since G/H_0 is a simple abelian group, we deduce that G is a locally finite group.

Lemma 2.2. Let G be a finitely generated just infinite group without nontrivial abelian subnormal subgroups. If $G^{\mathcal{F}}$ not contains proper subgroups of finite index, then it is a finite direct product of simple groups.

Proof. By Corollary 4.5 of [13], every subnormal subgroup S of G such that

$$S \leqslant G^{\mathcal{F}}$$

is a direct factor of a subnormal subgroup of finite index in G. This gives that

$$G^{\mathcal{F}} = S \times D$$

for some $D \triangleleft S^G$ and therefore $S \triangleleft G$. As a consequence, $G^{\mathcal{F}}$ is a *T*-group (i.e., normality of subgroups in $G^{\mathcal{F}}$ is a transitive relation). By Theorem 5.2 of [12], $G^{\mathcal{F}}$ is a direct product of finitely many simple groups. \Box

Lemma 2.3. If G is a finitely generated (respectively Noetherian) group of finite exponent, then it has a simple section (respectively a simple homomorphic image) or is finite.

Proof. Suppose that G is infinite. By Proposition 3 of [7], G has a just infinite homomorphic image B. By Corollary 3.8 of [13], B has no non-trivial finite subnormal subgroups and so (as a torsion group) it not

contains non-trivial abelian subnormal subgroups. Assume that ${\cal B}$ is not simple. Then

$$B^{\mathcal{F}} \neq B.$$

If $B^{\mathcal{F}} = 1$, then *B* is a residually finite group and, by Theorem A, *B* is locally finite (and therefore finite) group, a contradiction. Hence $B^{\mathcal{F}}$ is non-trivial and so it not contains proper subgroups of finite index. The rest it follows from Lemma 2.2.

Corollary 2.4. A residually finite Noetherian group of finite exponent is finite.

Corollary 2.5. An absolutely imperfect finitely generated group of finite exponent is finite.

Lemma 2.6 ([5, Lemma 4]). Every simple locally finite group of finite exponent is finite.

Corollary 2.7. Let G be a locally finite group, H the subgroup generated by all proper normal subgroups of G. If G is of finite exponent, then it is finite or G is non-simple and H is a subgroup of finite index in G.

Proof. Indeed, if H = 1, then G is finite by Lemma 2.7. Assume that H is non-trivial. If H is proper in G, then the quotient group G/H is simple and consequently finite by Lemma 2.6.

Proof of Proposition 1.1. Let H be any finitely generated subgroup of G.

a) Assume that G is a locally graded group. Then H contains a proper subgroup of finite index and so $H^{\mathcal{F}}$ is a proper subgroups in H. Since the quotient group $H/H^{\mathcal{F}}$ is residually finite, it is locally finite (and therefore finite) by Theorem A. The subgroup $H^{\mathcal{F}}$ is finitely generated and therefore it contains a non-trivial subgroup of finite index (that leads to a contradiction) or H is finite in view of Theorem A. Thus G is a locally finite group. From Corollary 2.7 it holds that G is finite or non-simple.

b) If G is absolutely imperfect, then the assertion holds in view of Lemma 2.3 and Corollary 2.5. $\hfill \Box$

Lemma 2.8. Let G be a residually finite group. Then G contains an infinite abelian subgroup if and only if it has an infinite subgroup of finite exponent.

Proof. (\Rightarrow) By contrary. Assume that *G* has an infinite abelian subgroup *A* and every subgroup of finite exponent is finite in *G*. Let *B* be a basic subgroup of *A* (see [6, §33]). Since *B* is a direct product of cyclic subgroups and $B_1 = \{b \in B \mid b^p = 1\}$ is finite, we deduce that *B* is finite and, by Theorem 27.5 of [6],

$$A = B \times D$$

is a direct product, where D is a divisible group. In view of the residually finiteness, D = 1, a contradiction.

(\Leftarrow) Let *H* be an infinite subgroup of finite index in *G*. By Theorem A, *H* is locally finite and, by the Kargapolov-Ph. Hall-Kulatilika Theorem (see e.g. [11, Theorem 14.3.7]), it contains an infinite abelian subgroup. \Box

A quasicyclic 2-group $\mathbb{C}_{2^{\infty}}$ is an abelian group of infinite exponent with finite proper subgroups of finite exponent. As was proved by O. Kegel (see e.g. [11, Exercises 14.4(4)]), a non-abelian 2-group of infinite exponent contains an infinite abelian subgroups (and so a non-abelian 2-group of infinite exponent contains an infinite subgroup of finite exponent). For infinite *p*-groups (p > 2) of infinite exponent a problem of the existence of an infinite subgroup of finite exponent is open.

Problem 2.9. Is there a group (respectively a p-group or a finitely generated p-group) of infinite exponent with all proper subgroups of finite exponent to be finite?

3. On groups with proper subgroups of finite exponent

Lemma 3.1 (see [9, Lemma 1.D.4]). If K is a normal subgroup of the locally finite group such that the quotient group G/K is a countable p-group for some prime p, then there is a p-subgroup P of G with KP = G.

Lemma 3.2 (see [4, Lemma 2.3]). Let G be a torsion abelian group and $M \neq 0$ be a $\mathbb{Z}[G]$ -module which is torsion-free as a group. Then, for any finite set Π of primes, there is a $\mathbb{Z}[G]$ -submodule N of M such that the quotient module M/N is torsion as a group and, for all $p \in \Pi$, contains an element of degree p..

Proof of Proposition 1.2. By Lemma 1 of [2], $G/G' \cong \mathbb{C}_{p^{\infty}}$ is a quasicyclic *p*-group for some prime *p*. Assume that *G* is not torsion. Without loss of generality suppose that G'' = 1. Since the torsion part $\tau(G')$ of the derived subgroup G' is normal in *G*, we can assume that G' is abelian torsion-free. Let *q* be a prime and $p \neq q$. Then G' is a

 $\mathbb{Z}[G/G']$ -module and, by Lemma 3.2, there is a *G*-invariant subgroup *N* of *G'* such that G'/N is a torsion group with a non-trivial *p*-element. By Lemma 3.1, there exists a *p*-subgroup $P \leq G$ such that

$$G = G'P.$$

Then, by Lemma 3.3, G = P, a contradiction. Hence G is a torsion group and therefore a p-group.

Lemma 3.3. Let G be a group with every subgroup to be of finite exponent. Then the following hold:

- (1) if G is of infinite exponent, then
 - (a) G is perfect, or
 - (b) G is a non-perfect indecomposable group and its derived subgroup G' not contains proper G-invariant subgroups of finite index,
- (2) if G is a finitely generated group of infinite exponent, then it is perfect.

Proof. It is easy to see that G is a torsion group. Suppose that G is a non-perfect group of infinite exponent. Then G/G' is an indecomposable group and, by Lemma 1 of [2], it is a quasicyclic p-group for some prime p. If $G = \langle A, B \rangle$ for some its proper subgroups A, B of finite exponent, then

$$G = G/G' = A \cdot B,$$

where \overline{A} and \overline{B} are homomorphic images of A and B respectively. Then we obtain, for example, that $\overline{G} = \overline{B}$. This means that G = G'B = B, a contradiction. Hence G is indecomposable.

If *H* is a *G*-invariant subgroup of finite index in *G'*, then the quotient group B = G/H has a finite derived subgroup *B'*. Inasmuch $B' \leq Z(B)$, we obtain a contradiction.

Problem 3.4. Is there a finitely generated simple group (respectively *p*-group) of infinite exponent with all proper subgroups of finite exponent?

Proof of Theorem 1.3. *a*) Indeed, *G* is indecomposable by Lemma 3.3 and the quotient group G/G' is a countable group. By Lemma 3.1, there exists a *p*-subgroup $P \leq G$ such that

$$G = G'P.$$

Then, by Lemma 3.3, G = P.

b) As proved in (a), G is a p-group. Assume that G'' = 1. If K is any proper subgroup of G, then G'K is also proper in G. Since all extensions of a nilpotent p-group of finite exponent by a finite p-group are nilpotent [3],

G is a nilpotent *p*-group. This means that K is a nilpotent subnormal subgroup of G. Hence G is a Heineken-Mohamed type group.

Corollary 3.5. Let G be a non-perfect group of infinite exponent. Then its every proper subgroup is of finite exponent if and only if G is an indecomposable p-group with the derived subgroup G' of finite exponent.

References

- A. Arikan, H. Smith, On groups with all proper subgroups of finite index, J. Group Theory, 14, 2011, no. 5, pp.765-775.
- [2] O. D. Artemovych, On indecomposable metabelian groups, Ukrainian Math. J. 42, 1998, no. 9, pp.163-175.
- [3] G. Baumslag, Wreath products and p-groups, Proc. Cambridge Phil. Soc., 55, 1959, pp.224-231.
- [4] B. Bruno, R. E. Phillips, A note on groups with nilpotent-by-finite proper subgroups, Archiv Math., 65, 1995, pp.369-374.
- [5] G. Cutolo, H. Smith, J. Wiegold, Groups covered by conjugates of proper subgroup, J. Algebra 293, 2005, no. 1, 261–268.
- [6] L. Fucks, Infinite abelian groups, Vol. I, Academic Press, New York London, 1970.
- [7] R. I. Grigorchuk, On just infinite branch groups, In: Horizonts in pro-p Groups (M. du Sautoy, D. Segal, A. Shalev, eds.), pp.121-179.
- [8] H. Heineken, I. J. Mohamed, A group with trivial centre satisfying the normalizer condition, J. Algebra, 10, 1968, no. 5, pp.368-376.
- [9] O. H. Kegel, B. A. F. Wehrfritz, Locally finite group, North-Holland, 1973.
- [10] J. C. Lennox, S. E. Stonehever, Subnormal Subgroups of Groups, Clarendon Press, Oxford, 1987.
- [11] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Text in Math., 80, Graduate Texts inMathematics, 80. Springer-Verlag, New York, 1993.
- [12] D. J. S. Robinson, A survey of groups in which normality or permutability is a transitive relation, In: Algebra (I. B. S. Passi, ed.) Hindustan Book Agency 1999, pp.171-181.
- [13] J. S. Wilson, On just infinite abstract and profinite groups, In: Horizonts in pro-p Groups (M. du Sautoy, D. Segal, A. Shalev, eds.), pp.181-203.

CONTACT INFORMATION

O. Artemovych Institute of Mathematics Cracow University of Technology ul. Warszawska 24, Cracow 31-155 POLAND *E-Mail(s)*: artemo@usk.pk.edu.pl

Received by the editors: 03.12.2014 and in final form 23.02.2015.

7