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Algorithms computing O(n,Z)-orbits of
P-critical edge-bipartite graphs and P-critical
unit forms using Maple and C#

Agnieszka Polak and Daniel Simson

ABSTRACT. We present combinatorial algorithms constructing
loop-free P-critical edge-bipartite (signed) graphs A’, with n > 3
vertices, from pairs (A, w), with A a positive edge-bipartite graph
having n-1 vertices and w a sincere root of A, up to an action
* : UBigr, x O(n,Z) — UBigr, of the orthogonal group O(n,Z)
on the set UBigr,, of loop-free edge-bipartite graphs, with n > 3
vertices. Here Z is the ring of integers. We also present a package of
algorithms for a Coxeter spectral analysis of graphs in UBigr,, and
for computing the O(n,Z)-orbits of P-critical graphs A in UBigr,,
as well as the positive ones. By applying the package, symbolic
computations in Maple and numerical computations in C#, we
compute P-critical graphs in UBigr, and connected positive graphs
in UBigr,, together with their Coxeter polynomials, reduced Coxeter
numbers, and the O(n,Z)-orbits, for n < 10. The computational
results are presented in tables of Section 5.

1. Introduction

Throughout, we denote by N the set of non-negative integers, by Z
the ring of integers, and by Q C R C C the field of the rational, real, and
the complex numbers, respectively. We view Z™, with n > 1, as a free
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abelian group. We denote by eq, ..., e, the standard Z-basis of Z". Given
n > 1, we denote by M,,(Z) the Z-algebra of all square n by n matrices,
and by E € M,,(Z) the identity matrix.

Following some ideas of the spectral graph theory [7], the graph coloring
techniques [2] and [14], and of the unit quadratic forms investigation given
in [3], [5]-[6], [9], [12], [21]-[22], [28], [29], [36], [40], we study in [38] the
category of loop-free edge-bipartite (signed [42]) graphs A by means of
the Coxeter spectrum of A, that is, the finite set speccy C C of all
complex roots of the Coxeter polynomial coxa(t) € Z[t] of A, see Section
2. In particular, we are interested in an orthogonal and Coxeter spectral
classification of positive and non-negative loop-free edge-bipartite graphs
A (in the sense of Definition 1.1). In the present paper we study in details
P-critical loop-free edge-bipartite graphs A, by applying a technique
developed in [5]-[6], [21], [22], [35]-[38]. In this case, the Coxeter spectrum
specc of A is a subset of the unit circle and consists of roots of unity.

Our main inspiration for the study comes from the representation
theory of posets (see [5], [8], [28], [31]-[32], [40]), groups and algebras (see
[1], [16]-[19], [29], [39]), Lie theory, and Diophantine geometry problems,
see [35]-[37].

Our motivation comes also from the fact that positive (and non-
negative) edge-bipartite graphs, P-critical graphs, positive unit forms,
and P-critical forms (and their positive roots) have important applications
in the study of indecomposable representations of posets, tame algebras,
tame vector space categories and tame bimodule matrix problems, see
(1], [4], (8], [10], [20], [22], [28], [30}-[34], [39]. [43].

Here we use the terminology and notation introduced in [38]. In
particular, by an edge-bipartite graph (bigraph, in short) we mean a
pair A = (Ag, Ay), where A is a finite non-empty set of vertices and
Aq is a finite set of edges equipped with a disjoint union bipartition
A =A7T U Af such that the set

of edges connecting the vertices ¢ and j does not contain edges lying
in A7 (i,7) N AT (4,7), for each pair of vertices i,j € A, and either
A1(i,7) = A7 (i,4) or Aq(i,§) = AT (i, 7). Note that the edge-bipartite
graph A can be viewed as signed multi-graph satisfying a separation
property, see [38] and [42].
We define an edge-bipartite graph A = (Ag, A1) to be simply-laced if
(b1) the set Aj(7,7) contains at most one edge, for each pair of
vertices i, j € Ag, and



244 P-CRITICAL EDGE-BIPARTITE GRAPHS

(b2) A1(j,J) is empty, for any j € Ap, that is, A is loop-free.
We say that A has no isolated loop if |A] (j,7)| # 1, for j =1,...,n. If
A has no loop, we call it loop-free.

We visualize A as a (multi-)graph in a Euclidean space R™, m > 2,
with the vertices numbered by the integers 1,...,n; usually, we simply
write Ag = {1,...,n}. Any edge in A] (7, 7) is visualised as a continuous
one o;7— s;, and any edge in A (4, 7) is visualised as a dotted one e;- - -s;.

We view any finite graph A = (A, A1) as an edge-bipartite one by
setting A7 (i,5) = A1(i,j) and A] (4,7) = 0, for each pair of vertices
1,7 € Ap.

We denote by Bigr, the category of finite edge-bipartite graphs, with
n > 2 vertices, and usual edge-bipartite graph maps as morphisms, see
[38] for details. We denote by UBigry, the full subcategory of Bigr, whose
objects are the loop-free edge-bipartite graphs.

Following the representation theory of finite-dimensional K-algebras
over an algebraically closed field K (see [1], [8],[31], [39]) and the mesh-
geometry study of roots of integral unit quadratic forms described in
[35]-[37], the edge-bipartite graphs A € UBigr, are studied in [38] by
means of the Coxeter(-Gram) transformation ® : Z" — Z" (and its
spectral properties, compare with [7]) associated with the non- symmetric
adjacency matrix DA and the non-symmetric Gram matrix G A of
A defined as follows.

Definition 1.1 (see [38]). Let A = (Ag, A1) be an edge-bipartite graph in
Bigry, with Ag = {a1,...,a,}, n > 1, and the bipartition Ay = A7 UAT.

(a) The mnon-symmetric adjacency matrix DA and the
non-symmetric Gram matrix Ga of A are defined to be the square
matrices

dsy dey, ... dB, 1+dy 4y ... dp,
. 0 dby ... do, . . 0 L+d5y ...  dg,
Da=|. - . |, Ga=E+Da= : - :
0 0 ...d&, 0 0 I o
where dA = —|A7 (ai,aj)|, if there is an edge ai—— aj and i < j,

clA |A+(az,a])\, if there is an edge a;- - -aj and i < j. We set alA =0,
if Al(al,a]) is empty or j < i.

(b) The matriz Ga := %(Cv?A + GY) is called the symmetric Gram
matrix of A. By the symmetric adjacency matrix (or, signed adja-
cency matriz, see [42]) of A € UBigr, we mean the symmetric matriz

Adp = DA + DX S Mn(Z)
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The spectrum of A € UBigr,, is defined to be the set specy C R of n
real eigenvalues of the symmetric matriv Ada € M, (Z) (see [42]), i.e.,
the set of all n roots of the polynomial

PA(t) = det(t - E — Adp) € Z[1],

called the characteristic polynomial of the edge-bipartite graph A.
(c) A =(Ap,A1) is defined to be positive (resp. non-negative), if
the symmetric Gram matriz Ga = %(CV;A + CV;Z) of A is positive definite
(resp. positive semi-definite).
(d) We define A to be P-critical, if A has no loop, is not positive,
and any proper full (induced) edge-bipartite subgraph of A is positive.

Any edge-bipartite graph A = (Ag, A1) € UBigr,, with Ay = AT UAT,
is uniquely determined by its non-symmetric adjacency matrix DA and
its non-symmetric Gram matrix G A-

If A is simply-laced, we have dﬁ =...= dﬁn =0, diAj =—1,ifi<j
and there is an edge a;— aj, and diAj =1, if i < j and there is an edge
aj= - -aj.

Throughout this paper, for simplicity of the presentation, we assume
that Ag = {1,...,n}, that is, a1 = 1,...,a, = n.

In Sections 2 and 3, we study in details P-critical edge-bipartite
graphs A, by applying unit quadratic form results obtained in [21] and
[22]. In particular, in Theorem 2.8 we give a useful characterization of
P-critical edge-bipartite graphs, and we present an algorithm in the form
(A, w) — Al[w]] that associates to any pair (A, w), with A € UBigry,
positive, w = (wy,...,w,) € Z" its sincere root (i.e., w-Ga - w" =1
and wy # 0,...,w, # 0), a P-critical edge-bipartite graph A[[w]] in
UBigrp+1. We show that the map (A, w) — Af[w]] is invariant under
the orthogonal group action O(n,Z) x UBigr, — UBigr, (2.1), and any
P-critical edge-bipartite graph A" in UBigr,4+1 has the form A’ = A[[w]].

We also present a package of algorithms for a Coxeter spectral analysis
of graphs in UBigr, and for computing the O(n,Z)-orbits of P-critical
graphs A in UBigr,, as well as the positive ones. By applying the package,
symbolic computations in Maple and numerical computations in C#, we
compute P-critical graphs in UBigr,, the connected positive ones, their
unit quadratic forms, their Coxeter polynomials, and the O(n, Z)-orbits,
for n < 10. The computing results are presented in tables of Section 5.

Main results of the paper are announced in [24]-[25] and were presented
at the Sixth European Conference on Combinatorics, Graphs Theory and
Applications, EuroComb’11, Budapest, August 2011, and at International
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Conference Combinatorics 2012, Perugia, September 2012, see also [26].
Some applications of the results presented here are given in [27].

2. Preliminaries
Given n > 1, we denote by
Gl(n,Z) ={A e M,(Z); det A € {-1,1}} C M,,(Z)
the group of Z-invertible matrices with integer coefficients, and by
O(n,Z) = {B € M,,(Z); B-B" = E}

its subgroup formed by the orthogonal matrices. Recall from [36] that
O(n,Z) is generated by:

e the diagonal matrices £0) = diag(1,...,1,-1;,1,...,1) € M,(Z),
where 1 < j <n, —1; = —1 is the jth coordinate of the vector

el) = diag(1,...,1,~1;,1,...,1), and

e the permutation matrices ¢ = M,, where o € S,, is a permutation
of the set {1,...,n}.

We define the right action

* : Bigr, x O(n,Z) —— Bigry, (2.1)

of the orthogonal group O(n,Z) on Bigr, as follows. Let A = (Ag, A1)
be an edge-bipartite graph in Bigr,, with n > 2.

(i) If U) = diag(1,...,1, —1;,1,...,1), where 1 < j < n, we define
Ax&U) to be the graph in Bigr, obtained from A by replacing every dotted
edge e;- - -o;, with ¢ # j, by a continuous one, and every continuous edge
o o;, with s # j, by a dotted one. The remaining edges (in particular
the loops at j) remain unchanged.

(ii) If & = M, is a permutation matrix defined by o € S,,, we define
A x & to be the the graph in Bigr, obtained from A by the permutation
o~ ! of the vertices of A as well as the corresponding edges between them.

It is shown in [38] that (i) and (ii) uniquely define the action (2.1), be-
cause every matrix B € O(n,Z) has a unique decomposition
B =252 where g € S, := {6 € O(n,Z); 0 € S,,} and  is a finite
product of matrices of the type &), see [36, Lemma 2.3].

It is easy to see that the full subcategories SLBigr, and UBigr, of
Bigr,, whose objects are the simply-laced edge-bipartite graphs and the
loop-free edge-bipartite graphs, are O(n, Z)-invariant.
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Assume that A has no isolated loop. The Coxeter polynomial of
A is the characteristic polynomial

coxp (t) = det(t - E — Coxa) (2.2)

of the Coxeter matrix
Coxp := —Ga - égtr € Gl(n,2Z)

of A. The group automorphism ®, : Z" — Z" defined by the formula
®A(v) =v-Coxp is called the Coxeter transformation of A, compare
with Drozd [8]. The set speccy C C of n complex eigenvalues of @, is
called the Coxeter spectrum of A. The order ca of Coxa in Gl(n,Z)
is called the Coxeter number of A. In other words, ca is a minimal
integer ¢ > 1 such that Cox} = E. If there is no such integer, we set
CA = OQ.

It is shown in [38] that the matrices Ga, Coxa, the Coxeter polynomial
coxa (1), and the Coxeter number ca depend on the numbering of the
vertices of the bigraph A. Moreover, the Coxeter spectrum specca of A
is a subset of the unit circle, if A is non-negative and loop-free.

We associate with A € UBigr,, the Gram forms qp : Z"" — 7Z and
ba : 2™ x 7™ — 7 defined by the formula

v

CIA( ) == G —I‘%—F +'T +Zz<g z]xl‘x]’
( ) tr'

The set of roots of A (and of ga) is defined to be the set
Ra = {v € Z™ ga(v) = 1}. The set Kerga = {v € Z"; ga(v) = 0}
is called the kernel of ga.

In the study of the subcategory UBigr, of Bigr, consisting of the loop-
free edge-bipartite graphs A, we essentially use the results on unit integral
quadratic forms obtained in [3], [9], [12], [21]-[22], [28]-[29], [33]-[36], [39].
For this purpose we recall some definitions.

A unit integral quadratic form is a map ¢ : Z" —— Z, n > 1, defined
by the formula

(2.3)

q(z) = qz1,...,20) =25 4+ ...+ 22 + > i< TiTy, (2.4)

where ¢;; € Z, for ¢ < j. Obviously, ¢ is uniquely determined by its
non-symmetric Gram matrix

1 qi2 ... qn

v 0 1 <o Q2n
Go=1. . 7 " em. (@ (2.5)
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and by the symmetric Gram matrix G, = %[(v;q + é’f{] of ¢, because
g(x) = z -Gy -2 = x -G, - 2", where Cv?f]” means the transpose of
Gy and = (21,...,2,) € Z". The polar form of ¢ is the symmetric
Z-bilinear form by : Z" x Z" —— % - Z defined by the formula

lq(x +y) —q(z) —q(y)],

N | =

by(x,y) =2 Gq-y" =

where the vectors = = (z1,...,2,), y = (Y1,...,Yn) € Z" are viewed as
Y1
one-row matrices, and we set y" = |
y7L
We call ¢ positive (resp. non-negative) if ¢(v) > 0 (resp. ¢(v) > 0),
for all non-zero vectors v € Z"™. A vector v € Z™ is said to be a ¢-root
(of unity), if g(v) =v- Gy - v = 1. A vector v = (v1,...,v,) € Z" is said
to be sincere, if v1 #0,...,v, # 0. We say that v is positive, if v # 0
and v1 > 0,...,v, > 0. Given v = (v1,...,v,) € Z" and s € {1,...,n},
we set
o) = (U1« vy Vg1, Vg1, - -5 Un) € Y/

Given n > 1, we denote by U(Z",Z) the set of all unit forms ¢ : Z™ — Z.
We recall from [36, Section 2], that the Coxeter(-Gram) polyno-
mial of ¢ : Z"" — Z is the characteristic polynomial

coxy(t) := det(t - E — Coxq) € Z[t]
of the Coxeter(-Gram) matrix
Coxg 1= —Gq - G,

The Coxeter number of ¢ is the order ¢, of the matrix Cox, in the
group Gl(n,Z), i.e., a minimal integer ¢ > 1 such that Coxy = E. If there
is no such integer, we set ¢, = oo.

To any unit form ¢ : Z" — Z, we associate in [36, Section 2] an
edge-bipartite graph bigr(q) of ¢ with the vertices 1,...,n as follows.
Two vertices s # j are joined by |qg;| continuous edges os—— o; if gg; < 0,
and by gs; dotted edges e,- - -o; if g5; > 0. There is no edge between
s and j, if gs; = 0, or s = j. We say that ¢ is connected if the graph
bigr(q) is connected.

We recall from [36] that a unit form ¢ : Z" — Z, with n > 2, is defined
to be P-critical (critical with respect to the positivity) if ¢ is not positive,
and each of the restrictions

gV, . q™ 7z S 7
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of ¢ is positive, where ¢U/) = qlz;=0. The form ¢ : Z" — Z is defined to
be principal if ¢ is non-negative and Ker g = {v € Z™; ¢(v) = 0} is an
infinite cyclic subgroup of Z™.

Positive unit forms, P-critical unit forms and their roots are essentially
applied in the representation theory of finite-dimensional algebras R,
coalgebras C, and their derived categories D’(mod R), see [1], [11], [17],
[31]-[35], [39], [43]. They are mainly used as a computational tool for
determining the representation type (finite, tame, wild) of an algebra
R and in a combinatorial description of the Auslander-Reiten quiver
I'(mod R) of its module category mod R, see [1], [10], [31], [34]-[35],
[39]-[40], and [43].

Given a € Ay, we denote by A@ the edge-bipartite graph obtained
from A by removing the vertex a together with all edges ;- - - -o, and
«; connected with a.

In the study of the category UBigry,, the following result is of impor-
tance, see also [38].

°q

Proposition 2.6. The correspondence A — ga defines a bijection
o : UBigr, ——— U(Z",Z) (2.7)

with the followirig properties:

(a) GQA = GA, GQA = GA, RQA = RA, COXqA = COXA, Cygn = CA,
and coxg, (t) = coxa(t),

(b) an edge bipartite graph A € UBigry, is positive (resp. non-negative,
principal, P-critical) if and only if the unit form qa : Z"™ — 7 is positive
(resp. mon-negative, principal, P-critical).

Proof. 1t is easy to see that qu) = (p(), for a =1,...,n. In view of [38,
Lemma 2.1], the unit form ga is P-critical if and only if A is not positive
and the edge bipartite graphs AW AM are positive, or equivalently,
every full edge-bipartite subgraph A’ of A is positive, apply [38, Lemma
2.1(c)] and its proof. The remaining properties of ge follow by applying
the foregoing definitions. O

Throughout the paper, we often use the bijection (2.7) as an identifica-
tion A = ga. In particular, we often describe the bigraph A by presenting
its unit form ga, or the matrix G A-

Now we are able to present a useful characterization of P-critical
edge-bipartite graphs.
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Theorem 2.8. Assume that A is a loop-free edge-bipartite graph in
UBigr,, with n > 3. The following four conditions are equivalent.

(a) A is P-critical.

(b) The bigraph A is non-negative and the free abelian group
Kergan = {v € Z",q(v) = 0} is infinite cyclic generated by a sincere
vector ha = (h1,...,hy), such that —6 < h; <6, for all j € {1,...,n},
and hs € {—1,1}, for some s € {1,...,n}.

(¢) The set Ra :={v € Z™; qa(v) =1} of roots of A is infinite, and
each of the subbigraphs AV, ... AU of A has only finitely many roots.

(d) There exist a Fuclidean diagram DA € {f&n_l, ]ﬁ)n—h I~E6, I~E7,I~Eg},
see (5.1), and a group isomorphism T : " — 7' such that qa o T is the
quadratic form qpa : Z" — Z, n = |DAg|, of the diagram DA and T
carries a sincere vector h' € Ker gpa to a sincere vector in Ker g .

Proof. Since we have qu) = (a@), for a = 1,...,n, then Rq(@ = RA)-
A

On the other hand, by Proposition 2.6, A is P-critical if and only if the
unit form ga is P-critical. Then the equivalence of (a)—(d) follows by
applying [21, Theorem 2.3| and [38]. O

In the classification of P-critical unit forms g € U(Z",Z), we use the
right action

s« 1 U(Z",Z) x O(n, Z) —— U(Z", Z) (2.9)

(defined in [36, Section 2]), that associates to ¢ € U(Z",Z) and B € O(n,Z)
the unit form g+ B : Z" — Z by setting (¢ * B)(z) = q(x- B'"), for x € Z"
(see also [21]). It is easy to see that the action (2.9) coincides with the
action (2.1) under the identification ge : UBigry, = UZ",7) (2.7).

By [36, Lemma 2.3], the group O(n,Z) is generated by the following
two subgroups:

e the group C2 of all matrices € = ¢ - E, where E € M,(Z) is the

identity matrix and € = (e1,...,&,) € C§ runs through all vectors
with coefficients €1, ..., &, € Ca = {—1, 1}, the cyclic group of order
two, and

e the group Sp of all matrices 6 = M, of the group homomorphisms
o 72" — Z" given by the permutation ¢ € S,, and defined by
o(z) = x- M = (Zo(1)s- - To(n)), Where S, is the symmetric
group of order n!.
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Moreover, every matrix B € O(n,Z) has a unique form B = 7 -&, with
6 €8S, and & € CY, the group O(n, Z) is finite of order |O(n, Z)| = n!-2",
and O(n,Z) admits the semi-direct product decomposition O(n,Z) =
S, 63, with respect to the right group action e : 63 x S, — 63 of S,
on the group ég defined by the formula £e5 = diag(e,-1(1), .-+, E0-1(n))-
Note that £-5 =5 - (Fe5), for all £€ CZ and G € S,,.

It follows from the description of O(n,Z) given above that ¢ * B €
UZ™ 7)), it ¢ € U(Z",Z) and B € O(n,Z). It is easy to see that the
set P-crit(Z"™,7) of all P-critical unit forms ¢ : Z"™ — 7Z, and the set
posit(Z™,7) of all positive unit forms ¢ : Z" — Z are O(n, Z)-invariant
subsets of U(Z",Z).

Following [21] and [38], we investigate recursive algorithmic procedures
that construct all O(n,Z)-orbits of the P-critical bigraphs and O(n, Z)-
orbits in P-crit(Z",Z), for n > 3. We do it by applying the following
correspondence

inds ¢, : 2,1 — P-crit(Z",Z), (p,w)— ¢ :=qpswe, (2.10)
defined by the formula (3.2), from the set
Zn_1={(p,w); p € posit(Z" 1, Z),we Z" ! a sincere root of p},(2.11)

to the set P-crit(Z",Z) of all P-critical unit forms ¢q : Z" — Z. We show
that ind, ., (2.10) defines a surjective map

ind : O(n-1,Z)-Orb(Z,—1) — O(n, Z)-Orb(P-crit(Z", 7)),

with n > 3, between the set of O(n-1,Z)-orbits in Z,_; and the set of
O(n,Z)-orbits in P-crit(Z",Z). By applying a package of algorithms
presented in Section 4, symbolic computations in Maple, and numerical
computations in C#, we compute in Section 5 all P-critical unit forms
q : Z" — Z, together with their Coxeter-Gram polynomials and the
O(n, Z)-orbits, for n < 10.

Under the identification g : UBigr,_1 = U(Z L, Z) (2.7), we can
identify the set Z,_1 with the set

Z!  ={(A,w); A € UBigr,_; positive, w € Z" ! a sincere root of A},
(2.12)
n > 3, and the correspondence ind, ., (2.10) can be viewed as a map

indsc, : 2,y —— UBigr,, (A,w)— Alw, s, ], (2.13)

see (3.6). It follows from our next result that Af[w, s, 4]] is a P-critical
bigraph.
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A connection between P-critical bigraphs and positive ones, and
between P-critical unit forms and positive ones is given by the following
result proved in [21, Section 3|, see also [12].

Proposition 2.14. Assume that q : Z" — 7Z is a P-critical unit form
(2.4), withn > 3, Kerq = Z -h and s € {1,...,n} is such that hs €
{-1,1}.

(a) The vector h(®) := (hy, ... hg_1,hsy1,...hy) € Z" is a sincere
root of the positive unit form ¢ : 2"~ — 7.

(b) The form q can be reconstructed from the triple (q(s), s, h(s)) by
the formula q(z) = ¢ () + 22 — 2. bys) () h®)) . hy - g, where
) = (T1y. ey L1, Tsp1y- .-y Tp) € Z" 1 and bq<s> is the symmetric

bilinear polar form of ¢'®) (x(s)) =¢(®) (T1ye ey Tsm1y Tst1ye .- Tny)-

3. Main theorem and main algorithm

For n > 3, the correspondence ind, ., : 2,1 —— P-crit(Z",Z)
(2.10) between positive unit forms p : Z"~! — Z, with a sincere root,
and P-critical forms ¢ : Z" — Z, and the correspondence (2.13) between
positive loop-free bigraphs A, with a sincere root, and P-critical bigraphs
are described in the following theorem (its proof is outlined in [21]).

Theorem 3.1. (a) Givenn >3, s € {0,1,...,n—1}, e, € {—1,1}, a
positive connected loop-free bigraph A € UBigr,_1, with the unit form
p:=qa : Z" ' = Z and a sincere root w = (wy,...,w,_1) € Z" ' of A
and of p := qa, the bigraph A’ corresponding via (2.7) to the unit form
qA’ = Qpsw,es - L — 7 defined by the formula

q(x) = qar (@1, 20) = p(®) + 22 = 20,2 w) e s, (3.2)

is P-critical and Ker gar = Z - W, where by, : Zr 1 x 7271 — 7 is the
symmetric polar form of p and W = (w1, ..., Ws_1,Es, W, ... Wp—1) EL™.

(b) The set Z,—1 (2.11) is an O(n,Z)-invariant subset of
posit(Z" 1, Z) x Z"~! under the action (p,w) * B := (p x B,w - B),
with B € O(n,Z). The map (p,w) — inds ¢, (p, w) := Gp s.we, described in
(3.2) defines a surjection

ind : O(n-1,2)-Orb(Z,,—-1) —— O(n, Z)-Orb(P-crit(Z",7Z)) (3.3)

between the set of O(n—1,7Z)-orbits of Z,-1 and the set of O(n,Z)-orbits
in the set P-crit(Z",7Z) of P-critical unit forms.
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(c) A right inverse of ind is given by q — res(q) == (¢*), h(®)) defined
in (a), that associates to any P-critical form q = qa, with
Kerq=7Z-h and hy € {—1,1}, the pair (¢®),h®®)) € Z,_;.

Proof. Assume that n > 3, A is a connected positive loop-free bigraph in
UBigrn,_1, p:=qa : Z" ' — Z is its unit form and w = (wy, ..., wp_1) €
Z™ ! a sincere root of p. Let A’ € UBigr, be the bigraph corresponding
via (2.7) to the unit form q := ¢y 5w, : Z" — Z defined by the formula
(3.2), that is, ga’ = ¢p sw,e,. Throughout the proof, we set p := ga and
qd=d4dA" = dp,sw,es-

(a) Assume that p € posit(Z"~!,Z), weZ"! is a sincere root of p,
s€{0,1,...,n}, es € {—1,1}, and ¢ := gp swe, : Z" — Z is defined by
the formula (3.2).

We prove that ¢ is P-critical by showing that ¢ is non-negative and
Ker ¢ = Z - h, where h is sincere vector, see Theorem 2.8. For simplicity
of the presentation, we assume that s = n, that is, ¢ is defined by the
formula

q(z1,...,zn) = p(a™) + 22 — 2 b, (2, w) - &, - 2.
It follows that ¢(™ = p, éq(n) = é’p, G, = Gp, and

. Gy ‘ —2G, - w' &y Gp ‘ —Gp - w'" - en
and Gy =
0 1 1

Gy =
are the non-symmetric and the symmetric Gram matrix of ¢, respectively.
We split the proof in three steps.

Step 1.1° First, we show that det Gy, = 0 and ¢ is not positive. Since
¢\ = pis positive and v-Gp-v'" = p(v), for allv € Z"!, then det G, > 0,
and, in view of the Cauchy theorem, the obvious equality

Gp | —Gp-w' ey
[ —w-Gp-en 1 ‘| B
Gp | 0 E | —Gp'Gp W' en
B [ —w-Gp-en |1 ] . [ 0 ‘ L — (—wGpen) - G;l (=Gpw'Ten) ]
yields

det G, = (det Gp) - (1 —w - Gp - w') = (det G) - (1 — p(w)) = 0,
because p(w) = 1. Hence, by Sylvester’s criterion, the unit form ¢ is not
positive.

Step 1.2° We prove that the unit form ¢ is non-negative. Consider
the rational subspace W = Q"' x {0} of Q™. Since ¢(™ = p then
bq(n) = b, and the rational bilinear form by|w = b, : QlxQv!l—=0Q

—w-Gp-en
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is positive. Hence, there is a direct sum decomposition Q" = W @ W,
where Wt = {v € Q% by(v,w) = 0, for allw € W} is the orthogonal
complement of W. It follows that W+ = Q - 7, for some non-zero vector
newt.

(i) First we show that b,(n,n) = 0. For, let e = {ey1,...,e,} be the
standard basis of Q. Note that the Gram matrix of ¢ in the Q-basic
e ={ey,...,en—1,n} of Q" has the diagonal form

bq(e1,n)
Gp 0
0 | bg(n,m)
bg(n,e1)...bq(n,en—1) ‘ bq(n,m)

If C € M,(Q) is the translation matrix from e to €', then det C' # 0,
G,?/ = C" .Gy - C and Cauchy’s theorem yields

(det Gp)-by(n,n) = det Ge = det(C'-G¢-C) = (det C)?-(det Gp) = 0,
because det G, = 0, by 1.1°. It follows that b,(n,n) = 0, because p is
positive and det G, > 0.

(ii) Next, by applying (i), we prove that ¢ : Q" — Q is non-negative,
i.e., q(v) >0, for each v € Q™. Since Q" = W @ Q - n, the vector v has
the form v =w + A -1, where w € W, A € Z, and we get

e __ Gp
Gy =

bg(en—1,7)

qv) =qw+A-n) = by(w+X-nw+A-n)
= bq(waw)+A2bq(nvn)+2Abq(w7n)
= p(w) >0,

because bg(n,1) = 0, by(w,n), bg(w,w) = q(w) = p(w) > 0 and the
positivity of p : Z"~! — Z implies that the rational form p: Q"' — Q
is positive. The proof of Step 1.2° is complete.
Step 1.3° We show that Ker ¢ = Z - w®s, where
W = (Wi, ..., Ws_1,Es, Ws,...Wp_1) € L.
Since q : Z'" — Z is non-negative, then
Ker g =rad ¢ = ;L Ker by(e;, —)

(see [36, Proposition 2.8]) and therefore Ker g coincides with the abelian
subgroup Uy, C 7Z" of all solutions v € Z" of the system of Z-linear

equations
{ by(er,z) =0
: (3.4)
by(en,z) =0
Denote by Ug the rational subspace of Q" of all solutions v € Q" of the
system (3.4).
Since det Gy = 0 and det G ) = det G, > 0 then rank(Gy)=n —1
and the system (3.4) has a non-zero solution £ € Q" such that Uy = Q- ¢,



A. PorLAk, D. S1MSON 255

because dimgUp = n — rank(G,) = 1. Let £ = (%, e ’;—z), where
r1...,r € N\{0} and ky,...,k, € Z. If r = lem(ry,...,r,), then ¢ =
r-& € Z" is non-zero and 0 = ¢(&) = q(% & = r% -q(&'), that is, &' € Uy,
Then the group Uy, C Z" is non-zero and, hence, it is free of rank < n. It
follows that Uz is of rank one, because Uz, C Uy = Q - &.

We show that Kerq = Uy = Z - w®*. Since the formula (3.2) yields
q(0%) = p(w) + €2 — 2b,(w,w) - €5 - €5 = 1+ 1 — 2 =0 then @ € Kerq
and Kerq O Z - w®s. To prove the inverse inclusion, assume that h is a
Z-generator of the rank one group Kerq = Uy, i.e., Kerq = Z - h. Then
there exists A € Z such that w*s = A - h. Since h € Z" and the sth
coordinate of W equals €5 € {—1, 1} then the equality e5 = X - hy yields
es, A\, hs € {—1,1}. Tt follows that w®s generates the group Kerq =Z - v.

Since the vector @w®s is sincere, ¢ is non-negative, and Ker g = Z - w®s
then, by Theorem 2.8, ¢ is P-critical and the proof of (a) is complete.

(b) We recall from [36] that given ¢ : Z" — Z, & € S,,, and & € C%,
with €1,...,&, € Co = {—1,1}, we have

(A) the form (¢ % 7)(x) = q(z - ") = q(z5(1), - - -, To(n)) is Obtained
from q(x) by permuting the variables of = under o € S,,, and

(B) (g#8)(x) =q(z-€) = qle1- 21, .. en - Tn).

(C) two integral unit forms qi,q2 : Z™ — Z lie in the same O(n, Z)-
orbit if and only if Gy, = B - Gy, - B, for some matrix B € O(n,Z).

Assume that p : Z" ™! — 7Z is positive, w € Z"~! is a sincere root of p,
and

q1 ‘= dpsiwesyy 92 = Ap,sy,wi,es,

are P-critical forms associated with (p,w) by applying the construction
(3.2), with some s1,s2 < n and e5,,65, € Co = {—1,1}. We split the
proof of (b) in several steps.

Step 2.1° We show that P-critical forms ¢1,qs : Z" — 7Z lie in the
same O(n, Z)-orbit.

2.1.1° First, we assume that s := s; = s9 and €5, # €5,. It follows
that g1 (x) is obtained from gy(z) by 25 — —x, that is, ¢ = g2 %€, where
ey = —1,and &) = 1, for all j # s, see (B). Consequently, the forms
q1,q2 : Z™ — Z lie in the same O(n, Z)-orbit.

2.1.2° Next, we assume that s; # sp and €5, = £5,. We find a matrix
B € O(n,Z) such that G, = B" - Gy, - B.

In case s;1 =1 and sy € {2,...,n}, we set
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ro 1 0 ... 0 0 0 ... 07 [ e T
0 0 1 0 0 0 0 es
_]lo0oo0o o0 -1 0 0 ... 0]|_| e .
B=17090 ..0 0 0 .. 0|7 o , where 7 = so.
000 - 0 1 0 ... 0 eit1
LO 00 -~ 0 0 0 ... 141 L en |
For simplicity of the presentation, we assume that so = n. Then
1 |-w-G, G, | -G ut”
G = y Gy = are the sym-
—Gp - w'” Gp —w - Gp 1

metric Gram matrices of the forms ¢, ¢2, respectively, and simple calcu-
lation yields

tr _
B .Gy, - B=
00 0---0 1 01 0 0---0
1 0 0---0 0 . 00 1 0---0
G -G 4
_ o 1 00 0 p | =Gprw .
—w-Gp 1 00 0 ..1
0 0 0...1 0 1 0 0 ...0
01 0 0---0
-Gy | 1 0 1 0---0
- ‘ o —Gq1'
Gp | =Gp-w 0 0 1
10 0 0
In case s1 # s9 and s1,$2 € {2,...,n}, we set ) ]
1 ... 0 00 ... 00 0 ... 071 el
€2
0 1 0 0 0 0 0 0 .
0 0 0 0 01 0 0 ot
0 0 0 1 00 0 0 i
€it1 N
B: = :7’7
0 0 0 0 1 0 0 0 .
0 0 1 0 0 0 0 0 Jefl
0 0 0 0 0 0 1 0 i
€j+1
Lo ... 000 ... 00 0 ... 1]
€En

where ¢ = s1, j = s, and 7 is the transpose permutation (,7). For
simplicity of the presentation, we assume that s; =n — 1, ss = n and,
givena <k <n-—1and b <s <n—1, we denote by G;,(mk)(b’s)} the
(k—a+1) x (s — b+ 1) matrix obtained from G, by removing the rows
enumerated by 1,...;,a—1,k+1,...,n—1 and the columns enumerated
by1l,....,b—1,s+1,...,n—1.
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Given w € Z" and 1 < k < s < n, we set w = —Gp-w“" and
wF%) = (wy, ..., ws). Then
Gz[?(l,n72)(l,n72)] w1n—2) G}[j(l,n72)(n71,n71)]
Gy = [wn=2)]tr 1 D ,and
G[(n—l,n—l)(l,n—2)] Egln_—ll,n—l) GL(n—l,n—l)(n—l,n—l)]

Gy | w
Gg, = | _ .
wi” | 1

Note that B! = B = 7 and, given a matrix A € M,(Z), the matrix
A-B=A-7 (resp. B- A=7-A) is obtained from A by the transpose
of its ¢th column with the jth column (resp. of its ith row with the jth
row). Then a straightforward computation yields

tr _
B" -Gy, -B =
1 0 0 0...0 O 1 0 0 0...0 0
01 0 0...0 _ 01 0 0...0 0
Gp | w . . .
00 0 1...0 0 otr | 1 00 0 1...0
0 0 0 0...0 0 0 0 0...0 1
L0 0 0 0...1 0 00 0 0...1 0
1 0 0 0...0 0
- 1
GL(l,n—Q)(l,n—l)] 2(1,n—2) 0 ) .0 0 ) 0 0
— wt” 1 . . . . . . :qu‘
Q=TI A=D] | = 1n-1) 00 0 1...0 0
L 00 0 0...0 1
00 0 0...1 0
Step 2.2° We show that the P-critical forms g1 = Gp, s; w1,

42 °= Qpy,s0.wa 4, li€ in the same O(n, Z)-orbit, if (p1,w1), (p2, wa) € Zn1
lie in the same O(n-1,Z)-orbit.

In view of Step 2.1°, without loss of generality, we can assume that
51 =89 =1 and g5, = €5, = 1. Then

1 ‘ —w1 - Gp,q 1 ‘ —wa - Gp,
qu - tr ’ Gq2 - tr ‘
—(w1 - Gpy) Gp: —(w2 - Gpy) Gps

is the symmetric Gram matrix of the form ¢; and ¢s, respectively.
Assume that B’ € O(n-1,Z) is a matrix such that

(p1,w1) * B' = (p1 * B',wy - B") = (pa,ws), and we set B = [ (1) ]_g, } €

O(n,Z). We show that ga(z) = q1(z - B'"), for all z € Z™, by proving that
the equality B - Gy, - B = G, holds, see (A3).
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Since (B')!" = (B')~!, (B - Gp, - B' = Gy, and wy = wy - B', we
obtain

1 ‘ 7w2-Gp2 ‘|

)t'r

L —(w2 - Gp, Gp,

1 | —wy - (B -Gy, - B ]

| —(w2- (B -Gy, - BT (B - Gp, - B
[ 1 | —w1-B' - (B)" - Gp, - B ]

(Bl)t'r . GPl . B’

i —(wlB’ . (B/)71 . Gp1 _B/)tr
[ 1 | —wi-Gp - B

1:Bt”-Gq1~B

L —(w1-Gp, - B)"" | (B")'" -Gy, - B

and the proof of Step 2.2° is complete. Consequently, we have a well
defined map (3.3)

ind : O(n-1,Z)-Orb(Z,—-1) — O(n, Z)-Orb(P-crit(Z",Z))

induced by the map (p,w) — ind(p, w) := gp 5w, on the orbit represen-
tatives, see (3.2).

To finish the proof of (b), it remains to show that the map ind (3.3)
is surjective. Hence (b) follows, because the surjectivity of ind is a conse-
quence of Proposition 2.14. Since the statement (c) follows from Proposi-
tion 2.14, the proof is complete. O

Construction 3.5. Assume that n > 3. It follows from the proof of
Theorem 3.1 that the correspondence inds ., : 2/ | —— UBigr, (2.13),

with s = n, associates to any pair (A, w) € Z/,_; the P-critical bigraph
A= Al[w, n,e,]] € UBigry, (3.6)

defined as follows. The set Af of vertices of A’ is obtained from
Ay = {1,2,...,n-1} by adding a new vertex n, that is,
0=11,2,...,n-1,n}.

We set w' := —QCV}'A -w. By Theorem 3.1, each of the coordinates
w),...,wl,_q of the vector w’' = (w},...,w!,_;) € Z" ! lies in {—1,0,1},
because the bigraph A’ corresponds to the unit form ¢ defined by the
formula (3.2). Hence, g1, = w),...,qn—1n = w),_;, A’ is P-critical,

é GA ‘ *2éA-wtr-€n éA ‘ wltr (3 7)
. ‘ 1 1o ‘ 1 '
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and qin,...,qn—1n € {—1,0,1}, because the restriction qbn] (xj,xp) =
x? + 22 + gjnxjz, of g(z) is positive, for j = 1,...,n — 1, see also [38,
Theorem 4.1].

It follows that the set of edges of A" := A[[w, n, &,,]] is the enlargement
of Ay by adding a new continuous edge es—— o, for any s such that
w’, < 0, and a new dotted edge e,- - -e,, for any r such that w/. > 0. O

It follows from [21, Corollary 4.10] and our calculation in Section 5
that the surjective map (3.3) is far from being injective, see also Remark
4.10. However, by applying Theorem 3.1, its proof, and the correspondence
(p, w) = Gpw,se, defined by (3.2), we get Algorithm 3.8 constructing the
set P-crit(Z"*1,Z) of all P-critical unit forms ¢ : Z"*! — Z from the
unit forms p € posit(Z"™,7), with a sincere root w, for n > 3, as well
as the set of P-critical bigraphs A’ € UBigr, from the positive ones
A € UBigr,_1, with a sincere root w, for n > 2. Its implementation is
presented in the following section as Algorithms 4.8 and 4.9.

By applying Algorithm 3.8 and the package of algorithms presented
in the following section, we compute in Section 5 all P-critical unit forms
q: 7" — 7, for n <9, up to the action (2.9) of the orthogonal group
O(n+1,Z) on U(Z"*',7Z), and the set of P-critical bigraphs A’ € UBigry,,
for n > 2, up to the action (2.1) of the orthogonal group O(n,Z) on
Bigry,.

Algorithm 3.8. Input: An integer n > 3 and the finite sets of matrices
O(n,Z) C M, (Z) and O(n+1,Z) C M, +1(Z) (see [21, 3.1]).

Output: A finite set P-crit?,; C P-crit(Z"1,Z) of pairwise differ-
ent representatives of all O(n + 1,Z)-orbits in P-crit(Z"*! Z).

Step 1° Construct a finite set posit;, C posit(Z",Z) of pairwise
different representatives p : Z" — Z of O(n,Z)-orbits in posit(Z",Z).

Step 2° Given p € posit,, construct the finite set

Ry = {w € 2" p(w) = 1}

of roots of p, and then construct the list SR, of all sincere vectors in R,.
Step 3° Construct a finite set Z,, of pairwise different representatives
of all O(n,Z)-orbits in the finite set

Zy ={(p,w); p € posity, w € SR,},

see [21, Proposition 3.7(c)].
Step 4° Given (p,w) € Z,;, construct the Gram matrices G, and Gy,
1| —w-2-Gp :|

of p, then construct the matrix G, = { 0 e
P
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Step 5° Given (p,w) € Z,, construct the unit form g, : Z"™ — Z,
tr

by applying the formula g, () = x - Gpp - 2.
Step 6° Take for P-crit;,; the finite set {gp,.} (

PW)EZy

Remark 3.9. (i) We implement the groups O(n,Z) C M, (Z)
and O(n+1,Z) € M,,11(Z) in the C# programming language, by ap-
plying Algorithm 4.5 of the following section.
(ii) In Step 1° we can apply the correspondence
(p. p) — P € posit(Z"*!,Z)

that associates to any p € posit(Z",Z) and any vector p = (g1, .., fn),

such that pq,...,un, € {—1,0,1} and det [221’ “2”} > 0, the one-point

extension positive form

_ Gp w' ot
]/?\M(l')—l"[op 1}'1:7“7

see [21, Theorem 4.1]. In fact, we should apply an implementation of [21,
Algorithm 4.5]. The positivity of the unit form p* is checked by applying
Algorithm 4.1 based on Sylvester’s citerion. To get the subset posit? of
posit(Z"™,7), we apply Algorithm 4.7 of the following section.

(iii) In Step 2° we can apply the restrictively counting algorithm [35,
Algorithm 4.2] and [36, Algorithm 3.7, Remark 3.8].

(iv) In Step 3°, note that two P-critical edge-bipartite graphs con-
structed from pairs (p, w) and (p, —w) lie in the same O(n + 1, Z)-orbit.

4. A package of algorithms

We present a package of algorithms that we apply in our construction
of all O(n,Z)-orbits of a P-critical unit form for n > 3. We use the
standard convention: when a unit quadratic form ¢ is operated upon
in a computer program, it is implemented as a two-dimensional array
in C# representing the corresponding symmetric Gram matrix G, (or
non-symmetric Gram matrix éq) of q.

The following algorithm verifies in a polynomial time O(n*) wheather
or not a quadratic form p : Z"™ — Z is positive or a bigraph A € UBigr,
is positive.

Algorithm 4.1 (SylvesterCriterion). Input: An integer n > 2 and
the non-symmetric Gram matrix ép € M,,(Z) of a unit form p : Z" — Z.
Output: True if p is positive definite, false otherwise.
1°G, = Gp+GY
2°k=0; N =mn;
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3° if (det Gp > 0) k + +;

4° i =n;

5° while(i > 1){

6° W = the matrix (of size N > 2) obtained from é\p by choosing the first NV
rows and the first N columns of ép;

7° W = the matrix (of size N-1) obtained from W by removing the i-th row
and the i-th column;

8 N-——;

10°  if (det W > 0) k + +;
1 i—-—}

12° if (n == k) return true;

13° return false;

By applying Algorithm 4.1, we check in a polynomial time O(n®)
wheather or not ¢ = ga : Z™ — Z is P-critical or a bigraph A € UBigr,
is P-critical.

Algorithm 4.2 (IsPcrITICAL). Input: An integer n > 2 and the
non-symmetric Gram matrix Gy, € M,,(Z) of a unit form ¢ : Z" — Z.
Output: True if ¢ is P-critical, false otherwise.

1° éq = éq + éff

2° if (SYLVESTERCRITERION(@q,n)::false){

3° for(i=1;i<=n; ++i){

4° L = the matrix obtained from éq by removing i-th row and i-th column;

5°  if(SYLVESTERCRITERION(L,n — 1)==false)

6° return false;}

7° return true; }

8° else return false;

Now, we present three algorithms that we need in our implementation
of the orthogonal group
O(n,Z) = S,, x CY,
for a given n > 2, see (2.9) and [36, Lemma 2.3]. First (see Algorithm 4.3),
we present an implementation of the symmetric group S,, by applying an
algorithm of Johnson [13] and Trotter [41] based on the idea of adjacent
transpositions; originally it generates the symmetric group S,,. A simple

modification of the algorithm constructs the subgroup S, C O(n,Z) of
O(n,Z) as follows.

Algorithm 4.3 (GENERETEPERMUTATION). Input: An integer
n > 2.
Output: The group S,, C O(n,Z) C M, (Z), see (2.9).
1° for(i = 13 <= nyi + +){
2°  Pli] =1i; //P is a vector of integers



262 P-CRITICAL EDGE-BIPARTITE GRAPHS

3° Cli]=1;//C is a vector of integers

4°  PRJ[i] = true;} //PR is a vector of booleans
5° Cln] = 0;

6° for(t=1;t <=mn; ++1)

7°  MIt, P[t]] = 1; //M is a matrix of integers
8° PMatrix.Add(M); //PMatrix is a list of matrices
9°i=1

10° while(i < n){

11° i=1;2=0;

12°  while(Cli] ==n —i+ 1){

13° PR[i|=(PRJi]==true)?false:true;

14°  Cli] = 1;

15°  if(PR[i]) « + +;

16° i+ +;}

17° if (i < n){

18° if (PR[i]) k = C[i] + ;

19° else k=n—i+1—-C[i] +x;

20° Plk] <> Plk + 1]

21° for(t=1;t <=mn; ++1t)

20 MLP[]) =

23° PMatrix.Add(M);

245 Ol =l + 13}

2° )

26° return PMatrix;

Now we present an implementation of the finite group 6’5 C O(n,7)
defined in Section 2 (see (2.9)), which uses the Gray binary generation (see
[15]). We modify the Gray algorithm by interchanging all zeros with —1.
Obviously, the modified algorithm constructs the group (AJ’QI C O(n,Z) C
M, (Z).

Algorithm 4.4 (GENERETESIGNMATRICES). Input: An integer n > 2.
Output: The group C45 C O(n,Z) C M,,(Z), see (2.9).
1°for(t=1;t <=mn; ++1)

22 Bli]=-1
3i=0p=1
4° do{

5° for(t=1;t <=n; ++t){

6° C[t — 1] = BJt]; //C is a vector of integers

7° MIt,t] = C[t — 1];} //M is a matrix of integers
8°  SMatrix.Add(M); //SMatrix is a list of matrices

9° it
10° j =4
1° p=1

12°  while(j%2 == 0){
13° i=3/%
14° p++;}
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152 if (p <n){

16°  if (Blp == ~1) Bl = 11
17° else Blp] = —1;}

18° Jwhile(p < n);

19° return SMatrix;

[t

Finally, by applying Algorithm 4.3 and Algorithm 4.4, we define an
algorithm constructing the orthogonal group O(n,Z) = S,, x C%, for a
given integer n > 2.

Algorithm 4.5 (ORTHOGONALGROUP). Input: An integer n > 2
and a list of permutation matrices PMatrix.
Output: The matrices B € O(n, Z).

1° SMatrix=GENERETESIGNMATRICES(n);
2° foreach(int[,] P in PMatrix){

3° foreach(int[,] S in SMatrix){

4° W =P=xSeMu(Z);

5° All.Add(W);} } //All is a list of matrices

6° return All;

Hint. We use the fact that every matrix B € O(n,Z) = S, x 62} can be
uniquely represented as the product B = P - S, where P =7 € S, and
S =2 e CY, sce [36, Lemma 2.3] and Sections 2-3. A list of permutation
matrices PMatrix is a subset of the set of all permutation matrices §n

With bigraph A € UBigr, we associate the graph A which is con-
structed from A by replacing all broken edges e- - -e with full edges
o—— o,

We denote by GA=NONSYMMETRICGRAMMATRIXOFGRAPH(GA)
the non-symmetric Gram matrix of the graph A constructed from the
bigraph A with non-symmetric Gram matrix G A-

We denote by G4 =SYMMETRICGRAMMATRIXOFGRAPH(GA)
the duplicate symmetric Gram matrix 2G5 of the graph A constructed
from the bigraph A with the duplicate symmetric Gram matrix 2Ga.

The following algorithm checks, if two unit forms q1, ¢z : Z" — Z
lie in the same O(n,Z)-orbit under the action (2.9), or two bigraphs
A, A" € UBigr, lie in the same O(n, Z)-orbit under the action (2.1). Here

(Algorithm 4.6 and Algorithm 4.7) we use the fact that if two bigraphs
A, A" € UBigry, lie in the same O(n,Z)-orbit then the associated graphs
A and A are isomorphic.
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Algorithm 4.6 (COMPAREORBITS). Input: An integer n > 2,
the non-symmetric Gram matrices éql, éqz € M, (Z) of unit forms
q1,q2 : " — 7, and the orthogonal group O(n,Z) C M, (Z) (4.5).

Output: True if g1, g2 lie in the same O(n, Z)-orbit, false otherwise.

1° é‘h = é"ll + szq; @qz = éq2 + éfzg; N N

2° if(the numbers of zero coefficients in the matrices G4, and G4, are not equal)

3°  return false;

4° else{

5° éql =Gq + G, é\qz = Gy, + G5 let PMatrix be an empty list;

6° a;lISYMMETRICGRAMl\/IATRIXOFGRAPH(é\ql);
@;2:SYMMETRICGRAMMATRIXOFGRAPH(@D);

7°  Find all permutation matrices P € M, (Z) such that P'" - @;l P = 622 and
add P to PMatrix;

8° if (PMatrix is empty) return false;

9°  Orthogonal=ORTHOGONALGROUP(n, PMatrix);

6° foreach([,] B in Orthogonal)

i if(BtT 'éth ‘B == éqz)

8° return true;}

9° return false;

Algorithm 4.7 (SETOFORBITREPRESENTATIVES). Input: An
integer n > 2, a finite non-empty subset H C U(Z",7Z) of P-critical (or pos-
itive) quadratic forms, and the orthogonal group O(n,Z) C M,,(Z) (4.5).

~

Output: A list AMatrix of non-symmetric Gram matrices G of
pairwise different representatives g : Z"™ — Z of all O(n, Z)-orbits O(n, Z)*
q, with G, € H.

1° Let AMatrix, AMatrix®, SMatrix be the empty lists;

2° Add first a matrix H[0] from H to AMatrix;
H*[0]=NONSYMMETRICGRAMMATRIXOFGRAPH(HI0]);
add H*[0] to AMatrix®;

3° SMatrix:=GENERETEPERMUTATION(n);

4° for(i =1; ¢ < |H[; i + +){

5° Let WMatrix® be the list of matrices such that P”-@’A -P,where P €SMatrix,
GA=SYMMETRICGRAMMATRIXOFGRAPH(H[]) and H[i] = H[i] + H[i]"";

6°  For each matrix A®* € AMatrix® do steps 7° — 11°;

7°  For each matrix W* e WMatrix® do {

8° Let PMatrix be an empty list of matrices;

9° if (We = A®, where A* = A® + A®"") add permutation matrix P
(corresponding to W*) to PMatrix; }

10°  if (PMatrix is not empty){

e Ort=0ORTHOGONALGROUP(n, PMatrix);

e Generate a list W; of matrices such that B'" - f[[z} - B, where B € Ort and
Hi] = Hi] + H[i]'";

e Check if there exists a matrix in W; which is equal to matrix A=A+ A" (we
verify this equality for (duplicate) symmetric Gram matrices coding bigraphs) and if
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$0, go to Step 4°; if such matrix does not exist go to Step 6° (i.e., repeat Steps 7° — 11°
for another matrix from AMatrix®); }

11°  else (i.e, PMatrix is empty) go to Step 6°;

12° If in Steps 7° — 11° no orthogonal matrix has been found to witness that
H{[i] is in the same orbit as one of the matrices in AMatrix, then add H|[i] to AMatrix
and add H°®[i] to AMatrix®, where

H*®[i{]J=NONSYMMETRICGRAMMATRIXOFGRAPH(Hi]);
13}
13° return AMatrix;

Algorithm 4.8 (PcriTICALFORMSFROMPOSITIVEFORM). In-
put: An integer n > 2, the non-symmetric Gram matrix ép of a positive
form p : Z" —— Z, and the list W), of all sincere roots of p.

Output: A list of P-critical forms ¢ : Z"*' —— 7Z constructed from

p by applying (3.3).

1° Gy =Gy + G5
2° for(i = 1i <=n+ 1;4++1)
3° for(j = L;j <= n+ Li++5){
£ (i > 1 && > 1)

i Q[Za]}:GP[Z_la]_l]v

6°  else {

7° if((i >1&& j==1)||(i==1&& j > 1))
8 Qli, j] = 0;

9° else Qi j] = 1}

10° }

11° foreach(int[] w in Wp){

12° W= —-w- ép;
13°  for(i =1y <=n+ 1;+ +1)
14° if(i > 1)

15° Q[1,i] = w[i — 1]; //Q is a matrix of integers
16° if(IsPcRrRITICAL(Q,n + 1)==1)
17° AlLAdAA(Q); } //All is a list of matrices

18° return All;

Algorithm 4.9 (ALLPCRITICALFORMS). Input: An integer n > 3
and a list GP of non-symmetric Gram matrices ép of pairwise different
representatives p : Z"" —— 7Z of all O(n,Z)-orbits in posit(Z",Z).
Output: A list of non-symmetric Gram matrices éq of pairwise

different representatives ¢ : Z"t! —— 7Z of all O(n+1, Z)-orbits in the set
P-crit(Z"1, 7).

1° foreach(int[,] P in GP){

2° M=PcRITICALFORMSFROMPOSITIVEFORM (P,n)

3° /éll.Add(M); }//All is a list of matrices

4° All=list of pairwise different representatives of all O(n+1,Z)-orbits in

P-crit(Z""', Z) selected from All by apllying Algorithm 4.6;
5° return Kﬁ;
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Remark 4.10. (a) It follows from Proposition 2.6, (2.13), and Construc-
tion 3.7 that, in view of the identification

Go : UBigr, 1 -1 Uz 1,7),

see (2.7), Algorithms 4.6-4.9 apply to edge-bipartite graphs in UBigr,
and construct all P-critical bigraphs A € UBigry,.

(b) The complexity of Algorithms 4.8 is dominated by the cardinality
|W,| of the set W), of all sincere roots of a given p € posit(Z",Z); more
precisely, it is bounded by O(|]W,| * n%), where the consecutive values
of |Wp| can be computed by the restrictively counting algorithm [36,
Algorithm 4.2].

(c) The complexity of Algorithm 4.6 is O(|O(n,Z)|).

(d) The complexity of Algorithms 4.7 and 4.9 is also dominated by
0(n, Z)|.

5. A classification and tables of computing results

In this section we present a classification of P-critical unit forms in
U(Z™,Z) (and hence P-critical bigraphs A € UBigr,), for n < 10. We
get it by applying the package of algortithms of the previous section. By
symbolic computations in Maple and numerical computations in C#, we
compute P-critical unit forms and connected positive unit forms, together
with their Coxeter polynomials and the O(n,Z)-orbits, for n < 10. The
results are presented in tables 5.6-5.9.

We recall from [36, Section 2], that the Coxeter polynomial of
q: 7" — 7, is the characteristic polynomial
coxy(t) = det(t - E — Coxg,) € Z][t]
of the Coxeter(-Gram) matrix
Coxg = —éq . éq_tr,

where éq is the Gram matrix (2.5), see also [35]. In general, Cox, depends
on the numbering of the indeterminates in the form ¢(z1,...,x,). In our
classification of P-critical forms we use the Coxeter polynomials of the
Euler quadratic form ga : Z" ! — Z, with n 4+ 1 = |Ag|, of the following
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simply-laced Euclidean graphs (extended Dynkin diagrams)

Ap T3 n
2 n+1
~ . .
Dy, : ‘ |
% — . . o (n>4);
~ 1 3 T) n—2 n—1 n (51)
g - !
o“——o——o—o——;
= e
E'y : |
oo oo “——eo—o3
~ o
Eg : \
e

Note that A is the Kronecker graph e

We recall that the Euler quadratic form ga : Z2° — Z of a graph
A = (Ap, A1), with the set of vertices Ay and the set of edges Ay, is
defined by the formula

qA(x) = ZzEAO :C + Zz<] zgw iy,

where z = (2;)jen, € Z2° = Z" n+1=|A|, and dA —| A1 (i, 05)],
and |Aq(e;, ;) is the number of edges between the Vertlces o, oj in A.

If A is any of the diagrams ID)n, n >4, E6, E7, and Eg then the Coxeter
polynomial Fa(t) := coxg, (t) of A has the form

gl pgn _gn=1l _yn=2 _ 43 _ 42 4L 4 1 1 for A =Dy,

T t0— 2t — 23 4t 41 for A=F
Faty={ ' T2 A TR0 (52)
BtT — 5 — 2t — B4t 4 1, for A = Er,

A L L e A for A = Eg.

Note that, if A = Dy or A = ng,, we have

O+ tt =23 22 4t 41, for n = 4,

, 5.3
05—ttt —23 2+ t+1, forn=>5. (5:3)

FA(t) = {

If n>1and A = A, then the Coxeter polynomial coxg, (t) of A'is of
one of the forms Fg)(t), Ff) t),..., Fém")(t), where

5 if n is even,
mp =14

)
ol if n4 1 is even,
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FO @) =m 1 —n=i+1 i 11 = (t—1)2-0,(£)-0,_j41(t), for j=1,...,mp,
and v, (t) = ML 4mm2 4 pm=3 4 42 4t 41, see [20], [34], and [38].

In particular, if n + 1 is even and j = m,, = L, then ¢" =71 = ¢J
and Fg)(t) has the form

(mn) (24%) n+1 ntl
FAW () =FA 2 (t)=t" =2t 2 4+ 1.
T
_ @y 2

FA(t) = FN (t) =t° =2t + 1.

Now we are able to present a complete classification of P-critical unit
forms (and P-critical bigraphs A € UBigr,,), their Coxeter polynomials,
and the O(n,Z)-orbits in the set P-crit, := P-crit(Z",Z), for n < 10.
We get it as a result of computer computation.

e is the Kronecker graph, we have n = 1, m,, = 2 and

Theorem 5.4. (a) Ifn <9 then, up to the action of the groups O(n,Z)
and O(n+1,7Z), the number of elements in the set Z, (Algorithm 3.8, Step
3°) and the number of O(n+1,Z)-orbits in P-crit(Z"*1,Z) are as shown
in the following table

L~ [2[3[4[5]6[ 7] 8 [9]
12| 1[2[4]10[72]639] 7980 [ 95
|P-crit? | 1[1]3]5 [24]152]1730] 17

where P-crit) | is the finite set of pairwise different representatives of
all O(n + 1,Z)-orbits in P-crit(Z"1 7).

(b) If n = 3,4,5 then, up to the action of O(n,Z), the number of
P-critical unit forms q : Z" —— Z and the number of P-critical bigraphs
A € Bigr, equals 1, 1, 3, respectively, and the forms q = qa are listed
in [21, Corollary 4.10], together with their Coxeter polynomials and a
generator h of Ker ¢ = Ker ga.

(¢) If n==6 orn =717, the list of P-critical unit forms q : 2" — 7
and P-critical bigraphs A € UBigr,, up to the action of O(n,Z), is
presented in Table 5.7 and Table 5.9, respectively, together with their
Cozeter polynomials.

(d) Forn =8,9,10, a list of P-critical unit forms q : Z" —— 7, up
to the action of O(n,Z), is available on request from the authors (see [23]).

Outline of proof. (a) The table is obtained by computer computation
using implementations of Algorithm 4.8 and Algorithm 4.9 in Maple
and C#.
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(b) The result for n = 3 and n = 4 can be obtained by simple hand
calculation using Proposition 2.14 and Theorem 3.1. For this purpose we
need to compute the sets Zo and Z3. We do it directly by using Maple
and Sylvester’s criterion (Algorithm 4.1), see also [21, Algorithm 4.5].

The statements (¢) and (d) are obtained by computer calculations
using our package of algorithms presented in Section 4. O

The following tables illustrate the algorithmic construction
ind : Z, — P-crit,,;; of Theorem 3.1, in cases n = 6 and n = 7.
By applying our package of algorithms of Section 4, we also construct a
complete set of representatives of the O(n+1,Z)-orbits in P-crit(Z",Z)
and of P-critical bigraphs in UBigr,,, for n = 6 and n = 7. In view of the
identification ge : UBigry, u (Z",Z) (2.7), we present the classification
results for the unit forms ¢ : Z'™ — Z only.

Throughout, we set P-crit,, := P-crit(Z",7) and we denote by

SRy ={w=(w1,...,w,) € Z"; p(w) =landw; #0,...,w, # 0}

the set of sincere roots w of a positive form p : Z" — Z, by h € Z"*+! a
sincere vector such that Ker ¢ = Z-h, and by cox,(t) = det(t- E— Cox,) €
Z[t] the Coxeter polynomial of ¢ : Z"*1 — Z.

We recall from Sections 3 and 4 the following notations:

e posit) C posit(Z",7Z) is a complete finite set of pairwise different
representatives p : Z" — Z of all O(n, Z)-orbits in posit(Z",Z), and

e P-crit),; C P-crit(Z""!,Z) is a complete finite set of pairwise
different representatives of all O(n+1,Z)-orbits in P-crit(Z"*1,7Z).

e In the last column of each of the tables, we use the notation
introduced in (5.2) for the Coxeter polynomials Fa(t) (5.2), with A €
{Iﬁ)n,ﬁﬁ,i@’hﬁg}, and Fg)(t), o FOmIA(L), with A = A, of the Euler
form g, where the vertices of the extended Dynkin diagram A are enumer-
ated as in (5.1). The simply-laced Euclidean diagram DA associated with
any P-critical bigraph A (see Definition 5.5) and with its unit quadratic
form ga can be determined by applying the inflation algorithm A — t_ A
described in [16, Algorithm 5.9] and [38, Theorem 3.7]. Following [38], we
introduce the following definition.

Definition 5.5. The Euclidean type (or the E-type, in short) of a P-
critical bigraph A € UBigry,4+1 is a unique simply-laced Euclidean diagram
DA € {An,n > 1, ﬁ)m,m >4, E(;,E%ﬁfig}
such that the symmetric Gram matriz Ga of A is Z-congruent with the

symmetric Gram matriz Gpa of the diagram DA.
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We recall from Theorem 2.8 that any loop-free P-critical bigraph A
in UBigry,4+1 is principal and connected. Then, by [38, Section 3], the
existence and the uniqueness of a Euclidean diagram DA is a consequence
of [16, Section 5] and [38, Section 3.

A complete list of the Coxeter polynomials of P-critical bigraphs A in
UBigry+1, with at most 10 vertices, is presented in Table 5.12 and 5.13
at the end of this section.

TABLE 5.6. A list of P-critical unit forms constructed by ind:

Z5 —— P-critg, for n =6

p € posit; we SR,

ind(p, w)

cox,(t) and E-type

pi(x) = Zlezf - | w=(1,1,1,1,1)
T12T2 — 2123 — 104 +
r125 + w223 + w204 +
TIT4 — T4T5

qi(z) = Zil a? -
TiT3 —T1T4 — T2TZ —
xowy — w2x5 + T2x6 +
z324 + 2375 + T4T5 —
T5T6

6 — ¢t — 2 41 = P,
As
E-type =Ds5

5 A
pa(@) = >0 af — | w=(1,1,1,11)
r1x2 —x1T3 — T1T4 +
r125 + 2224 + X324

6
a2(2) = Y a4

z1w5 +T1Te — T2T3 —
xowy — w2x5 + T2x6 +
r3%5 + T4T5

6 — it — 2 41 = P,
As
E-type =Ds

5 .-
ps(Z):zizlw?— wy = (1,1,1,1, 1)
T1T2 —T1T3 — T1T4 +

Towy + X205 + TZTY

6 2
q3(z) = § e %0 T
z1z2 + 123 + 2125 +
T1TE — T2TZ — T2T4 —
T2w5 + 3%5 + x3x6 +
r4T5

-5 —ty1=rD@),
As

E-type =Ds5

wy = (1,2,1,1,1)

qa(z) = 25—1 x? —
Ty — T3 — ToTy —
z2w5 + x3w5 + 376 +
T4

t0 4% —tt — 23 — 42 4
t+1= P~ (t), E-
D5

type =Ds

5 N
pa(z) = Zi:l @? — | w=(1,1,1,1,1)
T1T2 — w123 —x1T4 +
T225 + T3T4 — T4T5

6
as(2) = Y o @} -

122 + 2125 —x2L3 —
T2x4 — w225 + 23T6 +
TAT5 — THTE

6 —¢5 _t41=rD@),
As

E-type =Ds

5 N
ps(@) =y 0 @ | w=(1,1,1,1,1)

i=1

6
q6(z) = 21:1 xF —

6213 41 =083 @),

T1T2 —T1T3 — T2T4 + T1T5 +T1T6 — T2T3 — ~ A5
T3T5 T2T4 — TIT5 + T4T6 E-type =As

5 N 6
pole) =y 0 e | w=2L111) | ar(@) = Y a¥ - | 847 — et 2% 2y

e =1 t41=F (t E
T1T2 —T1T3 — T1T4 + T1T4 —T1T5 — T2TZ — +1= oy (t), -
T1T5 + T3T4 Toxy — ToTH + ToTE + 5

T4 type =Ds

pr(x) = wy = (1,1,1,1,1)

5 2
T, — 1T —
>y @ —mie

T1T3 — T1T4 + T2T5

6 2
gs(@) = >0 @% +
T1T2 — T1T4 — T1T5 +
T1TE — TQT3 — T2T4 —

T2x5 + T3%6

0 4% — ¢t — 23 — 2 e 4
1= P~ (t), E-type =D5
Dy

wp = (2,1,1,1,1)

6 2
q9(z) = E i1 % T
z1w2 +T123 + 2126 —
T2T3 — T2T4 — T2T5 +
z3T6

6 — ¢t — 4241 =R @),
As

E-type =Ds

ws = (2,2,1,1,1)

6 2
a10(x) = Zq‘,:l T =

T1T3 — T2T3 — XT2T4 —
Tox5 + T3TE

10445 4t 23 2 p ey
1= P~ (t), B-type =Dj
Dy
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TABLE 5.7. A set of representatives of O(n,Z)-orbits in P-crit(Z",Z),

forn==6
- e
H (p,w) \ ind(p,w) € O(6,Z)-Orb(q) C P-critg \ coxgy(t), E-type H
6
(ps, w) a6 (x) =Zi71 @? — @125 + 2126 — wow3 — vaws —wzws + | 0 — 265 41 = E®) (1),
T4T6 - " As
E-type =As
6 4 2 _ (2
(p1, w) q1(w)=Z§ 11?—1’11‘3—:61964—1‘213—962x4 -t —t +1*FZS (t),
1= v A
(p3,w1) —xoxs + xox6 + 2324 + T3T5 + T4T5 — THTE B-type =D
(p2, w) 6 O 20— gD
qﬂz):zv 22 + x5 + z126 — T2T3 — T224 +1=E"(1),
(pa,w) i=1 "% B As
( : —z2x5 + x2%6 + T3%5 + T4T5 E-type =Ds
T, W1
6
(p7,w3) q10(x) =Zi=1 x? — w133 — waw3 — wowy — waws +agwe | t0+t7 — 1t 2% 12 pey
1 = F~ (t), E-type =Ds
D5
(p3, w2) o (6 45 A o3 2 4y
(p6, w) qa(z) = Zi:l r? — T1XT3 — TQT3 — T2T4 — T2T5 + - - - ~+
Ps. +x3x5 + 326 + T42T5 +1= FES (t),E-type =Ds5
(p7, w2)

Hint. The unit forms p; and the vectors w and w; used in 5.7 are the
same as presented in 5.6.
It follows that the surjective correspondence

inds ., : O(5,Z)-Orb(25) ———— O(6,Z)-Orb(P-crit(Z°,Z))

(3.3) induced by the map (p,w) — ind ¢, (p, w) = @p,s.w,.e,, is DOt injective,
see also Remark 5.10 at the end of this section.

TABLE 5.8. P-critical unit forms constructed by ind: Z5 —— P-crity,

forn=7

H p € positg

‘wESRp

| ¢ =ind(p, w) € P-crity

G 2

xr) = .y —

p1(x) E ie1 Ti
T1T2 — T1T3 — T1T4 —
r1x5 + T1T6 + T2x3 +
r2x4 + 225 + 324 +

T3T5+T4T5 —T4T6 — L5L6

wy = (1,1,1,1,1,2)

7 2
q1(z) = g i1 Ti tEiTT — @273 — @owy —
T2x5 — T2T6 + T2x7 + T3T4 +x3T5 +T3T6 +
r4z5 + 426 + T5T6 — THTT — TELT

wp = (1,1,1,1,1,1)

7
q2(z) = E i1 22 — @iz + @125 + 2106 —
T1T7 — T2TZ — T2T4 — T2T5 — T2T6 + T2w7 +
r3T4 +x3T5 +T3T6 + T4T5 + T4T6 + T5T6 —
T5T7 — TETT
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TABLE 5.8. P-critical unit forms
forn=7

constructed by ind: Z5 —— P-crit~,

| p € positg | we SR, | ¢ = ind(p, w) € P-crity |

p3(z) =

26 :
T, —T1Tx2 —T1IT3 —
joq i TT1T2 —T1T3

T1T4 — T1T5 + T1T6 +
T2x5 — T2T6 + 324 +
T3T5 + T4T5 — T5T6

wy = (1,1,1,1,2,1)

7 2
qa(z) = E joq Ti T ®1T6 — w233 — Tows —
T2T5 — T2TE + T2T7 + TI3TE — TIT7 + TAT5 +
T4Te + T5L6 — TETT

we = (1,1,1,1,1,1)

7 2
g5 (x) = E iy Ti TEIT2 — Ty —T1Tg —
T1T5 —T1TE+T1TT —T2T3 — T2T4 — T2T5 —
Toxe + X227 +T3T6 — T3T7 + T4T5 + T4T6 +
T5TE6 — TETT

wy =(2,1,1,1,1,1)

} :7 2
q6(x) = i—1 T
ToxT5 — X2TE + XT2T7 +XT3TE — TIT7 + T4T5 +
T4xe + T5T6 — TELT

—ZT1xT2 — T2T3 — T2T4 —

6 2
pa(z) = Zq‘,:l Ty =

T1w2 — TITZ — T1T4
r1w5 + X225 + T2x6
r3w4 + T3T5 — T3TE
TAT5 — T4Te

+4 |

w=(1,1,1,1,1,1)

27 2
q7(x) = i—1 T
T2T4 — T2T5 — T2XE + TITE + TIXT7T + T4T5 +
T4T6 — T4T7 + T5TE — THITT

— 13 — T1T7 — T2X3 —

ps(e) =y . a%—
Ty — T TZ — T1TY —
z125 + 2224 + 2225 +
Toxg+T3T4 +xT3T5+T4TH

7 2
q8(z) = Zl LT T Fwiwg +2ies +

T1TE — L2L3 — T2T4 — T2x5 — T2x6 + T35 +
T3T6 + T3T7 + T4T5 + T4T6 + T5T6

7 2
q9(x) = 5 ioq Ti T %1T4 — T2T3 — T2T4 —
Tox5 —xT2xT6 + T3T5 + T3TE + T3T7 + TaTH +
T4T6 + T5TE

pe(w) =

>
i=1

124 — 2125 + 2126 +
T2x5 +x3%4 +x3%5+T4T5

acf —x1xy —x1T3 —

=(1,1,1,1,1

=

w1

7
q10(z) = 5 i1 2? faywg — iy — 175 +
T1T7 — T2TZ — T2T4 — T2T5 — T2T6 + T2T7 +
T3T6 + T4T5 + T4T6 + T5T6

PPN 7 2
w2 =(2,1,1,1,1,1) | qui(z) = E sy i Tz FEiTs +riwe —
T2x3 — T2T4 — T2T5 — T2T6 + T2x7 + T3T6 +
r4xs5 + T4xe + T5T6
A A 7 2
w3 = (2,2,1,1,1,1) qi2(z) = E jop Ti T T1T3 —T2T3 — T2T4 —
roxs — x2we +T2®7 + w3%6 + TaTs5 + Tawe +
T5T6
A A d 2
w; = (1,1,1,1,1,1) q13(z) = E 7,713%+:c1av371'1w47av1:c5+
) = i=
P7(6) T1T7 — TaT3 — T2T4 — ToT5 — T2TE + T3TE +
E ) 193?—1112—1113— x3x7 + T4x5 + TaxTe + T5T6
i=1"t
T1T4 — T1T5 + T2T5 + - A 2 B 7 2
Towg+Tawa +T3TE +TATS wo = (1,2,1,1,2,1) qra(z) = E i1 z; +T1T6 — T2T3 — T2T4 —
xTows5 — w2x6 + T3w6 + T3T7 + 4T + TaT6 +
T5T6
A oA 7 2
wg = (1,2,1,1,1,1) | qi5(z) = E sy Ti TTlT2 —@1E3 —wiwg —

T1T5 — T1TE — T2L3 — L2T4 — T2T5 — T2T6 +
r3xe + 327 + T4w5 + T4T6 + T5T6

wy =(2,2,1,1,1,1)

7 2
q16(x) = E joq Ti T E1%2 — @2x3 — TaLg —
T2x5 — T2T6 + T3TE + T3T7 + T4T5 + T4T6 +
T5T6

6 2
x = X’ —
ps(x) g imq T
T1T2 — TIT3 — TIT4 —
ziws + wz2ms + w3wy +
325 + 23%6 + Taxs

w=(1,1,1,1,1,1)

7 2
q17(z) = E jop Ti —T1T5 @127 — X223 —
LT2T4 — T2T5 — T2T6 + T3L6 + T4x5 +T4T6 +
zax7 + T5TE
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TABLE 5.8. P-critical unit forms constructed by ind: Zg —— P-crity,
forn=717

H p € positg \ we SR, \ q = ind(p, w) € P-crity H

— 2
po(x) = =11‘i -
T1T2 — T1TZ — T1T4 —
r1xT5 + T2we + T3T4 +

T3T5 + T4T5 — T5T6

w=(1,1,1,1,1,1)

7 2
q18(z) = E ie1 %
T2T4 — T2XT5 — T2TE + T3T7 +T4T5 + T4T6 +
T5Te — TETT

—Z1T4 —T1T5 — L2L3 —

pio(z) =

>
=1
riT4 — 2125 + 176 +
T2T5 +T3T4 —T3T6+T4TH

w?—xlxz—wlxg—

wyp = (1,1,1,1,1,1)

7
q19(z) = E i1 2? —xywp + 104 + 2125 +
T1TE — T2T3 — T2T4 — T2T5 — T2TG + T2T7 +
r3T6 + T4T5 — T4T7 + T5T6

wp = (1,1,1,2,1,1)

7 2
q20(z) = E ioq TP TE1TH — XT3 — TTy —
T2T5 — 2L + T2x7 +T3T6 + T4T5 — T4TT +
T5T6

6 2
p11(x) E ie1 Ti
r1Ty — T1T3 — T1T4 —
ziT5 + xT2ws + T2TE +

r3x4 + T4x5 + T5T6

w=(1,1,1,1,1,1)

7 2
q21 () = E ioq %3 123 + 2125 — 223 —
T2T4 — T2L5 — T2T6 + L3T6 + T3T7 +T4T5 +
T5x6 + TeTT

6 2
pi2(z) = Ei—lzi -
T1T2 — T1T3 — T1T4 —
r1xT5 + T2w5 + T2Te +

T3T4 + TAT5 — T4T6

w=(1,1,1,1,1,1)

7 2
q22(z) = E ie1 %
T2T4 — T2L5 — T2T6 + L3T6 + T3L7 + 425 +
T5TE — T5TT7

— 13 —T1TE — L2L3 —

p13(z) =

>
=1
riT4 + T12T6 — T2T5 —
T2T6 + T304 +x3T5+T4T5

x?—a:lxz—a:lacg—

7

q23(z) = E P I?+$110*I213*2214*
T2x5 +T2x7 — X3Te — T3T7 + 45 + T4T6 +
T5T6

7 2
q24(z) = E iy T tEies —wiwa —wiws —
T1TE — T2T3 — T2T4 — T2T5 + T2L7 — TITE —
r3x7 + a5 + T4T6 + T5T6

6 2 PPN 7
pia(z) = E i71m$ - | w=(1,1,1,2,1,1) q25 () = E o1 2?2 —zywg +xyas — ToTZ —
T1T2 — T1TZ3 — T1T4 — T2T4 — T2L5 — T2T6 + L3T6 + T4T5 +T5Z6 +
riT5 + x225 + T3T4 + T5T7
r4T5 + T4T6

6 2 ) 7 2
pis(z) = E e %~ | w=@1L1LL1L1) q26(z) = E i1 Ti T ®1T3 +T1T6 — 2273 —
T1T2 — T1TZ3 — T1T4 + T2T4 — T2T5 + T2L7 — TITG + T4T5 + TaTe +
r1Te — ZT2x5 + T3T4 + T5T6

r3T5 + T425

6 2
pi7(z) = E ie1 T T
T1T2 — TIT3 — L1T4 —
T125+ 2325 +x3%6 + 45

wy = (1,1,1,1,1,1)

7
q28(z) = E o1 2?2 —xywg + 104 + 2126 +
T1T7 —L2L3 — T2T4 — L2T5 — L2T6 + T4T6 +
T4T7 + T5T6

we = (1,1,2,1,1,1)

7 2
q29(z) = g iy T Tz —@iwy —wiwa —
T2T3 — TL2L4 — T2T5 — T2L6 + T4x6 + 2427 +
T5TE

wy = (2,1,2,1,1,1)

7 2
a30(z) = § T — Tzt eizs faiws -
T2T3 — T2T4 — T2T5 — T2T6 + T4T6 + T4TT +

wy =(2,1,2,2,1,1)

7 2
q31(z) = E T T1T5 — T2T3 — TaT4 —
T2T5 — T2T6 + T4Te + T4T7 + T5T6

6
p2o(a) = D a7 -

T1T2 — T1TZ3 — T1T4 +
T1T6 —T2T5 +T3T4+T4T5

w=(1,1,1,1,1,1)

7
a36(z) = g i1 2? + zya5 oy — 0wy —
r2r4 — w225 + 227 — w3T6 + 425 + T5%6
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TABLE 5.8. P-critical unit forms constructed by ind: Zg — P-crity,
forn=717

| p € positg | we SR, | ¢ = ind(p, w) € P-crity |

~ ~ 7 2
(@) Zs 2 wi = (1,1,1,1,1,1) | q37(z) = E i1 Ti — @@zt @iy + 21T +
xr) = Tt — =
p21 i=1 * T1T7 — T2T3 — T2T4 — T2T5 — TITE + TIT7 +
T1T2 — T1T3 — T1T4 — T4x5 + TH5T6
Tox5 + X206 +T3T4 +TaT5 =
211 2
wz =(1,2,1,1,1,1) | g3s(x) = E jop Ti — 123 175 + 2176 —
LT2T3 — T2T4 — T2T5 — T3L6 + T3T7 +T4T5 +
T5TE
A A 7 2
w3 = (1,2,1,1,2,1) | q3o(z) = § iy Ti T T1T6 — T2T3 — T2T4 =
T2T5 — T3T6 + T3T7 + T4T5 + T5T6
A A 7 2
@) Ze 2 wy =(1,1,1,1,1,1) | qao(z) = E jop Ti — T2 FT1Te @15 +
z) = s — =
p22 i=1 " TIT7 — T2XT3 — T2L4 — T2T5 — T3TE + T4T5 +
T1T2 — T1T3 — T1T4 — Tax7 + THTE

T2x5 +x3%4 +x3%6+L4T5 =
wo = (1,1,2,1,1,1) qa1(z) = E i1 1?71114712137z2147
Toxs — T3Te + T4T5 + T4TT7 + T5T6

N 7 2
@) ZG 5 wp = (1,1,1,1,1,1) qas(z) = E i1 z; +aT1T2 — T1T4 — T1T5 +
xr) = xi — =
p2s i=1 " T1x7 —T2x3 —T2x4 — 225 + 2327 +x4x5 —
T1T2 — T1T3 — 1T + T4T6 — THTE

T2xe+XL3LY —LIL5 —LLT5 =
2 2

wz =(2,1,1,1,1,1) | qaz(z) = E iy i TTiz2 FEEs triwr —

TQT3 — T2L4 — T2T5 + TIL7 + TA4T5 — T4TE —

T5T6

~ 7 2
w3y =(2,2,1,1,1,1) | qaa(x) = E joq Ti T E1%3 — @T2x3 — Taxg —
T2x5 + T3T7 + TAT5 — TAT6 — TH5TE

R 7 5
wy =(1,1,1,1,1,1) | qas5(x) = E jop Ti TE1T2 — 2123 — X124 —
T1T5 +C1T6 + T1TT7 — T2L3 — T2T4 — T2T5 +
T4T5 — T4TE — TELE + TELT

6 2
= > _ R 7 P
p24(2) Zi:l Ti wy = (1,1,1,1,2,1) qae(z) = E . a:f+a71z2711237z1167
T1Ty — T1T3 — T1T4 + =1

TQT3 — T2T4 — T2T TAT5 — T4TE — THET
L3Ts —TILE — TATE +THTG szi 274 25 + 45 476 5%6 +
~ 7 2
wz =(2,1,1,1,1,1) | qar(z) = E g Ti T T1T2 +T1P6 D127 —
LT3 — T2T4 — T2T5 + TAXT5 — T4TE — THTE +
TexT

A 7
wg = (2,1,1,1,2,1) | qas(z) = Zi:l 2 —xywo + w12y + T1TE —

T1TE — T2TZ — TL2T4 — T2T5 + T4T5 — T4TEe —
T5xTE + TEXTT

N 7
ws = (2,1,1,2,2,1) qa9(z) = 27 . I? — T1T5 — TRT3 — TRT4 —

z2x5 + T4T5 — T4TE — T5T6 + TETT

N 7
we = (2,1,2,1,2,1) | gs0(a) =) | @} —wio4 —oswy — 2224 —

T2x5 + T4x5 — T4TE6 — T5Te + TETT

2 P P 7
p2s(z) = z; — | w=(1,1,1,1,1,1) g51(z) = § ) J—wixo+T1T3 —T2T3 —
T1w2 — TITZ — TIT4 — T2T4 — T2T5 — TITE + TITT — T4TT + T526
T2x5+x2xe —x3Te +L4Ts
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TABLE 5.8. P-critical unit forms constructed by ind: Zg —— P-crity,
forn=717

H p € positg

\wESRp

| ¢ =ind(p, w) € P-crity

p27(w) =
6

2imn

T1T4—T1T5+22x6 +T4T5

2
T; —T1T2 —T1TZ —

wy =(2,1,1,1,1,1)

7 2
a53 () = E jop T3 triws —w1ws —wize +
T1T7 — T2T3 — T2T4 — T2T5 — T2TG + TIT7 +
T5T6

we = (2,2,1,1,1,1)

7 2
q54(x) = g i, T Tz —@iey —wiws —
T1TE — T2T3 — T2T4 — T2T5 — T2T6 + T3T7 +
T5T6

wy = (3,2,1,1,1,1)

—x1T2 +T1T4 — T2T3 —

7
a55(x) = Zi: o

T2T4 — T2T5 — T2LE6 + LITT + T5T6

wy =(3,2,2,1,1,1)

7 2
a56(z) = E jop Ti T T1%4 — 22T3 — Tawg —

T2T5 — T2TE + TIT7 + T5T6

6
b = S0t

T1T2 — TITZ — T1T4 —
z1T5 + TaT5 + TATE

w=(2,1,1,1,1,1)

—zi1xe +T1TT —T2T3 —

7
g57(z) = Z z?

T2T4 — T2T5 — T2L6 + T5T6 + T5T7

6 2
p2o(z) = Z%:l Ty =

r1x2 — T1T3 — T1T4 —
r2x5 + 226 + Tax5

w=(2,2,1,1,1,1)

7
ass(@) =) . aF

T2T4 — T2T5 326 + 2327 + T5T6

—T1TH5; —T1TE — T2T3 —

wy = (1,1,1,1,1,1)

7 2
q60(w) = E i, T TEiwe —wws —wiwe +
T1T7 — T2L3 — T2L4 — T2L5 — TITE + T4TT

a 7 2
w2 =(2,1,1,1,1,1) | ge1(z) = E i T T2 T3 Tiws —
p316(“”) = T1x6 +T1T7 — T2T3 — T2T4 — T2T5 — TITE +
X zz—zlmg—mlm;;— TaxT
Zz=1 i -
T1T4 — w205 + T3T6 w3 =(2,1,2,1,1,1) | ge2(z) = E Coz? payag —wyrg —zia6 —
i=1 i
T2T3 — L2T4 — T2L5 — TIL + T4TT
a 7 2
wyg =(2,2,1,1,1,1) | ge3(z) = g ioq T3 —T1%3 H21Ta FT12T —
T2T3 — L2T4 — L2L5 — T3LE + T4TT
a 7 2
ws =(2,2,2,1,1,1) | gea(z) = E iy T tTiwe —wizy —wiwa —
T2L3 — L2T4 — T2L5 — TILE + T4TT
- 7
we = (3,2,2,1,1,1) | ge5(z) = g e @} — w133 + w175 — ToWg —
T2T4 — T2T5 — LILE + T4TT
. 5 7 2
w7 = (3,2,2,2,1,1) | gee(x) = E ioq i TE1TH — T2TZ — TT4 —
T2T5 — L3TE + T4TT
a 7 2
wy =(1,1,1,1,1,1) | ge7(z) = E Lz Frize —ziwg — 125 +
p32(x) = T1T7 — T2T3 — T2T4 — T2TH — TITG + TETT
6 2
s —xyx2 —T1T3 — s 7
Zl=1 i PLE2TELES wz =(2,1,1,1,1,1) | ges(z) = E i a? —xyw + w173 + 12T —
T1T4 — w225 + T5T6 Tax3 — T2T4 — T2T5 — T3TE + TETT
a 7 2
wg =(2,2,1,1,1,1) | geo(z) = E i1 T T T1w3 trize +riwy —
LT2XT3 — T2L4 — T2T5 — T3 L6 + TETT
a 7 2
wy =(2,2,1,1,2,1) | gro(z) = g jo1 Ti T T1Te — T2T3 — T2m4 —

T2x5 — T3x6 + TETT

6 2
p3z(z) = Z%:lzi -

r1xT2 — T1T3 — T2T4 —
r325 + T426

w=(1,1,1,1,1,1)

qr1(z) = 27 z?

T2T4 — TITH5 — T4TE + T5T7

—x1T6 +T1TT — T2T3 —
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TABLE 5.8. P-critical unit forms constructed by ind: Z5 —— P-crity,

forn=7

H p € positg

\wGSRp

‘ q = ind(p, w) € P-crity

6 2
b = 30 et -

r1T2 — T1T3 — T1T4 —
T1T5 + 2206 +T3T5 +TaT5

w=(1,1,1,1,1,1)

7 2
qr2(z) = E iy Ti trize feier —wowy -
ToT4 — T2T5 — T2TG + TIT7 + Ta4T6 + T5T6

T125 +x3x5 +x4w5+T5T6

6 N 7
pie(z) = E i1 z? — w=(2,1,1,1,1,1) qo7(x) = E i1 z?lezzllezsfzgzgf
T1T2 — T1T3 — T1T4 — Tox4 —w2w5 — 226 +T3T6 +x3T7 + a5 +
r1xr5 + xox5 + T2TE + TELT
T3T4 + T5T6

6 2 4 7 2
pig(z) = E @ - | w=00L1LLL1L) g32(z) = § i Ti T T1T3 —T1TT — X203 —
T1T2 — T1T3 — T1T4 — ToT4 — T2x5 — T2x6 + T4Te + T5T6 + TETT

6 2
p3o(z) = Zizlzi -

riTry — T1T3 — T1T4 —
T2T5 + T2T6 + T3 T4

w=(22,1,1,1,1)

7 2
o) = Y1 o2

T2xT4 — T2T5 — 3T + T3T7 + T4T5

—T1T4 — T1T5 — T2X3 —

6
P = > -

T1Ty — TITZ — T1T4 —
ziws + ziwe + womg +
zows + w3wy4 + w3T5 —
r3w6 + T4T5

7 2
q3(x) = E jop Ti — T1%2 + 2123 — @203 —
LT2T4 — T2T5 — T2TE + T2X7 + T3x5 + 326 +
r4T5 + T4TE — T4TT7 + T5T6

6 2
o) = 0, -

T1T2 — T1T3 — T1T4 —
r1Z5+T1%T6 +T2x5 +T3T4

w; =(2,1,1,1,1,1)

7 2
g33(x) = E sy i TElT2 —@1Es —wiwa —
T1T5 — T1TE — T2L3 — L2T4 — T2T5 — T2L6 +
rox7 + T3T6 + TaTs

wo = (3,1,1,1,1,2)

7 2
q34(x) = g sy Ti TE1TT —@2w3 —w2wa —
T2T5 — w2 + w2x7 + 3T + T4T5

wy = (3,1,1,1,1,1)

—T1T2 —XT1TT7 — T2XT3 —

7 2
g35(z) = 21:1 z3

T2T4 — T2T5 — T2TE + T2X7 + T3T6 + T4T5

6 2
p26(z) = Zi:l Ty =

12 — T1X3 — T1T4 —
T2x5+x3x4+L3T6 —L5T6

w=(1,1,1,1,1,1)

7 2
g52(x) = § i Ti T T1T2FT1Te —w2wy -
T2T4 — T2T5 — T3TE + TAT5 + T4TT — TETT

In the following Table 5.9, the unit forms p;, p;j, and the vectors
and w; are the same as presented in Table 5.8.

TABLE 5.9. A set of representatives of O(n,Z)-orbits in P-crit(Z",Z),

forn="17
| (p,w) [ ind(p,w) € O(7,Z)-Orb(q) C P-crit} | cox,(t) and E-type ||
(P33, w) q71(l'):z::1 @? — 2126+ 7107 — T2T3 — TaT4 — TIT5 — Tt =341 = P (),
TaT6 + T5TT ~ A6
E-type =Ag
(p1,w2) qg(z):ZZzl z?711m2+m1z5+z1167z1177 t77t‘r’7t2+l:F,E,Q)(t)7
Tom3 — TaT4 — T2T5 — T2TG + ToT7 + T3T4 + TIT5 + ~ A6
(ps, w2) T3we + TaT5 + T4Te + T5Te — T5TT — TeTT E-type =Eg
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TABLE 5.9. A set of representatives of O(n,Z)-orbits in P-crit(Z",Z),
form=17

H (p,w) \ ind(p, w) € O(7,Z)-Orb(q) C P-crit; ‘ cox,(t) and E-type H

(p1,w1) 7
! q1(z) = Z’i*l z? +xiT7 — T2T3 — TOT4 — tT 51241 = F,\(,2)(t),
(p5, w1) Toxs — ToTE + T2x7 + T3T4 + T3TH + - A6
T3TE + T4T5 + T4TE + T5TE — T5TT — TETT E-type =Eg
(p7,w3)
(pa, w) T 75241 = EP (1),
q7(z) = Zi:] z; —x1T3 — TITT — T2TZ — _ Ag
(p7,w1) Toxg — x2x5 — x2xe + r3x6 + T3TT + E-type =Eg
T4x5 + T4x6 — T4T7 + T5T6 — T5TT
(P13, w2)
1
(P20, w) 17— t5 —t41=£rD (),
7 A
) qse(ﬂc)=zi:1 22 +xyas +xiar — wowy — . ~ 6
k ype =
(P25, w -type =Eg
T2xT4 — T2T5 + T2T7 — T3T6 + T4T5 + T5T6
(p31,w1)
(P22, w2) - , Tt 311 = E®) (g
q41(w)=z. TP — T1T4 — T2TZ — ~ ’
(p2s, w) i=1 " . Ae
T2xT4 — T2L5 — T3TE + T4x5 + TaxT7 + T5T6 E-type =Dg
(P32, w2)
(p3,w1) 7" =241 = EO) (1),
-\ 2 ~ 46
(p3, w3) q4(z) = Zi=1 z; + 126 — T2T3 — T2T4 — E-type =Eg
zo2x5 — x2x6 + T2x7 + T3x6 — T3TT +
(pe, w2) zgx5 + TATE + TETE — TETT
(P19, w1)
(ps, w) Tt 1= 2 (1),
Ae
7 2 ~
(pg, w) a17(z) = Zi:l i —T1es + w7 — E-type =Dg
T2XT3 — T2T4 — T2T5 — T2Le + T3Te +
(p22,w1) TaT5 + T4TE + T4TT7 + T5T6
(P23, w1)
tT—t°—t = EX)(¢),
(P10, w2) et FA(2)
q20(z) = ~ 6
(P14, w) 7 2 E-type =Eg
Zi:l T — TIT5 — T2T3 — TQT4 — TRT5 —
(p17, w2) Toxe + T2x7 + T3TE + TATE — TATT + T5TE
(P31, w2)
7_ 46 1
(P11, w) =t —t+1= (),
7 2 ~ A6
(P12, w) a21(z) = Zi:l @p —wie3 +@1Ts — E-type =Eg
T2T3 — L2T4 — T2L5 — T2L6 + T3T +
(p17,w1) x3x7 + Tax5 + Tsxe + TETT
(p21,w1)
(p21,ws) 71—t —2+1 = EP 1),
Ag
- ~
(P29, w) qsg(x) = lel 5012 —zi1T6 — T2XZ — E-type =Eg
(p31,ws) T2T4 — T2T5 — T3TE + T3T7 + T4T5 + T5T6
(P31, wa)
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TABLE 5.9. A set of representatives of O(n,Z)-orbits in P-crit(Z",Z),

forn="7
. le
H (p, w) \ ind(p, w) € O(7,Z)-Orb(q) C P-crit? ‘ coxy(t) and E-type H
T _ 4542 _ g2
(P13, w1) th—t7—t +17FX (t),
6
(P15, w) E-type =Eg
q23(x) =

(p21, w2) 7 9
Zi=1 T +T1Te—L2T3 —T2T4 —L2T5+T2T7

(P24, w2) — x3x6 — T3x7 + T4x5 + Taxe + T5T6

(P24, w3)

(P27, w1)

7

(P32, wa) q70(x) :E,_l 2?2 —zyxg—wowy —woxy —xoxs —xzze+ | b0 416 — 5 — ¢t 43
zeT = t24t+1="F (t),

De
E-type =Dg
e 746 _ 5 _ 44 _ .3 _

(P16, w) ‘127(1):Eizlm?_’““_‘“%_“25”3_’”29”4— t2+t > — 1t —t

xox5 — T2Te + T3TE + T3T7 + T4TH5 + TETT t +t+1:F]}; (),
6
E-type =Dg

(P23, w2)

( ) T A —— -

P23, W3 qaa(x) = t2 4t 4 1=F~ (b),

7 )

(p30,w) Zl:l 27— @103 — T3 — LTy —T2T5+TITT -~ D

+x4x5 — wa6 — T5TE E-type =Dg

(P32, w3)

(P18, w) t7—2t% et 43— 242 41,

q32(x) = E-t, =D,

(p26, w) 7 R ype =Dg
Zi:l T;—T1TZ—T]XT7 —T2TZ —T2T4 —T2TH

(P32, w1) — z2w6 + 2476 + T576 + TETT

(p3a, w)

7 N -

(P19, w3) a35 () = e N e
xT1T7 — Tox3 — xToxg — xT2TH — Tox6 1= Flv (t), E-type =Eg
+@2w7 + T3TE + T4 Ee

7 T 6 — 54 — 5.3

(ps, wa) q9(x) = 2_1 @} — zywy — T2T3 — T2TY Pt 2t 2t 4t
—zax5 — T2x6 + T3T5 + T3T6 + T3T7 1= F’]: (t), E-type =Eg

(P24, wa) +xzyzs + 426 + THTE 6

q34(x) = 7.6 o4 _ o3

(P19, w2) 7 5 AT =267 =27+t

21:1 @i T eier - xawy — X214 — X205 1= P~ (t), E-type =Eg
(p27, w3) — x2x6 + T2T7 + T3T6 + T4T5 e
g56(x) = T 46 _opd _ 93
(p27, wa) 7 > t7 10 — 2% — 267 4 £ +
21:1 Ty T T1T4 T X2T3 — T2T4 T T2T5 1= P~ (t), E-type =Eg
(P31, we) — xoxg + T3T7 + TH5TE Ee
7,46 4 3
(p2,w) @) th+t7 =2t -2t +i+
a3(x) = 1= P~ (t), BE-type =Eg
7 ~ )
(6, w1) Z a:?7z112+11z37121371224712z5 Eg
i=1
(P10, w1) — xoxg + T2T7 + T3T5 + T3ITE + T4TH
+ x4z — 427 + T5T6
(P24, w1)
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TABLE 5.9. A set of representatives of O(n,Z)-orbits in P-crit(Z",Z),
form=17

H (p,w) \ ind(p, w) € O(7,Z)-Orb(q) C P-crit; ‘ cox,(t) and E-type H

746 4 3
(P17, w4) thpt =2t =27 4
a31(x) = 1= P~ (t), E-type =Eg
(p24, ws) 7 o e
Zi=1 T —T1L5—T2T3—L2LY —T2LT5 —L2LE
(P24, we) + x4x6 + xax7 + T5TE
(P31, ws)
(p6, w3) t7 46 — 2% — 213 4t 4
1 =P~ (t), E-type =E¢
(p7, w2) qi2(z) = Eg
7
(p7,w4) Zi:l z?7171137.7:21:371721:479321:57232z6
+ zox7 + x3w6 + TaT5 + T4T6 + T5T6
(p17,w3)
(p27, w2)
7
(p31,w7) g66(z) = Zi:l xffoclxg,—x2m37x2w47w2x57x3x3+ t7+t672t472t3+}v+

xTax7 1 =P~ (t), E-type =Eg
Eg

Remark 5.10. It follows from Tables 5.6 and 5.7 that the surjective
correspondence

ind : O(5,Z)-0Orb(Z5) ——— O(6,Z)-Orb( P-crit(Z°, 7))
(3.3) induced by the map (p,w) + indsc, (p,w) := @pswe,, is far from
being injective. Indeed, the pairs (pa,w), (p4,w), (p7,w1) lie in differ-
ent O(5,Z)-orbits in Z5, but the P-critical unit forms ind(ps, w) = g2,

inds ¢, (p4, w) = ¢5 and ind, ., (p7, w1) = ¢g presented in Table 5.7 lie in
the O(6, Z)-orbit of the unit form

6
2
@x) = Z T + 2125 + T1T6 — X2T3 — TaXg — T2X5 + T2Te + T3X5 + T4Ts5,
i=1

because we have g5 * B1 = 2, qs * Bs = ¢, and ¢g * B3 = ¢5, where

o 0 0 -1 0 0 0 -1 0 0 0 0
00 0 0 1 o0 0 0 0 0 1 0
-1 0 0 0 0 O -1 0 0 0 0 0

Bl_00—1000732_000—100’
0o 1 0 0 0 0 0 0 -1 0 0 0
Lo 0 0 o0 0 -1 o0 0 0 0 0 -1
ro 0 0 0 1 0
0 -1 0 0 0 0
0 0 -1 0 0 0

B3_000—100
-1 0 0 0 0 0
Lo 0 0 0 0 -1
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Now we present a complete list of the Coxeter polynomials
coxa(t) € Z[t] of P-critical bigraphs A, with at most 10 vertices. To-
gether with the following corollary, the list is obtained by a computer
search.

Corollary 5.11. Assume that A is a P-critical bigraph, with at most 10
vertices.

(a) If A is of the Euclidean type DA = A,,, n <9, then coxa(t) is
one of the polynomials listed in the following table, see [25].

TABLE 5.12. Coxeter polynomials coxa (t) of P-critical bigraphs A of
E-type A, n <9 and their reduced Coxeter numbers ¢

j @ éa
j=1 trtl g 1 n
jef{2,...,mn} gl —gntl=d i 4] lem(n—j+1, 5)

L T if n is even,
where mn = ¢ |4 ) ]
5, ifn+1is even.
(b) If A is of the Euclidean type DA € {D,,,Eq,E7,Eg}, n <9, then

coxa (t) is one of the polynomials presented in Table 5.13.

TABLE 5.13. Coxeter polynomials coxa (t) of P-critical bigraphs A

DA CGpolf | = {coxa(®)} pa—puet = {Fgg (t)} én

Dy EN @)y =5 444 — 23 — 22 4t +1 ép =2
Dy
EDw =15 -t —t+1=rY@) ép =4
Dy Ag

Ds ED@) =16 445 —t4 — 23 12 4t 41 én =6
EP @)y =16 -5 —t4+1=FED (1) én=5
Ds As
EP@)y =16 -1t —2+1=FEP (1) én =
Ds As
ED () =16 —t5 —t4 4205 — 42—t 41 €a=6
D5
EO () =16 — 245 434 — 443 432 — 2t + 1 én=4
D5
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TABLE 5.13. Coxeter polynomials coxa (t) of P-critical bigraphs A

pA CGpolf 1 = {c0xa (O} papua = {FIA®} || e

Dg F%”(t):t7+t6—t5—t4—t3—t2+t+1 ea =4
F%S>(t):t7— —t+1—F(1)() en =6
Fi%g)(t):ﬂ t3+1—F(3)() ep =12
F%Z)(t):t — 16 415 — ¢4 7t3+t27t+1 ea =4
Fﬁig)(t):t7—t6—t5+t4+t3—t2+t+1 NS
F%g>(t) — 216 4205 — ¢4 — 13 4 2% — 20 41 éx =12
Fi%%(t): TS 4t 13— 22 41 €r =6

D7 Fi)(;)(t):t8+t7—t6—t5—t3—t2+t+1 ea =10
Fi%;)(t):ts— —t+1=F (1)() ea =7
Fi](v);)(t) =86 24 1= F(Q)( t) ea=6
Fé)(t) —ot 1= F(4) (t) ea =4
F%5>(t)_t —t7+t5_2t4+t3—t+1 e =12
FgE)(t) —2t6 4+ 264 — 22 41 ca =8
Fi%:)(t):t8—2t7+2t6—2t5+2t4—2t3+2t2—2t+1 én =8
F%)s)(t): 8 —otT 440 4245 — 4t + 263 412 — 2t + 1 ép =6
F%g)(t):ts7t7+2t673t5+2t473t3+2t27t+1 ép =12
Fﬁiio)(t):t8—t7—t6+t5+t3—t2—t+1 éx =10
rd

Ds F%l)(t):t9+t87t77t67t37t2+t+1 én =6
F§>(t):t9_ts_+ = () En =8
F%§>(t):t9—t5—t4+1 F<4)() €a =20
F,lé2>(t):t9—t8+2t7—2 —2t3+2t2—t+1 éa=4
Fi%g)(t):t97t8+t77t67t3+t27t+1 e =12
F%E)(t):t97t87t7+t6+t37t27t+1 e =12
F§>(t)=t9—t8—t7+3t6—2t5—2t4+3t3—t2—t+1 €r =6
Fif)(t):tg—t7+t6—t5—t4+t3—t2+1 ép =12
F§>(t):t9 Tt 5t 3 241 én =24
]I;())(t)—tg 2T 415 411 — 22 41 €a =10
F(H)(t)—tg 28 417 416 15—t 4342 —2t 41 ea=24
H;”)(t)—#’ 25 + 27 — 210 + 45 + 41— 23 + 22 — 2t +1 || €5 =20

8
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TABLE 5.13. Coxeter polynomials coxa (t) of P-critical bigraphs A

DA CGpoliy, = {coxa(t)} pa—pua = {Fz()ji (t)} a
Dy F(l)(t) 0489 — 8 — T — 3 — 12+t 41 en =14
F(2)(t) —t? 41 F(1>(t) €a=9
<*>(t) — 32 41= ;”() én =8
F<4>(t) —t6 41 = F,g*) (t) én =12
F(5)(t) t9+t8—2t7+2t69—2t5+2t4—2t3+t2—t+1 én =24
F(G)(t) —19 4218 — 27 16 — 25 4 ¢4 23 422 —t+1 || €a =20
F(7)(t) R B YA, YR, v R | éa =12
F(S)(t) —9 6 25—t 41 e =20
F(g)(t) 10 _ 949 4 98 — 207 446 444 — 23 422 — 2 4+ 1 || &a =12
F%IO)(t) =t10-29 418 +47 264265 — 24 443442~ 2t + 1 || €p =30
Fgl)(t):tlo—tg—t8+2t7—2t5+2t3—t2—t+1 én =24
Fg”(t):tlo—t9+t7—t6—t4+t3—t+1 ér =6
F§3)(t) =410 249 448 46 —4r5 2t 412 — 2 41 én =8
F{;‘U(t):t107t97t8+t7+t37t27t+1 ép =14
F{;s)(t):t107t8+t772t5+t37t2+1 éx =30
F%%)(t):tlo—tg—t7+2t5—t3—t2+1 éa =30
Fg” (t) =10 — 28 416 ¢4 — 22 41 ép =12
9
Ee F(l)(t) Ly | én =6
F(2>(t) —t6 1= F<1 (t) ér =6
(3)(15) 5241 = (2>(t) én =10
F(4)(t) oS o5 2 2t én =12
Fg)(t):t —t6 5t 3 2 1 ép =8
E7 Fg)(t) 8 41T — 15 — 2t — 3 i1 e =12
Fé;)(t):t t+1—F<1>() én =7
Fé?(t) =180 24 1= F(2>(t) ér=6
Fﬁ(j)(t) =8 PP 1= F(3>(t) éx =15
Fés)(t):tg—t7+t5_2t4+t3— +1 e =12
Fgf)(t) =8 — 26 4214 — 22 41 €a=8
FE(:)(t) =8 — 207 4216 — 265 424 — 263 422 — 2 + 1 én =8




A. PorLAk, D. S1MSON 283

TABLE 5.13. Coxeter polynomials coxa (t) of P-critical bigraphs A

DA CGpolf 1 = {c0xa (O} papua = {FIA®} || e
E® (1) = 8 — 247 416 4265 — 4¢ 4203 442 — 2t 4 1 €a=6
Fg”(t)—t8—3t7+5t6—6t5+6t4—6t3+5t2—3t+1 ér=6
F<10)(t)—t8 27 416 445 — 2t 415 442 — 2+ 1 €a=9
F‘“)(t)—t8 716 45 443 — 12—t 41 éx =10
F“Q)()—tg—t — 62t — 12—t 41 e =12
Es F%;)(t):t9+t87t67t57t47t3+t+1 €a =30
Fi(z)(t):tg t+1—F(1)() ér =8
F%Z)(t):tg— —t? 1= F<2 (t) ea =14
F~<4’(t):t9—t5—t4+1_Fi4)() €a =20
Es Ag
Fg’)(t):t97t8+t77t67t3+t27t+1 e =12
Féz)(t):t97t87t7+2t67t57t4+2t37t27t+1 éa =18
F§’(t):t9—t8—t7+t6+t3—t2—t+1 e =12
Fg)(t):t9—t8—t7+t5+t4—t2—t+1 €a =18
Fé9>(t) — 28 4207 6 — 13 424 — 2t 1 €r =6
10>(t) — 28 427 — 26 445 414 23 + 2> — 2+ 1 || &5 =20
F(H)(t) — 28 T 16— 15—t P % 2t 1 ea=24
F(lz)(t) — 28 1T 442 — 20 4 1 éa =14
13)(15) 19— 268 4 3¢5 — 265 — 2¢4 4 3¢5 — 2t + 1 ea =12
]EM)(t)7t9—3t8+4t7—3t6+t5+t4—3t3+4t2—3t+1 ¢a =30
1°>(t) — 418 48T — O 4+ At5 4 4t — 013 + 812 —dt+1 || éx =6
Ié“’)(t)—t9 76 45 4t 13 12 41 ea =24
F,]ESN)(t) =9 — 267 — 16 4245 421 — 3 — 22 4 1 én =12
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