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Abstract. We construct a free abelian dimonoid and de-
scribe the least abelian congruence on a free dimonoid. Also we show
that free abelian dimonoids are determined by their endomorphism
semigroups.

1. Introduction

The notion of a dimonoid was introduced by Jean-Louis Loday in [1].
An algebra (D,⊣,⊢) with two binary associative operations ⊣ and ⊢ is
called a dimonoid if for all x, y, z ∈ D the following conditions hold:

(D1) (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),

(D2) (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(D3) (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z).

If operations of a dimonoid coincide, the dimonoid becomes a semigroup.

Dimonoids and in particular dialgebras have been studied by many
authors (see, e.g., [2]–[5]), they play a prominent role in problems from
the theory of Leibniz algebras. The first result about dimonoids is the
description of a free dimonoid [1]. T. Pirashvili [4] introduced the notion
of a duplex which generalizes the notion of a dimonoid and constructed
a free duplex. Free dimonoids and free commutative dimonoids were
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investigated in [6] and [7] respectively. Free normal dibands and other
relatively free dimonoids were described in [8], [9]. In this paper we study
free abelian dimonoids.

The paper is organized as follows. In Section 2 we give necessary de-
finitions and examples of abelian dimonoids. In Section 3 we construct a
free abelian dimonoid and, in particular, consider a free abelian dimonoid
of rank 1. In Section 4 we define the least congruence on a free dimonoid
such that the corresponding quotient-dimonoid is isomorphic to the free
abelian dimonoid. In Section 5 we prove that free abelian dimonoids are
determined by their endomorphisms.

2. Examples of abelian dimonoids

It is well-known that a non-empty class H of algebraic systems is
a variety if the Cartesian product of any sequence of H-systems is a
H-system, every subsystem of an arbitrary H-system is a H-system and any
homomorphic image of an arbitrary H-system is a H-system (Birkhoff [10]).

A dimonoid (D,⊣,⊢) we call abelian (in the same way as a digroup
in [11]) if for all x, y ∈ D,

x ⊣ y = y ⊢ x.

The class of all abelian dimonoids satisfies the conditions of Birkhoff’s
theorem and therefore it is a variety. A dimonoid which is free in the
variety of abelian dimonoids will be called a free abelian dimonoid.

It should be noted that the class of all abelian dimonoids does not
coincide with the class of all commutative dimonoids [7] (both operations
of such dimonoids are commutative). For example, a non-singleton left
zero and right zero dimonoid [9] is abelian but not commutative.

Let Z be the set of all integers,E = {λ, µ} be an arbitrary two-element
set. Define two binary operations ⊣ and ⊢ on Z × E as follows:

(m,x) ⊣ (n, y) =

{
(m+ n+ 1, x), y = λ,
(m+ n− 1, x), y = µ,

(m,x) ⊢ (n, y) =

{
(m+ n+ 1, y), x = λ,
(m+ n− 1, y), x = µ.

Proposition 1. The algebra (Z × E,⊣,⊢) is an abelian dimonoid.
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Proof. Let (m,x), (n, y), (s, z) ∈ Z × E. If y = z = λ or y = z = µ, we
obtain

((m,x) ⊣ (n, λ)) ⊣ (s, λ) = (m+ n+ s+ 2, x)

= (m,x) ⊣ ((n, λ) ⊣ (s, λ)) or

((m,x) ⊣ (n, µ)) ⊣ (s, µ) = (m+ n+ s− 2, x)

= (m,x) ⊣ ((n, µ) ⊣ (s, µ))

respectively.
For y = λ, z = µ or y = µ, z = λ, we have

((m,x) ⊣ (n, y)) ⊣ (s, z) = (m+ n+ s, x)

= (m,x) ⊣ ((n, y) ⊣ (s, z)).

Therefore, the operation ⊣ is associative. Analogously we can show
that ⊢ is an associative operation too.

Show that the axiom (D1) holds. If y = z = λ or y = z = µ,

(m,x) ⊣ ((n, λ) ⊢ (s, λ)) = (m+ n+ s+ 2, x)

= ((m,x) ⊣ (n, λ)) ⊣ (s, λ) or

(m,x) ⊣ ((n, µ) ⊢ (s, µ)) = (m+ n+ s− 2, x)

= ((m,x) ⊣ (n, µ)) ⊣ (s, µ).

For y = λ, z = µ or y = µ, z = λ, we obtain

(m,x) ⊣ ((n, y) ⊢ (s, z)) = (m+ n+ s, x)

= ((m,x) ⊣ (n, y)) ⊣ (s, z).

The axiom (D3) is checked similarly. Now we consider the axiom (D2).
Let x = z = λ or x = z = µ. Then

(m,λ) ⊢ ((n, y) ⊣ (s, λ)) = (m+ n+ s+ 2, y)

= ((m,λ) ⊢ (n, y)) ⊣ (s, λ) or

(m,µ) ⊢ ((n, y) ⊣ (s, µ)) = (m+ n+ s− 2, y)

= ((m,µ) ⊢ (n, y)) ⊣ (s, µ).

If x = λ, z = µ or x = µ, z = λ, then

(m,x) ⊢ ((n, y) ⊣ (s, z)) = (m+ n+ s, y)

= ((m,x) ⊢ (n, y)) ⊣ (s, z),

which completes the verification of (D2).
The fact that (Z×E,⊣,⊢) is abelian can be checked immediately.
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An element e of an arbitrary dimonoid (D,⊣,⊢) is called a bar-unit

(see, e.g., [1]) if for all g ∈ D,

e ⊢ g = g = g ⊣ e.

In contrast to monoids a dimonoid may have many bar-units. For
example, for the dimonoid from Proposition 1 we have

(−1, λ) ⊢ (m,x) = (m,x) = (m,x) ⊣ (−1, λ),

(1, µ) ⊢ (m,x) = (m,x) = (m,x) ⊣ (1, µ)

for any (m,x) ∈ Z ×E. Thus, (−1, λ) and (1, µ) are bar-units. Moreover,
another bar-units of (Z × E,⊣,⊢) do not exist.

Let G be an arbitrary additive abelian group, X1, X2, . . . , Xn (n > 2)
be non-empty subsets of G and Xα = G for some α ∈ {1, 2, . . . , n}. For
all t = (t1, t2, . . . , tn) ∈

∏n
i=1Xi we put t+ = t1 + t2 + . . .+ tn.

Take arbitrary x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈
∏n

i=1Xi

and define two binary operations ⊣α and ⊢α on
∏n

i=1Xi by

x ⊣α y = (x1, . . . , xα + y+, . . . , xn),

x ⊢α y = (y1, . . . , yα + x+, . . . , yn).

Proposition 2. For every α ∈ {1, 2, . . . , n} the algebra (
∏n

i=1Xi,⊣α,⊢α)
is an abelian dimonoid.

Proof. Let x, y, z ∈
∏n

i=1Xi. Then

(x ⊣α y) ⊣α z = (x1, . . . , xα + y+, . . . , xn) ⊣α (z1, z2, . . . , zn)

= (x1, . . . , xα + y+ + z+, . . . , xn)

= (x1, x2 . . . , xn) ⊣α (y1, . . . , yα + z+, . . . , yn)

= x ⊣α (y ⊣α z),

(x ⊢α y) ⊢α z = (y1, . . . , yα + x+, . . . , yn) ⊢α (z1, z2, . . . , zn)

= (z1, . . . , zα + x+ + y+, . . . , zn)

= (x1, x2 . . . , xn) ⊢α (z1, . . . , zα + y+, . . . , zn)

= x ⊢α (y ⊢α z).

Thus, operations ⊣α and ⊢α are associative.
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Show that axioms (D1) − (D3) hold:

(x ⊣α y) ⊣α z = (x1, . . . , xα + y+ + z+, . . . , xn)

= (x1, x2, . . . , xn) ⊣α (z1, . . . , zα + y+, . . . , zn)

= x ⊣α (y ⊢α z),

(x ⊢α y) ⊣α z = (y1, . . . , yα + x+, . . . , yn) ⊣α (z1, z2, . . . , zn)

= (y1, . . . , yα + z+ + x+, . . . , yn)

= (x1, x2 . . . , xn) ⊢α (y1, . . . , yα + z+, . . . , yn)

= x ⊢α (y ⊣α z),

(x ⊣α y) ⊢α z = (x1, . . . , xα + y+, . . . , xn) ⊢α (z1, z2, . . . , zn)

= (z1, . . . , zα + x+ + y+, . . . , zn)

= x ⊢α (y ⊢α z).

Therefore, (
∏n

i=1Xi,⊣α,⊢α) is a dimonoid. Moreover,

x ⊣α y = (x1, . . . , xα + y+, . . . , xn) = y ⊢α x

for all x, y ∈
∏n

i=1Xi.

Let (S, ◦) be an arbitrary semigroup. A semigroup (S, ∗), where x∗y =
y ◦ x for all x, y ∈ S, is called a dual semigroup to (S, ◦).

A semigroup (S, ◦) is called left commutative (respectively, right com-

mutative) if it satisfies the identity x ◦ y ◦ a = y ◦ x ◦ a (respectively,
a ◦ x ◦ y = a ◦ y ◦ x).

Proposition 3. Let (S, ◦) be an arbitrary right commutative semigroup

and (S, ∗) be a dual semigroup to (S, ◦). Then the algebra (S, ◦, ∗) is an

abelian dimonoid.

Proof. The proof follows from Lemma 3 of [9].

Proposition 4. Let (S, ∗) be an arbitrary left commutative semigroup

and (S, ◦) be a dual semigroup to (S, ∗). Then the algebra (S, ◦, ∗) is an

abelian dimonoid.

Proof. The proof follows from Lemma 4 of [9].

An important example of abelian dimonoids is the class of abelian
digroups (see [11]). The idea of the notion of a digroup first appeared in
the work of Jean-Louis Loday [1].
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3. The free abelian dimonoid

Let X be an arbitrary set and N be the set of all natural num-
bers. Denote by FCm(X) the free commutative monoid on X with the
identity ε. Words of FCm(X) we write as w = wα1

1 wα2
2 . . . wαn

n , where
w1, w2, . . . , wn ∈ X are pairwise distinct, and α1, α2, . . . , αn ∈ N ∪ {0}.
Here w0

i , 1 6 i 6 n, is the empty word ε and w1 = w for all w ∈ X.
We put

FAd(X) = X × FCm(X)

and define two binary operations ⊣ and ⊢ on FAd(X) as follows:

(x, u) ⊣ (y, v) = (x, uyv),

(x, u) ⊢ (y, v) = (y, xuv).

Note that for every element t of an arbitrary abelian dimonoid (D,≺,≻)
the degrees

tn
≺

= t ≺ t ≺ . . . ≺ t︸ ︷︷ ︸
n

, tn
≻

= t ≻ t ≻ . . . ≻ t︸ ︷︷ ︸
n

coincide. Therefore, we will write tn instead of tn
≺

(= tn
≻

).

Theorem 1. The algebra (FAd(X),⊣,⊢) is the free abelian dimonoid.

Proof. Let (x, u), (y, v), (z, w) ∈ FAd(X). Then

((x, u) ⊣ (y, v)) ⊣ (z, w) = (x, uyv) ⊣ (z, w)

= (x, uyvzw) = (x, u) ⊣ ((y, v) ⊣ (z, w)),

((x, u) ⊢ (y, v)) ⊢ (z, w) = (y, xuv) ⊢ (z, w)

= (z, yxuvw) = (x, u) ⊢ ((y, v) ⊢ (z, w)).

Thus, operations ⊣ and ⊢ are associative. In addition,

((x, u) ⊣ (y, v)) ⊣ (z, w) = (x, uyvzw)

= (x, u) ⊣ (z, yvw) = (x, u) ⊣ ((y, v) ⊢ (z, w)),

((x, u) ⊢ (y, v)) ⊣ (z, w) = (y, xuvzw)

= (x, u) ⊢ (y, vzw) = (x, u) ⊢ ((y, v) ⊣ (z, w)),

((x, u) ⊣ (y, v)) ⊢ (z, w) = (x, uyv) ⊢ (z, w)

= (z, yxuvw) = (x, u) ⊢ ((y, v) ⊢ (z, w)).

So, (FAd(X),⊣,⊢) is a dimonoid and, obviously, it is abelian.
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For all (t, w) ∈ FAd(X), where w = wα1
1 wα2

2 . . . wαn
n , we obtain the

following representation:

(t, w) = (t, ε) ⊣ (w1, ε)
α1 ⊣ . . . ⊣ (wn, ε)

αn .

This representation we call a canonical form of elements of the dimonoid
(FAd(X),⊣,⊢). It is clear that such representation is unique up to an
order of (wi, ε), 1 6 i 6 n. Moreover, 〈X × ε〉 = (FAd(X),⊣,⊢).

Show that the dimonoid (FAd(X),⊣,⊢) is free abelian. Let (D′,⊣′,⊢′)
be an arbitrary abelian dimonoid, ξ be any mapping of X × ε into D′.
Further, we naturally extend ξ to a mapping Ξ of FAd(X) into D′ using
the canonical representation of elements of (FAd(X),⊣,⊢), that is,

(t, w)Ξ = (t, ε)ξ ⊣′ ((w1, ε)ξ)
α1 ⊣′ . . . ⊣′ ((wn, ε)ξ)

αn

for any (t, w) ∈ FAd(X), where w = wα1
1 wα2

2 . . . wαn
n .

It is easy to see that Ξ is a homomorphism of (FAd(X),⊣) into (D′,⊣′).
Using that (D′,⊣′,⊢′) is an abelian dimonoid too, we obtain

((t, u) ⊢ (s, v))Ξ = ((s, v) ⊣ (t, u))Ξ

= (s, v)Ξ ⊣′ (t, u)Ξ = (t, u)Ξ ⊢′ (s, v)Ξ

for all (t, u), (s, v) ∈ FAd(X).

Observe that the cardinality of a set X is the rank of the constructed
free abelian dimonoid (FAd(X),⊣,⊢) and this dimonoid is uniquely de-
termined up to an isomorphism by |X|.

Now we consider the structure of a free abelian dimonoid of rank 1.

Lemma 1. Operations of the free abelian dimonoid (FAd(X),⊣,⊢) co-

incide if and only if |X| = 1.

Proof. Assume that operations of (FAd(X),⊣,⊢) coincide and x, y ∈ X
are distinct. Then for all u, v ∈ FCm(X),

(x, u) ⊣ (y, v) = (x, uyv) 6= (y, xuv) = (x, u) ⊢ (y, v),

which contradicts the fact that ⊣ = ⊢.

Let X = {x}, then for all (x, u), (x, v) ∈ FAd(X) we have

(x, u) ⊣ (x, v) = (x, uxv) = (x, u) ⊢ (x, v).
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Let (S, ◦) be an arbitrary semigroup and a ∈ S. Define on S a new
binary operation ◦a by

x ◦a y = x ◦ a ◦ y

for all x, y ∈ S.

Clearly, (S, ◦a) is a semigroup, it is called a variant of (S, ◦).

Proposition 5. The free abelian dimonoid (FAd(X),⊣,⊢) of rank 1

is isomorphic to the variant (N0,+1) of the additive semigroup of all

non-negative integers.

Proof. Let X = {x}, then FAd(X) = {(x, xn)|n ∈ N0}. By Lemma 1,
for (FAd(X),⊣,⊢) we have ⊣ = ⊢. Define a mapping ϕ of (FAd(X),⊣,⊢)
into (N0,+1) by

ϕ : (x, xn) 7→ n

for any (x, xn) ∈ FAd(X).

It is clear that ϕ is a bijection. In addition, for all (x, xn), (x, xm) ∈
FAd(X) we obtain

((x, xn) ⊣ (x, xm))ϕ = (x, xn+m+1)ϕ = n+m+ 1

= n+1 m = (x, xn)ϕ+1 (x, xm)ϕ.

4. The least abelian congruence

Let (D,⊣,⊢) be an arbitrary dimonoid, ρ be an equivalence relation
on D which is stable on the left and on the right with respect to each of
operations ⊣,⊢. In this case ρ is called a congruence on (D,⊣,⊢).

If f : D1 → D2 is a homomorphism of dimonoids, then the correspon-
ding congruence on D1 will be denoted by △f . For a congruence ρ on a
dimonoid (D,⊣,⊢) the corresponding quotient-dimonoid is denoted by
(D,⊣,⊢)/ρ. A congruence ρ on a dimonoid (D,⊣,⊢) is called abelian if
(D,⊣,⊢)/ρ is an abelian dimonoid.

As usual N denotes the set of all positive integers, and let n ∈ N . For
an arbitrary setX by X̃ we denote the copy ofX, that is, X̃ = {x̃ | x ∈ X}
and put

Y (1)
n = X̃ ×X × . . .×X︸ ︷︷ ︸

n

, Y (2)
n = X × X̃ ×X × . . .×X︸ ︷︷ ︸

n

,

Y (3)
n = X ×X × X̃ × . . .×X︸ ︷︷ ︸

n

, . . . , Y (n)
n = X ×X × . . .× X̃︸ ︷︷ ︸

n

.
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We denote the union of n different copies Y
(i)

n , 1 6 i 6 n, of Xn by
Yn and assume Fd(X) =

⋃
n>1 Yn. Define operations ≺ and ≻ on Fd(X)

as follows:

(x1,. . . ,x̃i,. . . ,xm) ≺ (y1,. . . ,ỹj , . . . , yn) = (x1, . . . , x̃i, . . . , xm, y1, . . . , yn),

(x1,. . . ,x̃i,. . . ,xm) ≻ (y1,. . . ,ỹj , . . . , yn) = (x1, . . . , xm, y1, . . . , ỹj , . . . , yn)

for all (x1, . . . , x̃i, . . . , xm), (y1, . . . , ỹj , . . . , yn) ∈ Fd(X).
According to [1], (Fd(X),≺,≻) is the free dimonoid on X. Elements

of Fd(X) are called words, X̃ is the generating set of (Fd(X),≺,≻).
Let (Fd(X),≺,≻) be the free dimonoid on X and w ∈ Fd(X). The

canonical form of w = (w1, . . . , w̃l, . . . , wk) is its representation in the
shape:

w = w̃1 ≻ . . . ≻ w̃l ≺ . . . ≺ w̃k.

We call k as the length of w and denote it by l(w). For any x ∈ X by
qx̃(w) we denote the quantity of all elements x̃ ∈ X̃ that are included in
the canonical form w̃1 ≻ . . . ≻ w̃l ≺ . . . ≺ w̃k of w.

Define a binary relation σ on Fd(X) as follows: u = (u1, . . . , ũi, . . . , un)
and v = (v1, . . . , ṽj , . . . , vm) of Fd(X) are σ-equivalent if for all x ∈ X,

qx̃(u) = qx̃(v) and ui = vj .

We note that qx̃(u) = qx̃(v) for all x ∈ X implies l(u) = l(v).

For example, for u = (a, b̃, a, c), v = (a, ã) and w = (c, a, a, b̃) we have
qã(p) = 2 for all p ∈ {u, v, w}, l(v) = 2 and (u,w) ∈ σ.

Theorem 2. The binary relation σ is the least abelian congruence on the

free dimonoid (Fd(X),≺,≻).

Proof. It is easy to see that σ is an equivalence relation. Assume that
u = (u1, . . . , ũi, . . . , un), v = (v1, . . . , ṽj , . . . , vm) ∈ Fd(X) such that uσv
and w = (w1, . . . , w̃k, . . . , wl) ∈ Fd(X). Then

u ≺ w = (u1, . . . , ũi, . . . , un, w1, . . . , wl),

v ≺ w = (v1, . . . , ṽj , . . . , vm, w1, . . . , wl),

u ≻ w = (u1, . . . , un, w1, . . . , w̃k, . . . , wl),

v ≻ w = (v1, . . . , vm, w1, . . . , w̃k, . . . , wl).

Since ui = vj and

qx̃(u ≺ w) = qx̃(v ≺ w), qx̃(u ≻ w) = qx̃(v ≻ w)
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for any x ∈ X, we have (u ≺ w)σ(v ≺ w) and (u ≻ w)σ(v ≻ w).
Analogously we can show that (w ≺ u)σ(w ≺ v) and (w ≻ u)σ(w ≻ v).
Thus, σ is a congruence.

In addition, we note that (u ≺ v)σ(v ≻ u) for all u, v ∈ Fd(X),
therefore (Fd(X),≺,≻)/σ is abelian. A class of (Fd(X),≺,≻)/σ which
contains w we denote by [w].

Further, we show that the quotient-dimonoid (Fd(X),≺,≻)/σ is iso-
morphic to the free abelian dimonoid (FAd(X),⊣,⊢) (see Theorem 1).

Define a mapping ϕ of (Fd(X),≺,≻)/σ into (FAd(X),⊣,⊢) by

[w]ϕ = (wk, w1 . . . wk−1wk+1 . . . wl)

for all words w = (w1, . . . , w̃k, . . . , wl) ∈ Fd(X) with l(w) > 2, and
[w]ϕ = (w1, ε) for any w = w̃1 ∈ Fd(X). It is clear that ϕ is a bijection.

For all [u], [v] ∈ (Fd(X),≺,≻)/σ, where u = (u1, . . . , ũi, . . . , un),
v = (v1, . . . , ṽj , . . . , vm), we have

([u] ≺ [v])ϕ = [(u1, . . . , ũi, . . . , un, v1, . . . , vm)]ϕ

= (ui, u1 . . . ui−1ui+1 . . . unv1 . . . vm)

= (ui, u1 . . . ui−1ui+1 . . . un) ⊣ (vj , v1 . . . vj−1vj+1 . . . vm)

= [u]ϕ ⊣ [v]ϕ.

Since dimonoids (Fd(X),≺,≻)/σ and (FAd(X),⊣,⊢) are abelian,

([u] ≻ [v])ϕ = ([v] ≺ [u])ϕ = [v]ϕ ⊣ [u]ϕ = [u]ϕ ⊢ [v]ϕ

for all [u], [v] ∈ (Fd(X),≺,≻)/σ.
Thus, (Fd(X),≺,≻)/σ is free abelian and the composition η♮◦ϕ, where

η♮ : (Fd(X),≺,≻) → (Fd(X),≺,≻)/σ is the natural homomorphism, is
an epimorphism of (Fd(X),≺,≻) on (FAd(X),⊣,⊢) inducing the least
abelian congruence on Fd(X). From the definition of η♮ ◦ϕ it follows that
△η♮◦ϕ = σ.

5. Determinability

One of the venerable algebraic problems the first instance of which
was considered by E. Galois (see [12]) is the determinability of an al-
gebraic structure by its endomorphism semigroup. The determinability
problem for free algebras in a certain variety was raised by B. Plotkin [13].
For free groups this problem was solved by E. Formanek [14]. An analo-
gous problem for free semigroups and free monoids was decided in [15].
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Some characteristics for the enomorphism monoid of a free dimonoid
of rank 1 were obtained in [16]. Determinability of free trioids by their
endomorphism semigroups was proved in [17].

Recall that an algebra A of some class Ω is determined by its endo-
morphism semigroup in the class Ω if for any algebra B ∈ Ω the condition
End(A) ∼= End(B) implies A ∼= B. Note that the converse implication is
obvious.

Let FX = (FAd(X),⊣,⊢) be the free abelian dimonoid on X and
(t, u) ∈ FAd(X), u = uα1

1 uα2
2 . . . uαn

n . From Theorem 1 it follows that an
arbitrary endomorphism Ξ ∈ End(FX) has form:

(t, u)Ξ = (t, ε)ξ ⊣ ((u1, ε)ξ)
α1 ⊣ . . . ⊣ ((un, ε)ξ)

αn ,

where ξ : X × ε → FAd(X) is any mapping.
An endomorphism θ(t,u) ∈ End(FX) we call constant if (x, ε)θ(t,u) =

(t, u) for all x ∈ X.

Lemma 2.

(i) An endomorphism f of the free abelian dimonoid FX is constant if

and only if ψf = f for all ψ ∈ Aut(FX).

(ii) An endomorphism f of the free abelian dimonoid FX is constant

idempotent if and only if f = θ(x,ε) for some x ∈ X.

Proof. (i) Suppose that an endomorphism f ∈ End(FX) is constant and
ψ ∈ Aut(FX). Then f = θ(t,u) for some (t, u) ∈ FAd(X), in addition,

(x, ε)(ψθ(t,u)) = ((x, ε)ψ) θ(t,u) = (t, u) = (x, ε)θ(t,u)

for any x ∈ X. Thus, ψθ(t,u) = θ(t,u).
Conversely, let ψf = f for all ψ ∈ Aut(FX) and some f ∈ End(FX).

For fixed x ∈ X we obtain

(x, ε)f = (x, ε) (ψf) = ((x, ε)ψ) f = (y, ε)f,

where (y, ε) = (x, ε)ψ. Since {(x, ε)ψ | ψ ∈ Aut(FX)} = X × ε, we have
(a, ε)f = (b, ε)f for all a, b ∈ X. From here f = θ(t,u) for (t, u) = (x, ε)f .

(ii) Let f ∈ End(FX) be a constant idempotent endomorphism. Then
f = θ(x,u), (x, u) ∈ FAd(X), and θ2

(x,u) = θ(x,u). Since θ(x,u)θ(x,u)
= θ2

(x,u),

we have

θ(x,u) = θ(x,u)θ(x,u) = θ(x,u)θ(x,u)
= θ(x,ul(u)+1xl(u)).

It means that (x, u) = (x, ul(u)+1xl(u)), whence l(u) = 0, i.e., u = ε.
Clearly, θ2

(x,ε) = θ(x,ε) for all x ∈ X.
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Theorem 3. Let FX = (FAd(X),⊣,⊢) and FY = (FAd(Y ),⊣,⊢) be free

abelian dimonoids such that End(FX) ∼= End(FY ). Then FX and FY are

isomorphic.

Proof. Let Ψ be an arbitrary isomorphism of End(FX) into End(FY ). In
according to the statements of Lemma 2 for some constant idempotent
endomorphism θ(x,ε), x ∈ X, of the free abelian dimonoid FX and for all
α ∈ Aut(FX), we have αθ(x,ε) = θ(x,ε). Taking into account that Ψ is a
homomorphism, we obtain

θ(x,ε)Ψ =
(
αθ(x,ε)

)
Ψ = αΨ θ(x,ε)Ψ.

Since Aut(FX)Ψ = Aut(FY ), by the statement (i) of Lemma 2 we
have θ(x,ε)Ψ is a constant endomorphism of FY . Then θ(x,ε)Ψ = θ(y,v) for
some (y, v) ∈ FAd(Y ), in addition, θ(y,v) is an idempotent of End(FY ).
By the statement (ii) of Lemma 2, v = ε′, where ε′ is the empty word of
FCm(Y ) (see Section 3).

Define a map ξ : X → Y putting xξ = y if and only if θ(x,ε)Ψ = θ(y,ε′).
It is clear that ξ is a bijection. Thus, abelian dimonoids FX and FY are
isomorphic.

Using similar arguments, the fact that the free dimonoid also is
uniquely determined up to an isomorphism by its endomorphism semi-
group can be proved.
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