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ABSTRACT. We construct a free abelian dimonoid and de-
scribe the least abelian congruence on a free dimonoid. Also we show
that free abelian dimonoids are determined by their endomorphism
semigroups.

1. Introduction

The notion of a dimonoid was introduced by Jean-Louis Loday in [1].
An algebra (D, ,+) with two binary associative operations 4 and F is
called a dimonoid if for all z,y,z € D the following conditions hold:

If operations of a dimonoid coincide, the dimonoid becomes a semigroup.

Dimonoids and in particular dialgebras have been studied by many
authors (see, e.g., [2]-[5]), they play a prominent role in problems from
the theory of Leibniz algebras. The first result about dimonoids is the
description of a free dimonoid [1]. T. Pirashvili [4] introduced the notion
of a duplex which generalizes the notion of a dimonoid and constructed
a free duplex. Free dimonoids and free commutative dimonoids were
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investigated in [6] and [7] respectively. Free normal dibands and other
relatively free dimonoids were described in [8], [9]. In this paper we study
free abelian dimonoids.

The paper is organized as follows. In Section 2 we give necessary de-
finitions and examples of abelian dimonoids. In Section 3 we construct a
free abelian dimonoid and, in particular, consider a free abelian dimonoid
of rank 1. In Section 4 we define the least congruence on a free dimonoid
such that the corresponding quotient-dimonoid is isomorphic to the free
abelian dimonoid. In Section 5 we prove that free abelian dimonoids are
determined by their endomorphisms.

2. Examples of abelian dimonoids

It is well-known that a non-empty class H of algebraic systems is
a variety if the Cartesian product of any sequence of H-systems is a
H-system, every subsystem of an arbitrary H-system is a H-system and any
homomorphic image of an arbitrary H-system is a H-system (Birkhoff [10]).

A dimonoid (D, ) we call abelian (in the same way as a digroup
n [11]) if for all z,y € D,

rdy=ykx.

The class of all abelian dimonoids satisfies the conditions of Birkhoff’s
theorem and therefore it is a variety. A dimonoid which is free in the
variety of abelian dimonoids will be called a free abelian dimonoid.

It should be noted that the class of all abelian dimonoids does not
coincide with the class of all commutative dimonoids [7] (both operations
of such dimonoids are commutative). For example, a non-singleton left
zero and right zero dimonoid [9] is abelian but not commutative.

Let Z be the set of all integers, E = {\, u} be an arbitrary two-element
set. Define two binary operations < and - on Z x E as follows:

m4+n+1,x), y=A\
m—i—n—l,x, y=u,

(o) - (n,y) = { 3
)
)

m+n+1,y),
m+n—1,y),

(
(
<m,x>un,y>={ E

Proposition 1. The algebra (Z x E,-,F) is an abelian dimonoid.
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Proof. Let (m,z),(n,y),(s,2) € Zx E. Ify=z2=XNory=2z=pu, we
obtain

((myz) 4 (n,\) 4 (s, A\)=(m+n+s+2z)
yx) 4 ((n,A) 4 (s,A)) or
m—l—n—l—s—Zx)

y2) A ((n, ) 4 (s, 1))

(
= (m
((m, ) A (n, 1)) A (s, 1) = (
= (m

respectively.
Fory =\ z=pory=pu, z= X\, we have
((m,) - (n,9)) 4 (5,2) = (m +n + 5,2)
= (m,x) 4 ((n,y) 4 (s,2)).

Therefore, the operation - is associative. Analogously we can show
that F is an associative operation too.
Show that the axiom (D;) holds. f y=2z=Xory =2 =p,
(m,z) 4 ((n,\) F (s,\) =(m+n+s+2x)
= ((m,z) 4 (n,\)) 4 (s,\) or
(m, ) 4 ((n, ) = (s,1)) = (m+n+s—22)
= ((m,z) 4 (n, ) A (s, ).
Fory= A z=pory=pu, z= X\, we obtain
(m,z) 4 ((n,y) F (s,2)) = (m+n-+s,x)
= ((m,z) + (n,y)) 4 (s, 2).

The axiom (D3) is checked similarly. Now we consider the axiom (D2).
Let x =2 = Xorx =2=p. Then
(m, \) F ((n,y) 4 (s,\)) =(m+n+s+2,y)

(m, A) = (n,9)) 4 (s,A) or
m+n+s—2,y)
= ((m, p) = (n,y)) = (s, ).
Ifex=ANz=porx=pz=M\ then
(m,x) = ((n,y) 4 (s,2)) = (m+n+s,y)
= ((m,z) = (n,y)) 4 (s, 2),

which completes the verification of (D).
The fact that (Z x E,,F) is abelian can be checked immediately. [J

(
= (
(m, 1) E ((nyy) = (s,1)) = (
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An element e of an arbitrary dimonoid (D, ,F) is called a bar-unit
(see, e.g., [1]) if for all g € D,

eFg=g=g-e.

In contrast to monoids a dimonoid may have many bar-units. For
example, for the dimonoid from Proposition 1 we have

(=LA F (m,z) = (m,x) = (m,z) 4 (=1, ),
(LM) + (m,x) = (m,:v) = (m>$) B (LM)

for any (m,x) € Z x E. Thus, (—1, ) and (1, ) are bar-units. Moreover,
another bar-units of (Z x E,,F) do not exist.

Let G be an arbitrary additive abelian group, X1, Xo,..., X, (n > 2)
be non-empty subsets of G and X, = G for some a € {1,2,...,n}. For
all t = (t1,ta,...,tn) € [[Iy X; we put tT =t +to + ...+ ty.

Take arbitrary z = (z1,%2,...,2n),y = (Y1,%2,...,Yn) € [[i=1 Xi
and define two binary operations -, and F, on [[;"; X; by

:1:—|ay:(xl,...,xa+y+,...,azn),
xl—ay:(yl,...,ya+x+,...,yn).

Proposition 2. For every o € {1,2,...,n} the algebra (TT—; Xi, Ty Fa)
is an abelian dimonoid.

Proof. Let z,y,z € [[;=; Xi. Then

(40 y) daz2=(21,...,2a +y T, ..., 2n) Ja (21, 22, ..., 2)

=(21,..,Ta+yt+ 2T, 1)
= (z1,22...,2,) 1o (yl,...,ya+z+,...,yn)
=z ¢ (¥ Ja 2),

WY1y Yo+, yn) Fa (21,22, ., 20)
(21, s za+2xt +yT o 2)
(r1,22. . 20) Fa (21, s 20 YT, 000, 20)
zFo (yFa 2).

(xl—ay)l—az:

Thus, operations -, and F, are associative.
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Show that axioms (Dp) — (D3) hold:

(0 y) daz=(21,...,2a +y" +27,...,2,)
= (21,72, ..., 2p) T (21, s 20+ YT, 20)
=z (yFa 2),

(TFay) daz=W1, Yo+ o, yn) Ta (21,22, .., 20)
=1, Yo+ 2T+t )
= (z1,22. ., 2n) Fa W15 Yo+ 2750 Un)

=z ko (y o 2),

() Faz= (21, . .s2a+y ... 2n) Fa (21,22, .-, 21)
= (21, szt +yT, . 2)
=ztq (yha 2).

Therefore, (IT_; Xi, da, ) is @ dimonoid. Moreover,
ray=(z1,...,2a+y", . 1) =y o
for all z,y € TTiL; Xi. O

Let (S, o) be an arbitrary semigroup. A semigroup (.5, %), where z*y =
youx for all z,y € S, is called a dual semigroup to (S, o).

A semigroup (S, o) is called left commutative (respectively, right com-
mutative) if it satisfies the identity x oy o a = y o x o a (respectively,
anOy:aOyOfE).

Proposition 3. Let (S,0) be an arbitrary right commutative semigroup
and (S,*) be a dual semigroup to (S,0). Then the algebra (S, o, %) is an
abelian dimonoid.

Proof. The proof follows from Lemma 3 of [9]. O

Proposition 4. Let (S,*) be an arbitrary left commutative semigroup
and (S,0) be a dual semigroup to (S,x). Then the algebra (S, o,x*) is an
abelian dimonoid.

Proof. The proof follows from Lemma 4 of [9]. O

An important example of abelian dimonoids is the class of abelian
digroups (see [11]). The idea of the notion of a digroup first appeared in
the work of Jean-Louis Loday [1].
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3. The free abelian dimonoid

Let X be an arbitrary set and N be the set of all natural num-
bers. Denote by FFCm(X) the free commutative monoid on X with the
identity e. Words of FCm/(X) we write as w = w{ws? ... wd", where
wy, we, ..., w, € X are pairwise distinct, and o, ag, ..., ap, € N U{0}.
Here w? 1<z<n is the empty word ¢ and w' —wforallweX

We put

FAd(X)=X x FCm(X)

and define two binary operations 4 and - on F'Ad(X) as follows:
(z,u) 4 (y,v) = (z, uyv),
(z,u) F (y,v) = (y, zwv).

Note that for every element t of an arbitrary abelian dimonoid (D, <, >)
the degrees

th=t<t=<...<1, e =t=t>=...~1
~—_————— ~—_————
n n

coincide. Therefore, we will write t" instead of ¢, (=t).
Theorem 1. The algebra (FAd(X),,t) is the free abelian dimonoid.
Proof. Let (z,u), (y,v), (z,w) € FAd(X). Then

((z,u) 4 (y,v)) 4 (z,w) = (z,uyv) 4 (z,w)
= (z,uyvzw) = (z,u) 4 ((y,v) 4 (z,w)),

((z,u) F (y,v)) F (z,w) y, zuv) b (z,w)

~ Y~ o~

z,yruvw) = (z,u) F ((y,v) F (z,w)).

Thus, operations 4 and + are associative. In addition,

((z,u) 7 (y,v)) 4 (2,w) = (z, uyvzw)
z,u) 4 (2, yow) = (z,u) 4 ((y,0) - (z,0)),
(@, u) F (y,0)) 7 (2,0) = (y, zuvzw)

z,u) F (y,vzw) = (2,u) - ((y,v) 7 (2, w)),
x,uyv) F (z,w)
z,yruow) = (z,u) F ((y,v) F (z,w)).

(
=
(
= (
((z,u) A (y,0)) F (z,0) = (
= (

So, (FAd(X),,F) is a dimonoid and, obviously, it is abelian.
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For all (t,w) € FAd(X), where w = wi'wg? ... wi", we obtain the
following representation:

(t,w) = (t,e) 4 (wy,e)* 4 ... 4 (wp,e)*".

This representation we call a canonical form of elements of the dimonoid
(FAd(X),H,t). It is clear that such representation is unique up to an
order of (w;,¢),1 < i < n. Moreover, (X x ¢) = (FAd(X),,F).

Show that the dimonoid (FAd(X),H,t) is free abelian. Let (D', <, +)
be an arbitrary abelian dimonoid, £ be any mapping of X X ¢ into D'.
Further, we naturally extend £ to a mapping = of FAd(X) into D’ using
the canonical representation of elements of (F'Ad(X),,F), that is,

(t,w)=E = (t,e)§ & ((w1,6))* A ...+ ((wn,£)€)*"

for any (t,w) € FAd(X), where w = w{'w§? ... win.

It is easy to see that = is a homomorphism of (FAd(X), ) into (D', ).
Using that (D', +',F) is an abelian dimonoid too, we obtain

[1]

(& u) F (s,0)Z = ((s,0) 4 (,u))
= (s,v)2 ' (t,u)

[1]

= (t,u)Z+ (s,v)=
for all (t,u), (s,v) € FAd(X). O

Observe that the cardinality of a set X is the rank of the constructed
free abelian dimonoid (FAd(X),,F) and this dimonoid is uniquely de-
termined up to an isomorphism by | X]|.

Now we consider the structure of a free abelian dimonoid of rank 1.

Lemma 1. Operations of the free abelian dimonoid (FAd(X),-,F) co-
incide if and only if | X| = 1.

Proof. Assume that operations of (FAd(X),,F) coincide and z,y € X
are distinct. Then for all u,v € FCm(X),

(z,u) 4 (y,v) = (v, uyv) # (y, 2uv) = (z,u) F (y,v),

which contradicts the fact that 4 = F.
Let X = {z}, then for all (z,u), (z,v) € FAd(X) we have

(z,u) 4 (z,v) = (z,uzv) = (z,u) F (x,v). O



Yu. V. ZHUCHOK 337

Let (S,0) be an arbitrary semigroup and a € S. Define on S a new
binary operation o, by
Togy=x0a0y

for all z,y € S.
Clearly, (5, 0,) is a semigroup, it is called a variant of (S, o).

Proposition 5. The free abelian dimonoid (FAd(X),H,F) of rank 1
is isomorphic to the variant (N°,+1) of the additive semigroup of all
non-negative integers.

Proof. Let X = {x}, then FAd(X) = {(z,2")|n € N'}. By Lemma 1,
for (FAd(X),,F) we have + = I-. Define a mapping ¢ of (FAd(X),,+)
into (N°, +1) by

p:(x,2")—n

for any (z,2") € FAd(X).
It is clear that ¢ is a bijection. In addition, for all (x,z"), (x,2™) €
FAd(X) we obtain

((z,2™) 4 (z,2™)p = (z,2" " o =n+m+1
=n+1m=(z,2")p+1 (x,2™)ep. O

4. The least abelian congruence

Let (D, ,F) be an arbitrary dimonoid, p be an equivalence relation
on D which is stable on the left and on the right with respect to each of
operations -, . In this case p is called a congruence on (D,,}F).

If f: D1 — Dy is a homomorphism of dimonoids, then the correspon-
ding congruence on D7 will be denoted by Ay. For a congruence p on a
dimonoid (D, ,F) the corresponding quotient-dimonoid is denoted by
(D,H,F)/p. A congruence p on a dimonoid (D, -, ) is called abelian if
(D,,F)/p is an abelian dimonoid.

As usual N denotes the set of all positive integers, and let n € N. For
an arbitrary set X by X we denote the copy of X, that is, X = {7 |z € X}
and put

Yn(l):f(xXx...xX, Yn(Q):Xxf(xXx...xX,
VO =X xXxXx...xX, ..., YW=XxXx. . xX.

n n
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We denote the union of n different copies Yn(i), 1 <i<n,of X" by
Y, and assume F'd(X) = U, Yn. Define operations < and > on Fd(X)
as follows:

(xla"'aj/ia"'axm) < (yla"'azjja"'ayn) — (1‘17"'7@7"',xm7y1a""yn)v

(xlr--adjviv”'axm) - (ylv"'agjja"'ayn) = (xla"wxmuyla”'7gj7"‘7yn)

for all (x1,.... %5 ..., 2m), (Y1, Ujy---,Yn) € Fd(X).
According to [1], (Fd(X), <, >) is the free dimonoid on X. Elements
of Fd(X) are called words, X is the generating set of (Fd(X),<,>).
Let (Fd(X),=<,>) be the free dimonoid on X and w € Fd(X). The
canonical form of w = (wy,..., W, ..., wy) is its representation in the
shape:

W=Wy = ... =W < ...=< W.

We call k as the length of w and denote it by [(w). For any z € X by
¢;(w) we denote the quantity of all elements z € X that are included in
the canonical form wy = ... = w; < ... < w; of w.

Define a binary relation o on F'd(X) as follows: u = (u1, ..., Uj, ..., Up)

and v = (v1,...,7j,...,0n) of Fd(X) are o-equivalent if for all z € X,
¢ (u) = ¢z (v) and u; = v;.

We note that ¢(u) = ¢;(v) for all x € X implies [(u) = I(v).

For example, for u = (a,b,a,c), v = (a,a) and w = (¢, a, a,b) we have
qa(p) = 2 for all p € {u,v,w}, I(v) =2 and (u,w) € o.
Theorem 2. The binary relation o is the least abelian congruence on the
free dimonoid (Fd(X),<,>).

Proof. 1t is easy to see that o is an equivalence relation. Assume that
w=(Ul,..., Ui,...,Up), 0 =(V1,...,0j,...,0p) € Fd(X) such that uov
and w = (wy, ..., Wk,...,w;) € Fd(X). Then

ULy e voy Uy evey Upy W,y .., W),
ULy ooy Ujyeeey U, W, .o, W)

b
ULy e vey Upy Wy e e vy Wy o oo, W),

Since u; = v; and

(u < w) =g (v <w), ¢ (u = w) = gz (v = w)
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for any z € X, we have (u < w)o(v < w) and (u > w)o(v = w).
Analogously we can show that (w < u)o(w < v) and (w > u)o(w > v).
Thus, o is a congruence.

In addition, we note that (v < v)o(v = u) for all u,v € Fd(X),
therefore (F'd(X), <, >)/o is abelian. A class of (Fd(X), <, >)/c which
contains w we denote by [w].

Further, we show that the quotient-dimonoid (Fd(X), <,>)/o is iso-
morphic to the free abelian dimonoid (FAd(X),,F) (see Theorem 1).

Define a mapping ¢ of (Fd(X),<,>)/o into (FAd(X),,F) by

[w]SO = (wk’wl W Whet - - - ’U}l)

for all words w = (wi,...,Wk,...,w;) € Fd(X) with l[(w) > 2, and
[w]p = (w1,¢€) for any w = w; € Fd(X). It is clear that ¢ is a bijection.

For all [u],[v] € (Fd(X),=<,>)/o, where v = (ui,...,Ui,...,Up),
v=(v1,...,0j,...,Un), we have

([u] <[] =

(W1, Wiy e Uy V1, oo, U]

= (Wi, UL+« o Ui Uit ]« + - U V] - . . Upy)

(ul,ul U1 Uit 1 - un) A (vj,01 ... V1041 .. . Ury)
= [ule = [v]ep.

Since dimonoids (Fd(X),<,>)/o and (FAd(X),,+) are abelian,

([ul = [v)e = ([v] < [ul)y = [v]p A [ulp = [u]p = [v]p

for all [u], [v] € (Fd(X),=<,>)/o.

Thus, (Fd(X), <, =)/o is free abelian and the composition 7%, where
nt: (Fd(X), <, =) = (Fd(X),<,>)/o is the natural homomorphism, is
an epimorphism of (Fd(X), <,>) on (FAd(X),,F) inducing the least
abelian congruence on Fd(X). From the definition of 7% o ¢ it follows that

Doy = 0. 0

5. Determinability

One of the venerable algebraic problems the first instance of which
was considered by E. Galois (see [12]) is the determinability of an al-
gebraic structure by its endomorphism semigroup. The determinability
problem for free algebras in a certain variety was raised by B. Plotkin [13].
For free groups this problem was solved by E. Formanek [14]. An analo-
gous problem for free semigroups and free monoids was decided in [15].
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Some characteristics for the enomorphism monoid of a free dimonoid
of rank 1 were obtained in [16]. Determinability of free trioids by their
endomorphism semigroups was proved in [17].

Recall that an algebra A of some class  is determined by its endo-
morphism semigroup in the class 2 if for any algebra B € {2 the condition
End(A) = End(B) implies A = B. Note that the converse implication is
obvious.

Let §x = (FAd(X),,F) be the free abelian dimonoid on X and
(t,u) € FAd(X), u=uf"uy? ... u%". From Theorem 1 it follows that an
arbitrary endomorphism = € End(Fx) has form:

(t,u)= = (t,€)€ A ((u1,€)E)™ ... A ((un, £)E)™",

where £ : X x ¢ — FAd(X) is any mapping.
An endomorphism 6,y € End(Fx) we call constant if (z,¢)0( ) =
(t,u) for all x € X.

Lemma 2.

(i) An endomorphism f of the free abelian dimonoid §x is constant if
and only if v f = f for all Y € Aut(Fx).

(ii) An endomorphism f of the free abelian dimonoid Fx is constant
idempotent if and only if f =0, ) for some x € X.

Proof. (i) Suppose that an endomorphism f € End(Fx) is constant and
Y € Aut(§x). Then f =0, for some (t,u) € FAd(X), in addition,

($35)(w9(t,u)) = ((ZE,E)LZ)) H(t,u) = (t7u) = ($>5)9(t,u)

for any x € X. Thus, 90 ) = 0(1.)-
Conversely, let ¢ f = f for all ¥ € Aut(Fx) and some f € End(Fx).
For fixed x € X we obtain

($a5)f = (l’,&) (¢f) = (($,6)¢) f= (y,e)f,

where (y,e) = (z,¢e)9. Since {(z,e)y | ¢ € Aut(Fx)} = X x &, we have
(a,e)f = (b,e)f for all a,b € X. From here f = 0, for (t,u) = (z,¢)f.

(ii) Let f € End(Fx) be a constant idempotent endomorphism. Then
f= Q(IM), (33, u) S FAd(X), and 6? = H(m,u) Since e(x,u)

_n2
(@) Oy = Dy

we have
O(z,u) = (2, 0(0,0) = Owu)0, oy = Ot 12100) -

It means that (z,u) = (z, w121 whence I(u) = 0, i.e., u=e.

Clearly, Q(Qx o = O(z,c) for all z € X. O



Yu. V. ZHUCHOK 341

Theorem 3. Let §x = (FAd(X),-,F) and §y = (FAd(Y),,F) be free
abelian dimonoids such that End(§x) = End(Fy). Then §x and §y are
isomorphic.

Proof. Let ¥ be an arbitrary isomorphism of End(Fx) into End(Fy). In
according to the statements of Lemma 2 for some constant idempotent
endomorphism 6, .,z € X, of the free abelian dimonoid §x and for all
a € Aut(Fx), we have abfl, .y = 0, ). Taking into account that ¥ is a
homomorphism, we obtain

Owey? = (00 ) ¥ = QW O, 0.

Since Aut(Fx)V = Aut(Fy), by the statement (i) of Lemma 2 we
have 6, )V is a constant endomorphism of §y. Then 0, /¥ = 0, . for
some (y,v) € FAd(Y), in addition, 0, . is an idempotent of End(Fy ).
By the statement (ii) of Lemma 2, v = ¢/, where £’ is the empty word of
FCm(Y) (see Section 3).

Define a map § : X — Y putting 2§ = y if and only if 0, /¥ = 0, o).
It is clear that £ is a bijection. Thus, abelian dimonoids §x and §y are
isomorphic. [

Using similar arguments, the fact that the free dimonoid also is
uniquely determined up to an isomorphism by its endomorphism semi-
group can be proved.
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