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ABSTRACT. Let R be a local ring with nonzero Jacobson
radical. We study monomial matrices over R of the form

0 .. 0
#1000
RS I
0 . tn-1 0

and give a criterion for such matrices to be reducible when n < 6,
$1...,8n € {0,1} and the radical is a principal ideal with generator
t. We also show that the criterion does not hold for n = 7.

Introduction

The problem of classifying, up to similarity, all the matrices over a
commutative ring (which is not a field) is usually very difficult; in most
cases it is “unsolvable” (wild), as in the case of the rings of residue classes
[1]. Special cases of matrices of small orders were considered by many
authors (see, e.g., [2]-]5]). In such situation, an important place is occupied
by irreducible matrices over rings. Our paper is devoted to this subject.
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Throughout the paper R denotes a commutative ring with identity,
which is not a field, and R* the group of its invertible elements.

We say that an n x n matrix M over R is reducible over R, or simply
reducible, if it is similar (over R) to a matrix

A B
N =
(5 )
where A; is an n; X n; matrix over R; i = 1,2, ny, ng > 0 (i. e. there
exists an invertible matrix X over R such that X *M X = N). Otherwise

we say that M is irreducible over R, or simply irreducible.
We consider the question: when is an n X n matrix over R of the form

0o ... 0 tSn
tsr . 0 0

M(t,s1,...,8,) = _— : : (1)
0 ... t5»t 0

with t € R irreducible?

The answer to this question is only known in some cases. Obviously,
M(t,s1,...,8y) is reducible if t*1 = ... = t*» with n > 1 (in particular,
t€{0,1} or s; =...=sy). If Ris local and its radical is a principle ideal
with generator ¢, then M(¢,0,...,0,1) is irreducible since its characteristic
polynomial 2"+ (—1)"*'¢ is irreducible; and M (t,0,1,...,1) is irreducible
(probed by Gudivok and Tylyshchak [6]).

1. Reducible matrices M (t,sy,...,s,)

Z[\] denotes the ring of polynomials of the variable A over the ring Z
of integer numbers. Its field of fractions is denoted by F'. By a basis of
a vector space we mean an ordered basis. As usual, n denotes a natural
number.

Proposition 1. Let s1,...,s, be natural numbers such that s = > 1" | s;
and n are not coprime. Then for any common divisors d > 1 of s and n,
the matrix

M =M\ $1,...,8n)

over Z[\] is similar (over Z[\]) to a matriz of the form

A D

where A s an % X 5 matriz.



BONDARENKO, BORTOS, DINIS, TYLYSHCHAK 173

Proof. Let s = dk, n = dm.

To illustrate the idea of the proof, we consider the following special
case:

n |s S1y.--,8n d|m|k
151910,0,0,0,0,0,1,1,1,1, 1,1, 1, 1,1 | 3] 5 |3

Let € = {e1,e2,...,e15} be the standard basis of the vector space F''°
and let ¢ be the linear operator on this vector space determined (in the
basis €) by the matrix M (A,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1), which has,
by definition, the form

000 O0OO0OO0OOTUO0OOTU OUOUOTG OO0 X
1 0000 OO OOOTGOTUOTUOUGO0OUDO
01 00O0O0OO0OUO0ODOTUOTO0OUO0OO0OTUO0OTO 0
0010O0O0OO0UO0OUO0OUO0ODO0OO0ODTQO0OTGO0OTUO0
00 01O0O0OO0O0ODO0OTUO0OTO0OTO0OUO0OTQO0OTO 0
000O01O0O0TU0TU0TUO0OTUO0OO0OOQO0OOQO0O°OQ0
00 0O0O0OT1TTO0TUO0UO0UO0OU0OO0OTQO0OTOUO0OTU0O0
00 0O0O0OO0OXNUOU O OUOUOO0OTUO0OTUO O
00 0O0OO0OO0OO0OMXNDOT OO OUOUOTU OSTO
00 O0O0O0OO0OOO0OMAXNDOOUOUO0OTUO0OTFUO 0
00 0O0O0OO0OO0OTUODOMXNOU ODOUO0OTU O
000 O0O0OO0OO0OO0OUOTUOMAXNDOU OU O@
00 0O0OO0OO0OO0OTUODOTUOTOMMXNDOD OO
00 0O0O0OO0OO0OO0OUOTUOOUOMXNDO@
00 0O0O0OO0OOOUO OTU OUOUOTU O0OMAXDO
Then
@(e1) = ea, p(e2) = es, p(e3) = ea,
p(es) = es, ¢(es) = e, p(eg) = er,
) ) ) = Aeio, (2)

We can write these equalities in the form of the following diagram:
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65%64

—

€6
e ”
(& \

/ :
s \
A é &1
€9 /J;

N

/
A\\ - €14

€11 X
A er2 > e13

where e; — e; and €i~> €j mean respectively that p(e;) = e; and
o(e;) = Aej.
Obviously, ¢'(e1) = Ae;. Put
b, = Mep + X305 (e1) 4+ ¢'%(e1) = A%ey + Neg + Meyy. (3)

On the diagram

€5 <~——e4

—

€6

/ . e3

)\é bll > €]

A €12 ~ > €13
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by --> e; indicate those e; which appeared in (3). Then
P (b1) = P (Noer + X0 (e1) + 1% (en))
= X%%(e1) + A2p!%(er) + ' (e1)
= X% (e1) + N30 0(er) + N
=Ney + /\6905(61) + )\3g010(€1)
= A3(\Se; + A3¢°(e1) + 0(er)) = N30,
Let us define b5, ..., b5 by recursion

by =@(bh),  by=o(bh),  by=¢(s), b5=b)). (4)

Clearly
,1 = )\661 + )\366 + )\4611,

and
@(bs) = XOeg + ATe1a + Mey = Nep + Neg + Aeqa.

Then (b)) = ¢ (b)) = A3b}. From (2)—(4) it follows that
b;» = \* e; + Y2 €545 + AY3I €10+5

for some integer a;; > 0; here i = 1,2,3, j =1,...,5. Put a;j = min{a;}.
Then '
a1:3, a2:3, a3:4, a4:5, a5:6,
whence a; > ;1 (j > 1), a1 + 3 = as.
Let 52']' = Q45 — Oy (Z = 1,2,3, j = 1,...,5). Then Bij > 0, and
obviously that for any j there is 1 < u; < 3 such that 5, ; = 0.
Put

d
by = Z)‘ﬁije(ifl)5+j
=1
or more detail
by = )\361 + e+ Aerr, bo = )\362 +e7+ )\2612,
bs = )\263 +eg + )\2613, by = Xeg + eg + )\2614, (5)

bs = e5 + e1p + A2eqs.
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Then
A¥hy = A3by = A0y 4+ Aeg 4+ ey = b,

A%2Dhy = A3by = AOey + N3ey + Neip = 1),
A%by = Alb3 = A0z + Meg + \Oey3 = b4,
A, = )\554 = )\664 + )\569 + )\7614 = bip
A¥bs = \obs = AOes + AOeqg + Aeis = bf.
It follows from (4) that p(bj_1) = A*~%~1b; (j =2,...,5) and ¢(bs) =
A3ter=asp (since ¢(bs) = A3b)). Then
@(b1) = X¥73by = by, (ba) = A*3by = Abs,
@(b3) = XN>7Ubg = Xbs,  @(ba) = A570by = Abs, (6)
90(b5) = )\3+3_6b1 = bl.
Denote by @ the following basis of F'1°:

a = {eq, er, €s, €y, €5, €1, €2, €3, €4, €10, €11, €12, €13, €14, €15}-

The transition matrix from the basic € to the basis @ is the (permuta-
tion) matrix

0000010000O00O0GO0O0O
0000001000O00O0GO0O0O
000000O0OT10000O0GO0O0O
000000O0D0O0T10O00O0GO0O0O
0000100000O0O0GO0O0O
1000000O00O0OOOGODO
01000000O00O0O0O0GO0O0O

P=|l0010000000O0GO0O0O0 0 |€cGL;Z).
0001000000O00O0GO0O0O
000000O0DO0O0T1O000O0O0O
000000O0DO0O0OOTI1O0O0O0O
000000O0DO0O0O0O0OT1O0O0O0
000000O0DO0O0OO0O0OTLO0O
000000O0DO0O0O0O0O0GO0T1O
000000O0DO0O0O0O0O0GO0O0 1

From (5) it follows that

b= {b1,b2,b3,b4,bs5,€1, €2, €3, €4, €10, €11, €12, €13, €14, €15 }
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is a basis of F''®. The transition matrix from the basic @ to the basis b is

1 0 0 0 0 0O0O0O0OO0OO0OO0OO0O0O0
o1 0 0 0O O0O0OO0OO0OO0OO0OO0OO0OO0OO0
o 0 1 0 O OO0OOOOO0OO0OTO0OTGO0OO©O
o 0o 0 1 0 0O0O0OO0OO0OO0OO0OO0OO0OTO0
o 0 0 0 1 0O0O0OO0OO0OO0OO0O0OO0OO0
M0 0 0 0 10000O0O0O0O0O
02 0 0 0 0100O0O0O0O0TO0TO
C= 0 0 A2 0 0 0O0100O0O0O0O0O
o 0 0 A 0 0O0OO0OT1O0O0O0OO0OTO0OO O
o 0o 0 01 00O0O0O1O0O0O0O0TO
A 0 0O 0O 0 0O0OO0OO0OO0OT1O0TO0OO0OOQO
0 X2 0 0 0 00O0O0DO0OO0OT1O0O00O0
0 0 A2 0 0 0O0O0OO0OO0GO0GO0T1O0O
0 0 0 A2 0 00O0O0DO0O0GO0ODO0T10
0 0 0 0 A200000U0U0U0TO01

(belonging obviously to GL15(Z[\])).
Consider now the matrix S = PC € GLy,(Z[)]), which is the transition
matrix from the basic € to the basis b. It follows from (6) that

A D
—1 _
sws- (4 2) .
where

00 0 01

10 0 00

A=1 0 X 0 0 0

00 X 0O

00 0 A O
and B is an 10 x 10 matrix over the ring Z[\]. This completes the proof

in our special case.

Now we proceed to the general case. Recall that s = "1 ; s; = dk,
n = dm.

Let ¢ be the linear operator on the vector space F" determined by the
matrix M in the standard basis € = {ey, €2, ..., e,}. Then p(e;) = A*leq,
p(ea) = N2es, ..., p(ep—1) = A*n—Ley, p(e,) = Ameq. Thus

ANieiv1, 1< n,
cp(el) = { Asie-il_l (8)

T =n.
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Obviously, ¢"(e1) = ADoici Sie; = \%ey. Let

d
D IE S O] (9)
i=1
Then .
P (b)) = @™ (Z A(d‘i)’“w(i‘l)m(el)> =
=1
d d—1
Z)\(dfz)kgpzm(el) _ )\(dfz)k(pzm(el) + Qde(Bl) _
i=1 i=1
d_l . . d . .
SOdm(el) + Z )\(d—z)kspzm(el) _ SDn(el) + Z}\(d—z+1)k¢(z—1)m(el) _
=1 =2
d ) ) d
e1 + Z)\(d—z—kl)kw(z—l)m(el) _ )\dkel + Z)\(d—z+1 kQO( )m(el) _
1=2 =2
d . d . .
Z)\(d—l-‘rl)k l)m(el) — /\k (Z A(d_l)k@(z_l)m(€1>> — /\kbll
=1 =1

Let us define b by the recursion
Then ¢(b),) = m(b’l) = Akb’l. From (8)—(10), it follows that

d

_ Qg

=Y XMl 1me;
=1

for some oj; € Z (1 =1,...,d, j=1,...,m). Moreover,
d
by = Z A o (e (i—1)maj—1) =
d
— Z )\aij—1+5(i71)m+j71e(i_l)m+j (] — 27 . 7m)'

=1
- d,

Consequently, a;j = aij—1 + S(i—1)m4j—1- Thus a;; > a;j1 (i=1,.

j=2,...,m). Puta]:mm{a,]} (j =1,....,m). Thenajz%l

(j > 1). Since

d d

Z)‘ai1+ke(i—1)m+1 = NV = (b)) = Z)\aimSO(e(i—l)m+m) =
i=1

=1
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d d—1
= Yo AT plein) = 30 A lein) + A peum) =
j i=1
d—1 d—1
= Z )\ainz+5im (eierl) + )\Oédm,+5n61 — Aadm+5nel + Z )\airn+5im (eierl) —
i=1 =1
d
= At Foney ) AN D ey 1)
i=2
we deduce that a1 +k > o1 (1 =2,...,d). Moreover, a1 +k > agm.

Thus a1 + k > ay,.
Put Bijj =iy —aj (i=1,...,d, j
1,j and, obviously, for any j there is 1

= m). Then B;; > 0 for all
§ < d such that B, ; = 0. Let

d
o —aj
= E AMITY e 1yma -
i=1

Then
d

Ab; =D A e tymy = b,
i=1

and it follows from (10) that ¢(bj_1) = X*~%~1b; (j = 2,...,m). Since
(b)) = Ab}, we deduce that o(b,,) = \FFa—amp Let f(j — 1) =
aj — aj_1, B(m) = k+ a1 — ap. Clearly 5(j) > 0 (j = 1,...,m).
Moreover, p(bj_1) = AUV, (5 =2,...,m), p(bn) = A*™p,.

Consider the vectors €(,, —1)m+1> €(ua—1)m+2> - -+ » €(ir—1)m+m (belong-
ing to the original basic €). They are distinct because their indices are not
congruent modulo m. Therefore we can extend these vectors to a basis

a= {e(ulfl)erla Cua—1)m425 - =5 E(um—1)m+m> ei/erl’ SO ez’n}

of F™ which is equal, up to a permutation, to the basic € = {ej,...,e,}.
The transition matrix from the basic @ to a basis

B:{bl, . ma€’+1,---7€i’n}
has the form
1 0 0 0
0 .. 1 0O ... 0
C = )\67n+1,1 . )\5'm+1,7n 1 . O
D N |
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where 0;; > 0 (i =m+1,...,n, j=1,...,m). Obviously, C € GL,(Z[)])
(as an matrix over Z[A] with determinant 1).

Let P € GL,(Z) be a permutation matrix which is the transition
matrix from the basic € to the basis @. Then the matrix S = PC is the
transition matrix from the basic € to the basis b, and since ¢(bj_1) =

MG=Dp: (5 =2,...,m), o(bm) = N™b; we deduce that

S‘lMS:<A D)

0 B
where
0 0 0 A\B(m)
M@ 0 0
A= MN(2) 0 0
0 0 AWH) 0
and B is a (n —m) X (n —m) matrix. O

Theorem 1. Let R be a commutative local ring, and let n > 0 and
S1y...y8n > 0 be integer numbers such that n and s = >.;" | s; are not
coprime. Then for any common divisors d > 1 of n and s, and any t € R
the matrix

0 0 ton

= 0 0
M(t,s1,...,8,) = .

0 10

over the ring R s reducible.

The proof follows from Proposition 1 and the existence of a (unique)
homomorphism of rings f: Z[A] — R such that f(1) =1, f(\) =t.

2. Irreducible matrices M(t,sq,...,S,)

Throughout this section all matrices are considered over a commutative
local ring R with Jacobson radical Rad(R) = tR, t # 0, and their similarity
are considered also over R. For a matrix M, we denote by M its reduction
modulo the radical. As above n denotes a natural number.
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Lemma 1. Let sy,...,s, € {0,1} with s; = 0 for at least one i €
{1,...,n}. Then the matriz M = M(t, s1,...,5sy) is not similar to ma-
trices of the form

tA D A D
Aﬁ_(o B)J%_<O w)’

where A is an v xr matriz and B is an (n—r) x (n—r) matriz (0 < r < n).

Proof. Suppose that
C'MC = M,

where C' = (¢;j)1<ij<n € GLy,(R), or equivalently,

MC = CM,
1.
0 ... 0 tsn
5 L. 0 0 tA D
CZC(O B) (11)
0 ... t»1 0

Fori,j € {1,...,n}, the scalar equality (MC);; = (CM);; is denoted
by (11,i7). Put ¢; = (¢, - - -, Cir)-

We write the equalities (11,15), (11,25),...,(11,nj), where, in all
cases, j runs from 1 to r, respectively in the form

t°re, =t A, t7cp = tesA, ..., " le,_1 = te,A. (12)

Since Rad(R) is generated by ¢ # 0, we have the following simple fact:
if t5y = t6 for some s € {0,1}, 7,6 € R then either s = 0 and consequently
v = td, or s = 1 and consequently t(y — d) = 0; so, respectively, 7 = 0
or 7 = 6. If one put ¢, 1 = c1, then by this fact & = 0 or ¢; = ¢;;1 A for

any ¢ = 1,...,n. Because s; = 0 for at least one i, we have that ¢, =0
for some [ € {1,...,n}. By (12) we successively obtain ¢; = ...¢_1 = 0,
¢, = 0 and ¢4 = ...¢,—1 = 0. Thus the matrix C' in not invertible
modulo ¢ and consequently is not invertible itself, a contradiction.

The case C~'MC = Mj is considered analogously. O
Lemma 2. Let s1,...,8, > 0 be integers with s; # 0 for at least one
i€ {l,...,n}. The matriz M = M(t, s1,...,Sy) is not similar to a matriz

A D
-(03)
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where A is an rxr matriz and B is an (n—r) x (n—7r) matriz (0 < r < n),
A or B is invertible.

The lemma follows at once from the nilpotency of M.
Lemma 3. The matriz M(t,0,0,0,1,1) is irreducible.

Proof. Assume that the matrix M (t,0,0,0,1,1) is reducible. Then for
some matrix C' € GL5(R) we have

A D
M(t,0,0,0,1,1)0_0< . B). (13)

where A is an s X s matrix and B is a (5 —s) x (5 —s) matrix (0 < s < 5).

Since the matrix M(¢,0,0,0,1, 1) is similar to its transpose, we can
interchange the matrices A and B in (13), and therefore, without loss of
generality, we can assume that s <5 —s,i.e.s=1or s =2.

In the case s = 1 either A € tR or A € R*, and we have a contradiction
with Lemmas 1 or 2, respectively.

Let now s = 2 and let C' = (c¢45)1<i,j<5, ¢p = (cp1,¢p2) (p=1,...,5).
Then from the equality (13) we obtain

tecs = 1A, c1 = A, co=c3A, c3=c4A, tcy = c5A. (14)

By Lemmas 1 and 2 rank(A) # 0 and rank(A) # 2. Consequently
rank(A) = 1. Since the matrix A is nilpotent, we can assume, without

loss of generality, that
A taa 1+1tp ’
ty to

where a, 3,7,6 € R. Substituting A in (14), we get the following equalities
(which for convenience are written in pairs):

(tes1, tese) = (ciita+ ciaty, ci1+ ciitf + ciatd),

(c11, c12) = (carta+ caoty, co1 + cotf + coatd),
(c21, ¢22) =
(cs1, ¢32) = (carta+ caoty, ca1 + catf + cgatd),

( )
( )
(031ta + c3aty, c31 +c3tB+ 632755), (15)
( )
( )

(tC41, tC42) = csita + 65275’}/, c51 + C51t5 —+ C52t5 .

From the equalities (15) we obtain that ¢1; = €91 = ¢31 = 0 = C5;.
Further, 19 = 0 (since c¢12 = ca21 + 21t + c20td and ¢o; = 0), and
Coo =0 (since Co9 = c31 + ¢31tB + ¢32td and 31 = 0).
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Finally, since ¢4 = €510 + C507y (by tcy1 = cxita + 65275’}/) and 50 =
C21Q + Co27Y +6113+ G120 (by tesa = c11 + c11t + c12td and ¢11 = corta +
cooty) we have that ¢41 = 0 (taking into account the above equalities of
the form ¢; = 0).

Thus det(C) = 0, a contradiction. O

Lemma 4. The matriz M(t,0,0,1,1,1) is irreducible.

Proof. Assume that M (¢,0,0,0,1,1) is reducible. Then for some matrix
C € GL5(R) we have

A D
M(t,0,0,l,l,l)C-C( 0 B). (16)

where A is an s X s matrix and B is a (5 —s) x (5 — s) matrix (0 < s < 5).
As in the proof of Lemma 3, we can assume that s <5—s,i.e. s=1
or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.
Let C = (cij)i<ij<s, ¢p = (cp1,¢p2) (p = 1,...,5). Then from the
equality (16) we obtain

tC5 = ClA, Cc1 = CQA, Cy = CgA, th = C4A, tcy = C5A. (17)

By Lemmas 1 and 2 rank(A) = 1. Since the matrix A is nilpotent we can
assume, without loss of generality, that

[ ta 141t
A_<t’y ) )

where a, 3,7,0 € R. Substituting A in (17), we get the following equalities:

(tes1, tesp) = (crita+cppty, cin + entf + ciatd),
(c11, c12) = (carta+ canty, ca1 + ca1tf + caotd),
(c21, c€22) = (eaita+caaty, c31+ caitfB + c3otd), (18)
(tesr, tesa) = (cmto+ caoty, car + catf + caatd),
(tC41, tC42) = (051ta + csoty, c51 + C51tﬁ + C52t6).

From the equalities (18) we have ¢ = 21 = 0 = €41 = @51, and
C31 = C427 (since tez) = cqrtar + cqoty and ¢4 = 0),
Coo = C31 (since cog = c31 + €31t + c39td),
C12 = 0 (since c12 = 21 + €21t + co2td and ¢o1 = 0),
C527 = 0 (since tcqy = csita+ csoty and ¢49 = 51 = 0),
Cs2 = C317 (since teso = i1 + c11tf + ciatd,

c11 = carta + cooty and €1q = G = €12 = 0, o2 = C31).
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If % = 0 then €31 = 0; if ¥ # 0 then v € R* and hence ¢52 = 0, €31 = 0.

Therefore, in both the cases det(C') = 0, a contradiction. O
Lemma 5. The matriz M(t,0,0,1,0,1) is irreducible.

Proof. Assume that M (t,0,0,1,0,1) is reducible. Then for some matrix
C € GL5(R) we have

A D
M(t,0,0,1,0,1)0_0< 0 B). (19)

where A is an s X s matrix and B is a (5 —s) x (5 —s) matrix (0 < s < 5).

As in the proof of Lemma 3, we can assume that s <5 —s,i.e. s =1
or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.
Let C' = (Cz’j)lgi,j§5> Ccp = (Cpl, sz) (p=1,...,5). Then from the equality
(19) we obtain

tC5 = ClA, C1 = CQA, Cy = CgA, th = C4A, Cq4 = C5A. (20)

By Lemmas 1 and 2 rank(A) = 1. Since the matrix A is nilpotent we
can assume, without loss of generality, that

[ ta 1+1t8
A_<t’y ) )

where a, 3,7, € R. Substituting A in equality (20), we get

(tesi,tesa) = (ciita+ ciaty, cin + ciitB + ciatd),

(c11,c12) = (carta + caaty, ca1 + a1t + caatd),

(ca1,c22) = (esita+ caaty, c31 + a1t + c3atd), (21)
(tesi,tes) = (cartor+ cqaty, a1 + cartB + cqtd),

(ca1,ca2) = (csita + csaty, cs1 + cs1tf + csatd).

From equality (21) we have ¢17 = €21 = €41 = 0, and
¢12 = 0 (since 12 = c21 + 21t + c22td and C21 = 0),
¢51 = 0 (since tcs1 = ciita+ cioty and ¢ = ¢12 = 0),
€42 = 0 (since cg2 = ¢51 + 510 + c52td and ¢51 = 0),
C31] = C4100+Cy2y¥ =0 (since tc31 = cqrta - cqotry

and G4 = Cyo = O).

Therefore det(C') = 0, a contradiction. O

Lemma 6. The matriz M(t,0,1,1,0,1) is irreducible.



BONDARENKO, BORTOS, DINIS, TYLYSHCHAK 185

Proof. Assume that M (¢,0,1,1,0,1) is reducible. Then for some matrix
C € GL5(R) we have

A D
M(t,0,1,1,0,1)0_0< 0 B). (22)

where A is an s X s matrix and B is a (5 —s) x (5 —s) matrix (0 < s < 5).
As in the proof of Lemma 3, we can assume that s <5 —3s,i.e. s =1
or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.
Let C = (cij)i<ij<s, ¢p = (cp1,¢p2) (p = 1,...,5). Then from the
equality (22) we obtain

tes = c1A, c¢1 = A, teg = c3A, teg = ciA, ¢y = c5A. (23)

By Lemmas 1 and 2 rank(A) = 1. Since the matrix A is nilpotent, we
can assume, without loss of generality, that

|t 1418
A‘(m to )
where «, 3,7, € R.

Substituting A in equality (23), we get

(tC51, tC52) (ClltOé + 012t'y, C11 + Clltﬁ + Clgté),
(c11, c12) = (carta+ canty, ca1 + ca1tf + caotd),
(t021, tCQQ) = (031ta + c3oty, c31 + c31tf + 632255), (24)
(tesr, tesn) = (cato+ caoty, car + catf + caatd),
(ca1, ca2) = (csita+csaty, cs1+ cs1tf + csotd).

From equality (24) we obtain that ¢;; = ¢4 = 0 = ¢3; and

C12 = C21 (since c12 = c21 + c21tB + caatd),

Cs51 = C127 (since tcs; = epita+ ¢ty and ¢é17 = 0),

Co1 = C327 (since teca) = esita + c3oty and €31 = 0)

C42 = C51 (since C42 = C51 + C51tﬁ + C52t5),

€427 = 0 (since tezp = cqita+ eqoty and 31 = €41 = 0).

If ¥ =0 then @5y = 0 and éo1 = 0. If ¥ £ 0 then v € R*, ¢4 = 0

and hence ¢5; = 0, €12 = 0 and ¢ = 0. Therefore, det(C) = 0, a
contradiction. O
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3. Main result

Theorem 2. Let R be a commutative local ring with radical Rad(R) =
tR, t # 0, and let s1,...,8, € {0,1}. If 0 < n < 6, then the matriz
M(t,s1,...,Sn) over R is irreducible if and only if n and s = > ;" s; are
coprime.

Proof.  The necessity part follows from Theorem 1. Let now n and
Yoty s; are coprime. Then the matrix M(¢,s1,...,sy,) is, up to cyclic
permutations of s;, one of the following;:

M(t7 O? 1)7 M(t7 O? 0? 1)7 M(t? 07 0? 07 1)7

M (t,0,0,0,0,1), M(t,0,0,0,0,0,1), (25)

M(t7 07 17 1)7 M(t7 07 17 17 1)7 (26)
M(t,0,1,1,1,1), M(t,0,1,1,1,1,1),
M(t,0,0,0,1,1), M(t,0,0,1,1,1), (27)
M(t,0,0,1,0,1), M(t,0,1,1,0,1).

The irreducibility of the matrices (25) are obvios. The matrices (26)
are irreducible by [6], and the matrices (27) are irreducible by Lem-
mas 3-6. 0

The last theorem does not hold if n > 6. For example, if R is a
local ring of length 2 and Rad(R) = tR (t # 0, t> = 0), the matrix
M = M(t,0,0,0,0,1,1,1) (with n = 7 and s + --- + s7 = 3 to be
coprime) is reducible over R because, for

0010000
£t 001000
0t 00100

C = 1000000 |,
0100000
1000010
0t 00001
0 ¢t/00 1 00
1 0/00 000
0 0/00 00 ¢
ClMC= | 00|10 —t 00
0 0[01 000
0 0[0 0 -1 00
0 0[00 0¢ O
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