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Abstract. Let R be a local ring with nonzero Jacobson
radical. We study monomial matrices over R of the form





0 ... 0 t
sn

t
s1 ... 0 0

...
. . .

...
...

0 ... t
s

n−1 0



 ,

and give a criterion for such matrices to be reducible when n ≤ 6,
s1 . . . , sn ∈ {0, 1} and the radical is a principal ideal with generator
t. We also show that the criterion does not hold for n = 7.

Introduction

The problem of classifying, up to similarity, all the matrices over a
commutative ring (which is not a field) is usually very difficult; in most
cases it is “unsolvable” (wild), as in the case of the rings of residue classes
[1]. Special cases of matrices of small orders were considered by many
authors (see, e.g., [2]–[5]). In such situation, an important place is occupied
by irreducible matrices over rings. Our paper is devoted to this subject.
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172 Reducibility and irreducibility of monomial matrices

Throughout the paper R denotes a commutative ring with identity,
which is not a field, and R∗ the group of its invertible elements.

We say that an n × n matrix M over R is reducible over R, or simply
reducible, if it is similar (over R) to a matrix

N =

(

A1 B

0 A2

)

,

where Ai is an ni × ni matrix over R; i = 1, 2, n1, n2 > 0 (i. e. there
exists an invertible matrix X over R such that X−1MX = N). Otherwise
we say that M is irreducible over R, or simply irreducible.

We consider the question: when is an n × n matrix over R of the form

M(t, s1, . . . , sn) =













0 . . . 0 tsn

ts1 . . . 0 0
...

. . .
...

...
0 . . . tsn−1 0













(1)

with t ∈ R irreducible?
The answer to this question is only known in some cases. Obviously,

M(t, s1, . . . , sn) is reducible if ts1 = . . . = tsn with n > 1 (in particular,
t ∈ {0, 1} or s1 = . . . = sn). If R is local and its radical is a principle ideal
with generator t, then M(t, 0, . . . , 0, 1) is irreducible since its characteristic
polynomial xn +(−1)n+1t is irreducible; and M(t, 0, 1, . . . , 1) is irreducible
(probed by Gudivok and Tylyshchak [6]).

1. Reducible matrices M(t, s1, . . . , sn)

Z[λ] denotes the ring of polynomials of the variable λ over the ring Z

of integer numbers. Its field of fractions is denoted by F . By a basis of
a vector space we mean an ordered basis. As usual, n denotes a natural
number.

Proposition 1. Let s1, . . . , sn be natural numbers such that s =
∑n

i=1 si

and n are not coprime. Then for any common divisors d > 1 of s and n,

the matrix

M = M(λ, s1, . . . , sn)

over Z[λ] is similar (over Z[λ]) to a matrix of the form

N =

(

A D

0 B

)

,

where A is an n
d

× n
d

matrix.



Bondarenko, Bortos, Dinis, Tylyshchak 173

Proof. Let s = dk, n = dm.

To illustrate the idea of the proof, we consider the following special
case:

n s s1, . . . , sn d m k

15 9 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 3 5 3

Let e = {e1, e2, . . . , e15} be the standard basis of the vector space F 15

and let ϕ be the linear operator on this vector space determined (in the
basis e) by the matrix M(λ, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1), which has,
by definition, the form





























































0 0 0 0 0 0 0 0 0 0 0 0 0 0 λ

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 λ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 λ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 λ 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 λ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 λ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 λ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 λ 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 λ 0





























































.

Then

ϕ(e1) = e2, ϕ(e2) = e3, ϕ(e3) = e4,

ϕ(e4) = e5, ϕ(e5) = e6, ϕ(e6) = e7,

ϕ(e7) = λe8, ϕ(e8) = λe9, ϕ(e9) = λe10,

ϕ(e10) = λe11, ϕ(e11) = λe12, ϕ(e12) = λe13,

ϕ(e13) = λe14, ϕ(e14) = λe15, ϕ(e15) = λe1.

(2)

We can write these equalities in the form of the following diagram:
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e5
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e4
oo
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where ei
// ej and ei

λ
// ej mean respectively that ϕ(ei) = ej and

ϕ(ei) = λej .

Obviously, ϕ15(e1) = λ9e1. Put

b′
1 = λ6e1 + λ3ϕ5(e1) + ϕ10(e1) = λ6e1 + λ3e6 + λ4e11. (3)

On the diagram
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ee
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λ

��
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λ
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λ
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λ
**
e12

λ
// e13

λ

99
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b′
1

// ei indicate those ei which appeared in (3). Then

ϕ5(b′
1) = ϕ5(λ6e1 + λ3ϕ5(e1) + ϕ10(e1))

= λ6ϕ5(e1) + λ3ϕ10(e1) + ϕ15(e1)

= λ6ϕ5(e1) + λ3ϕ10(e1) + λ9e1

= λ9e1 + λ6ϕ5(e1) + λ3ϕ10(e1)

= λ3(λ6e1 + λ3ϕ5(e1) + ϕ10(e1)) = λ3b′
1.

Let us define b′
2, . . . , b′

5 by recursion

b′
2 = ϕ(b′

1), b′
3 = ϕ(b′

2), b′
4 = ϕ(b′

3), b′
5 = ϕ(b′

4). (4)

Clearly
b′

1 = λ6e1 + λ3e6 + λ4e11,

b′
2 = ϕ(b′

1) = λ6e2 + λ3e7 + λ5e12,

b′
3 = ϕ(b′

2) = λ6e3 + λ4e8 + λ6e13,

b′
4 = ϕ(b′

3) = λ6e4 + λ5e9 + λ7e14,

b′
5 = ϕ(b′

4) = λ6e5 + λ6e10 + λ8e15,

and
ϕ(b′

5) = λ6e6 + λ7e12 + λ9e1 = λ9e1 + λ6e6 + λ7e12.

Then ϕ(b′
5) = ϕ5(b′

1) = λ3b′
1. From (2)–(4) it follows that

b′
j = λα1j ej + λα2j e5+j + λα3j e10+j

for some integer αij ≥ 0; here i = 1, 2, 3, j = 1, . . . , 5. Put αj = min
i

{αij}.

Then
α1 = 3, α2 = 3, α3 = 4, α4 = 5, α5 = 6,

whence αj ≥ αj−1 (j > 1), α1 + 3 = α5.
Let βij = αij − αj (i = 1, 2, 3, j = 1, . . . , 5). Then βij ≥ 0, and

obviously that for any j there is 1 ≤ µj ≤ 3 such that βµj j = 0.
Put

bj =
d
∑

i=1

λβij e(i−1)5+j

or more detail

b1 = λ3e1 + e6 + λe11, b2 = λ3e2 + e7 + λ2e12,

b3 = λ2e3 + e8 + λ2e13, b4 = λe4 + e9 + λ2e14,

b5 = e5 + e10 + λ2e15.

(5)
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Then
λα1b1 = λ3b1 = λ6e1 + λ3e6 + λ4e11 = b′

1,

λα2b2 = λ3b2 = λ6e2 + λ3e7 + λ5e12 = b′
2,

λα3b3 = λ4b3 = λ6e3 + λ4e8 + λ6e13 = b′
3,

λα4b4 = λ5b4 = λ6e4 + λ5e9 + λ7e14 = b′
4,

λα5b5 = λ6b5 = λ6e5 + λ6e10 + λ8e15 = b′
5.

It follows from (4) that ϕ(bj−1) = λαj−αj−1bj (j = 2, . . . , 5) and ϕ(b5) =
λ3+α1−α5b1 (since ϕ(b′

5) = λ3b′
1). Then

ϕ(b1) = λ3−3b2 = b2, ϕ(b2) = λ4−3b2 = λb3,

ϕ(b3) = λ5−4b3 = λb4, ϕ(b4) = λ6−5b4 = λb5,

ϕ(b5) = λ3+3−6b1 = b1.

(6)

Denote by a the following basis of F 15:

a = {e6, e7, e8, e9, e5, e1, e2, e3, e4, e10, e11, e12, e13, e14, e15}.

The transition matrix from the basic e to the basis a is the (permuta-
tion) matrix

P =





























































0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





























































∈ GL15(Z).

From (5) it follows that

b = {b1, b2, b3, b4, b5, e1, e2, e3, e4, e10, e11, e12, e13, e14, e15}
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is a basis of F 15. The transition matrix from the basic a to the basis b is

C =





























































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
λ3 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 λ3 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 λ2 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 λ 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
λ 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 λ2 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 λ2 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 λ2 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 λ2 0 0 0 0 0 0 0 0 0 1





























































(belonging obviously to GL15(Z[λ])).
Consider now the matrix S = PC ∈ GLn(Z[λ]), which is the transition

matrix from the basic e to the basis b. It follows from (6) that

S−1MS =

(

A D

0 B

)

(7)

where

A =















0 0 0 0 1
1 0 0 0 0
0 λ 0 0 0
0 0 λ 0 0
0 0 0 λ 0















and B is an 10 × 10 matrix over the ring Z[λ]. This completes the proof
in our special case.

Now we proceed to the general case. Recall that s =
∑n

i=1 si = dk,
n = dm.

Let ϕ be the linear operator on the vector space F n determined by the
matrix M in the standard basis e = {e1, e2, . . . , en}. Then ϕ(e1) = λs1e2,
ϕ(e2) = λs2e3, . . . , ϕ(en−1) = λsn−1en, ϕ(en) = λsne1. Thus

ϕ(ei) =

{

λsiei+1, i < n,

λsie1, i = n.
(8)
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Obviously, ϕn(e1) = λ
∑n

i=1
sie1 = λse1. Let

b′
1 =

d
∑

i=1

λ(d−i)kϕ(i−1)m(e1). (9)

Then

ϕm(b′
1) = ϕm

(

d
∑

i=1

λ(d−i)kϕ(i−1)m(e1)

)

=

d
∑

i=1

λ(d−i)kϕim(e1) =
d−1
∑

i=1

λ(d−i)kϕim(e1) + ϕdm(e1) =

ϕdm(e1) +
d−1
∑

i=1

λ(d−i)kϕim(e1) = ϕn(e1) +
d
∑

i=2

λ(d−i+1)kϕ(i−1)m(e1) =

= λse1 +
d
∑

i=2

λ(d−i+1)kϕ(i−1)m(e1) = λdke1 +
d
∑

i=2

λ(d−i+1)kϕ(i−1)m(e1) =

d
∑

i=1

λ(d−i+1)kϕ(i−1)m(e1) = λk

(

d
∑

i=1

λ(d−i)kϕ(i−1)m(e1)

)

= λkb′
1.

Let us define b′
j by the recursion

b′
j = ϕ(b′

j−1), (j = 2, . . . , m). (10)

Then ϕ(b′
m) = ϕm(b′

1) = λkb′
1. From (8)–(10), it follows that

b′
j =

d
∑

i=1

λαij e(i−1)m+j

for some αij ∈ Z (i = 1, . . . , d, j = 1, . . . , m). Moreover,

b′
j = ϕ(b′

j−1) =
d
∑

i=1

λαij−1ϕ(e(i−1)m+j−1) =

=
d
∑

i=1

λαij−1+s(i−1)m+j−1e(i−1)m+j (j = 2, . . . , m).

Consequently, αij = αij−1 + s(i−1)m+j−1. Thus αij ≥ αi j−1 (i = 1, . . . , d,

j = 2, . . . , m). Put αj = min
i

{αij} (j = 1, . . . , m). Then αj ≥ αj−1

(j > 1). Since

d
∑

i=1

λαi1+ke(i−1)m+1 = λkb′
1 = ϕ(b′

m) =
d
∑

i=1

λαi mϕ(e(i−1)m+m) =
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=
d
∑

i=1

λαi mϕ(eim) =
d−1
∑

i=1

λαi mϕ(eim) + λαd mϕ(edm) =

=
d−1
∑

i=1

λαi m+sim(eim+1) + λαd m+sne1 = λαd m+sne1 +
d−1
∑

i=1

λαi m+sim(eim+1) =

= λαd m+sne1 +
d
∑

i=2

λαi−1,m+s(i−1)m(e(i−1)m+1)

we deduce that αi1 + k ≥ αi−1,m (i = 2, . . . , d). Moreover, α11 + k ≥ αd m.
Thus α1 + k ≥ αm.

Put βij = αij − αj (i = 1, . . . , d, j = 1, . . . , m). Then βij ≥ 0 for all
i, j and, obviously, for any j there is 1 ≤ µj ≤ d such that βµj ,j = 0. Let

bj =
d
∑

i=1

λαij−αj e(i−1)m+j .

Then

λαj bj =
d
∑

i=1

λαij e(i−1)m+j = b′
j ,

and it follows from (10) that ϕ(bj−1) = λαj−αj−1bj (j = 2, . . . , m). Since
ϕ(b′

m) = λkb′
1, we deduce that ϕ(bm) = λk+α1−αmb1. Let β(j − 1) =

αj − αj−1, β(m) = k + α1 − αm. Clearly β(j) ≥ 0 (j = 1, . . . , m).
Moreover, ϕ(bj−1) = λβ(j−1)bj (j = 2, . . . , m), ϕ(bm) = λβ(m)b1.

Consider the vectors e(µ1−1)m+1, e(µ2−1)m+2, . . . , e(µm−1)m+m (belong-
ing to the original basic e). They are distinct because their indices are not
congruent modulo m. Therefore we can extend these vectors to a basis

a = {e(µ1−1)m+1, e(µ2−1)m+2, . . . , e(µm−1)m+m, ei′

m+1
, . . . , ei′

n
}

of F n which is equal, up to a permutation, to the basic e = {e1, . . . , en}.
The transition matrix from the basic a to a basis

b = {b1, . . . , bm, ei′

m+1
, . . . , ei′

n
}

has the form

C =























1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0

λδm+1,1 . . . λδm+1,m 1 . . . 0
...

. . .
...

...
. . .

...
λδn1 . . . λδnm 0 . . . 1






















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where δij ≥ 0 (i = m+1, . . . , n, j = 1, . . . , m). Obviously, C ∈ GLn(Z[λ])
(as an matrix over Z[λ] with determinant 1).

Let P ∈ GLn(Z) be a permutation matrix which is the transition
matrix from the basic e to the basis a. Then the matrix S = PC is the
transition matrix from the basic e to the basis b, and since ϕ(bj−1) =
λβ(j−1)bj (j = 2, . . . , m), ϕ(bm) = λβ(m)b1 we deduce that

S−1MS =

(

A D

0 B

)

,

where

A =

















0 0 . . . 0 λβ(m)

λβ(1) 0 . . . 0 0

0 λβ(2) . . . 0 0
...

...
. . .

...
...

0 0 . . . λβ(m−1) 0

















,

and B is a (n − m) × (n − m) matrix.

Theorem 1. Let R be a commutative local ring, and let n > 0 and

s1, . . . , sn ≥ 0 be integer numbers such that n and s =
∑n

i=1 si are not

coprime. Then for any common divisors d > 1 of n and s, and any t ∈ R

the matrix

M(t, s1, . . . , sn) =













0 . . . 0 tsn

ts1 . . . 0 0
...

. . .
...

...

0 . . . tsn−1 0













over the ring R is reducible.

The proof follows from Proposition 1 and the existence of a (unique)
homomorphism of rings f : Z[λ] → R such that f(1) = 1, f(λ) = t.

2. Irreducible matrices M(t, s1, . . . , sn)

Throughout this section all matrices are considered over a commutative
local ring R with Jacobson radical Rad(R) = tR, t 6= 0, and their similarity
are considered also over R. For a matrix M , we denote by M its reduction
modulo the radical. As above n denotes a natural number.
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Lemma 1. Let s1, . . . , sn ∈ {0, 1} with si = 0 for at least one i ∈
{1, . . . , n}. Then the matrix M = M(t, s1, . . . , sn) is not similar to ma-

trices of the form

M1 =

(

tA D

0 B

)

, M2 =

(

A D

0 tB

)

,

where A is an r×r matrix and B is an (n−r)×(n−r) matrix (0 < r < n).

Proof. Suppose that
C−1MC = M1,

where C = (cij)1≤i,j≤n ∈ GLn(R), or equivalently,

MC = CM1,

i. e.












0 . . . 0 tsn

ts1 . . . 0 0
...

. . .
...

...
0 . . . tsn−1 0













C = C

(

tA D

0 B

)

. (11)

For i, j ∈ {1, . . . , n}, the scalar equality (MC)ij = (CM1)ij is denoted
by (11, ij). Put ci = (ci1, . . . , cir).

We write the equalities (11, 1j), (11, 2j), . . . , (11, nj), where, in all
cases, j runs from 1 to r, respectively in the form

tsncn = tc1A, ts1c1 = tc2A, . . . , tsn−1cn−1 = tcnA. (12)

Since Rad(R) is generated by t 6= 0, we have the following simple fact:
if tsγ = tδ for some s ∈ {0, 1}, γ, δ ∈ R then either s = 0 and consequently
γ = tδ, or s = 1 and consequently t(γ − δ) = 0; so, respectively, γ = 0
or γ = δ. If one put cn+1 = c1, then by this fact ci = 0 or ci = ci+1A for
any i = 1, . . . , n. Because si = 0 for at least one i, we have that cl = 0
for some l ∈ {1, . . . , n}. By (12) we successively obtain c1 = . . . cl−1 = 0,
cn = 0 and cl+1 = . . . cn−1 = 0. Thus the matrix C in not invertible
modulo t and consequently is not invertible itself, a contradiction.

The case C−1MC = M2 is considered analogously.

Lemma 2. Let s1, . . . , sn ≥ 0 be integers with si 6= 0 for at least one

i ∈ {1, . . . , n}. The matrix M = M(t, s1, . . . , sn) is not similar to a matrix

N =

(

A D

0 B

)

,
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where A is an r×r matrix and B is an (n−r)×(n−r) matrix (0 < r < n),
A or B is invertible.

The lemma follows at once from the nilpotency of M .

Lemma 3. The matrix M(t, 0, 0, 0, 1, 1) is irreducible.

Proof. Assume that the matrix M(t, 0, 0, 0, 1, 1) is reducible. Then for
some matrix C ∈ GL5(R) we have

M(t, 0, 0, 0, 1, 1)C = C

(

A D

0 B

)

. (13)

where A is an s × s matrix and B is a (5 − s) × (5 − s) matrix (0 < s < 5).
Since the matrix M(t, 0, 0, 0, 1, 1) is similar to its transpose, we can

interchange the matrices A and B in (13), and therefore, without loss of
generality, we can assume that s ≤ 5 − s, i. e. s = 1 or s = 2.

In the case s = 1 either A ∈ tR or A ∈ R∗, and we have a contradiction
with Lemmas 1 or 2, respectively.

Let now s = 2 and let C = (cij)1≤i,j≤5, cp = (cp1, cp2) (p = 1, . . . , 5).
Then from the equality (13) we obtain

tc5 = c1A, c1 = c2A, c2 = c3A, c3 = c4A, tc4 = c5A. (14)

By Lemmas 1 and 2 rank(A) 6= 0 and rank(A) 6= 2. Consequently
rank(A) = 1. Since the matrix A is nilpotent, we can assume, without
loss of generality, that

A =

(

tα 1 + tβ

tγ tδ

)

,

where α, β, γ, δ ∈ R. Substituting A in (14), we get the following equalities
(which for convenience are written in pairs):



























(tc51, tc52) = (c11tα + c12tγ, c11 + c11tβ + c12tδ),
(c11, c12) = (c21tα + c22tγ, c21 + c21tβ + c22tδ),
(c21, c22) = (c31tα + c32tγ, c31 + c31tβ + c32tδ),
(c31, c32) = (c41tα + c42tγ, c41 + c41tβ + c42tδ),
(tc41, tc42) = (c51tα + c52tγ, c51 + c51tβ + c52tδ).

(15)

From the equalities (15) we obtain that c11 = c21 = c31 = 0 = c51.
Further, c12 = 0 (since c12 = c21 + c21tβ + c22tδ and c21 = 0), and

c22 = 0 (since c22 = c31 + c31tβ + c32tδ and c31 = 0).
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Finally, since c41 = c51α + c52γ (by tc41 = c51tα + c52tγ) and c52 =
c21α + c22γ + c11β + c12δ (by tc52 = c11 + c11tβ + c12tδ and c11 = c21tα +
c22tγ) we have that c41 = 0 (taking into account the above equalities of
the form cij = 0).

Thus det(C) = 0, a contradiction.

Lemma 4. The matrix M(t, 0, 0, 1, 1, 1) is irreducible.

Proof. Assume that M(t, 0, 0, 0, 1, 1) is reducible. Then for some matrix
C ∈ GL5(R) we have

M(t, 0, 0, 1, 1, 1)C = C

(

A D

0 B

)

. (16)

where A is an s × s matrix and B is a (5 − s) × (5 − s) matrix (0 < s < 5).
As in the proof of Lemma 3, we can assume that s ≤ 5 − s, i. e. s = 1

or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.
Let C = (cij)1≤i,j≤5, cp = (cp1, cp2) (p = 1, . . . , 5). Then from the

equality (16) we obtain

tc5 = c1A, c1 = c2A, c2 = c3A, tc3 = c4A, tc4 = c5A. (17)

By Lemmas 1 and 2 rank(A) = 1. Since the matrix A is nilpotent we can
assume, without loss of generality, that

A =

(

tα 1 + tβ

tγ tδ

)

,

where α, β, γ, δ ∈ R. Substituting A in (17), we get the following equalities:


























(tc51, tc52) = (c11tα + c12tγ, c11 + c11tβ + c12tδ),
(c11, c12) = (c21tα + c22tγ, c21 + c21tβ + c22tδ),
(c21, c22) = (c31tα + c32tγ, c31 + c31tβ + c32tδ),
(tc31, tc32) = (c41tα + c42tγ, c41 + c41tβ + c42tδ),
(tc41, tc42) = (c51tα + c52tγ, c51 + c51tβ + c52tδ).

(18)

From the equalities (18) we have c11 = c21 = 0 = c41 = c51, and

c31 = c42γ (since tc31 = c41tα + c42tγ and c41 = 0),

c22 = c31 (since c22 = c31 + c31tβ + c32tδ),

c12 = 0 (since c12 = c21 + c21tβ + c22tδ and c21 = 0),

c52γ = 0 (since tc41 = c51tα + c52tγ and c41 = c51 = 0),

c52 = c31γ (since tc52 = c11 + c11tβ + c12tδ,

c11 = c21tα + c22tγ and c11 = c21 = c12 = 0, c22 = c31).
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If γ = 0 then c31 = 0; if γ 6= 0 then γ ∈ R∗ and hence c52 = 0, c31 = 0.
Therefore, in both the cases det(C) = 0, a contradiction.

Lemma 5. The matrix M(t, 0, 0, 1, 0, 1) is irreducible.

Proof. Assume that M(t, 0, 0, 1, 0, 1) is reducible. Then for some matrix
C ∈ GL5(R) we have

M(t, 0, 0, 1, 0, 1)C = C

(

A D

0 B

)

. (19)

where A is an s × s matrix and B is a (5 − s) × (5 − s) matrix (0 < s < 5).
As in the proof of Lemma 3, we can assume that s ≤ 5 − s, i. e. s = 1

or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.
Let C = (cij)1≤i,j≤5, cp = (cp1, cp2) (p = 1, . . . , 5). Then from the equality
(19) we obtain

tc5 = c1A, c1 = c2A, c2 = c3A, tc3 = c4A, c4 = c5A. (20)

By Lemmas 1 and 2 rank(A) = 1. Since the matrix A is nilpotent we
can assume, without loss of generality, that

A =

(

tα 1 + tβ

tγ tδ

)

,

where α, β, γ, δ ∈ R. Substituting A in equality (20), we get



























(tc51, tc52) = (c11tα + c12tγ, c11 + c11tβ + c12tδ),
(c11, c12) = (c21tα + c22tγ, c21 + c21tβ + c22tδ),
(c21, c22) = (c31tα + c32tγ, c31 + c31tβ + c32tδ),

(tc31, tc32) = (c41tα + c42tγ, c41 + c41tβ + c42tδ),
(c41, c42) = (c51tα + c52tγ, c51 + c51tβ + c52tδ).

(21)

From equality (21) we have c11 = c21 = c41 = 0, and
c12 = 0 (since c12 = c21 + c21tβ + c22tδ and c21 = 0),

c51 = 0 (since tc51 = c11tα + c12tγ and c11 = c12 = 0),

c42 = 0 (since c42 = c51 + c51tβ + c52tδ and c51 = 0),

c31 = c41α + c42γ = 0 (since tc31 = c41tα + c42tγ

and c41 = c42 = 0).

Therefore det(C) = 0, a contradiction.

Lemma 6. The matrix M(t, 0, 1, 1, 0, 1) is irreducible.
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Proof. Assume that M(t, 0, 1, 1, 0, 1) is reducible. Then for some matrix
C ∈ GL5(R) we have

M(t, 0, 1, 1, 0, 1)C = C

(

A D

0 B

)

. (22)

where A is an s × s matrix and B is a (5 − s) × (5 − s) matrix (0 < s < 5).

As in the proof of Lemma 3, we can assume that s ≤ 5 − s, i. e. s = 1
or s = 2. Since the case s = 1 is trivial, we consider only the case s = 2.

Let C = (cij)1≤i,j≤5, cp = (cp1, cp2) (p = 1, . . . , 5). Then from the
equality (22) we obtain

tc5 = c1A, c1 = c2A, tc2 = c3A, tc3 = c4A, c4 = c5A. (23)

By Lemmas 1 and 2 rank(A) = 1. Since the matrix A is nilpotent, we
can assume, without loss of generality, that

A =

(

tα 1 + tβ

tγ tδ

)

,

where α, β, γ, δ ∈ R.

Substituting A in equality (23), we get



























(tc51, tc52) = (c11tα + c12tγ, c11 + c11tβ + c12tδ),
(c11, c12) = (c21tα + c22tγ, c21 + c21tβ + c22tδ),
(tc21, tc22) = (c31tα + c32tγ, c31 + c31tβ + c32tδ),
(tc31, tc32) = (c41tα + c42tγ, c41 + c41tβ + c42tδ),
(c41, c42) = (c51tα + c52tγ, c51 + c51tβ + c52tδ).

(24)

From equality (24) we obtain that c11 = c41 = 0 = c31 and

c12 = c21 (since c12 = c21 + c21tβ + c22tδ),

c51 = c12γ (since tc51 = c11tα + c12tγ and c11 = 0),

c21 = c32γ (since tc21 = c31tα + c32tγ and c31 = 0)

c42 = c51 (since c42 = c51 + c51tβ + c52tδ),

c42γ = 0 (since tc31 = c41tα + c42tγ and c31 = c41 = 0).

If γ = 0 then c51 = 0 and c21 = 0. If γ 6= 0 then γ ∈ R∗, c42 = 0
and hence c51 = 0, c12 = 0 and c21 = 0. Therefore, det(C) = 0, a
contradiction.
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3. Main result

Theorem 2. Let R be a commutative local ring with radical Rad(R) =
tR, t 6= 0, and let s1, . . . , sn ∈ {0, 1}. If 0 < n ≤ 6, then the matrix

M(t, s1, . . . , sn) over R is irreducible if and only if n and s =
∑n

i=1 si are

coprime.

Proof. The necessity part follows from Theorem 1. Let now n and
∑n

i=1 si are coprime. Then the matrix M(t, s1, . . . , sn) is, up to cyclic
permutations of si, one of the following:

M(t, 0, 1), M(t, 0, 0, 1), M(t, 0, 0, 0, 1),
M(t, 0, 0, 0, 0, 1), M(t, 0, 0, 0, 0, 0, 1),

(25)

M(t, 0, 1, 1), M(t, 0, 1, 1, 1),
M(t, 0, 1, 1, 1, 1), M(t, 0, 1, 1, 1, 1, 1),

(26)

M(t, 0, 0, 0, 1, 1), M(t, 0, 0, 1, 1, 1),
M(t, 0, 0, 1, 0, 1), M(t, 0, 1, 1, 0, 1).

(27)

The irreducibility of the matrices (25) are obvios. The matrices (26)
are irreducible by [6], and the matrices (27) are irreducible by Lem-
mas 3–6.

The last theorem does not hold if n > 6. For example, if R is a
local ring of length 2 and Rad(R) = tR (t 6= 0, t2 = 0), the matrix
M = M(t, 0, 0, 0, 0, 1, 1, 1) (with n = 7 and s1 + · · · + s7 = 3 to be
coprime) is reducible over R because, for

C =

























0 0 1 0 0 0 0
t 0 0 1 0 0 0
0 t 0 0 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 1 0
0 t 0 0 0 0 1

























,

C−1MC =

























0 t 0 0 1 0 0
1 0 0 0 0 0 0

0 0 0 0 0 0 t

0 0 1 0 −t 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 t 0

























.
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