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Abstract. The notion of k-nil radical in BCH-algebras is
defined, and related properties are investigated.

1. Introduction

In 1966, Y. Imai and K. Iséki [7] and K. Iséki [8] introduced two classes
of abstract algebras: BCK-algebras and BCI-algebras. It is known that
the class of BCK-algebras is a proper subclass of the class of BCI-
algebras. In 1983, Q. P. Hu and X. Li [4, 5] introduced a wide class of
abstract algebras: BCH-algebras. They have shown that the class of
BCI-algebras is a proper subclass of the class of BCH-algebras. They
have studied some properties of these algebras. In 1992, W. P. Huang
[6] introduced a nil ideals in BCI-algebras. In [9], E. H. Roh and Y. B.
Jun discussed the concept of nil subsets by using nilpotent elements in
BCH-algebras. In this paper, we introduce the notion of k-nil radical
in BCH-algebras, and study some useful properties. We prove that the
k-nil radical of a subalgebra (resp. a (closed, translation, semi-) ideal) is
a subalgebra (resp. a (closed, translation, semi-) ideal). Concerning the
homomorphisms, we discuss related properties.

2. Preliminaries

By a BCH-algebra we shall mean an algebra (X, ∗, 0) of type (2,0) sat-
isfying the following axioms: for every x, y, z ∈ X,
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(H1) x ∗ x = 0,

(H2) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(H3) (x ∗ y) ∗ z = (x ∗ z) ∗ y.

In a BCH-algebra X, the following holds for all x, y, z ∈ X,

(p1) x ∗ 0 = x,

(p2) (x ∗ (x ∗ y)) ∗ y = 0,

(p3) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),

(p4) x ∗ 0 = 0 implies x = 0,

(p5) 0 ∗
(

0 ∗ (0 ∗ x)
)

= 0 ∗ x.

A nonempty subset S of a BCH-algebra X is said to be a subalgebra of X
if x ∗ y ∈ S whenever x, y ∈ S. A nonempty subset A of a BCH-algebra
X is called an ideal of X if it satisfies

(I1) 0 ∈ A,

(I2) x ∗ y ∈ A and y ∈ A imply x ∈ A, ∀x, y ∈ X.

A nonempty subset A of a BCH-algebra X is called a closed ideal of X
if it satisfies (I2) and

(I3) 0 ∗ x ∈ A, ∀x ∈ A.

Note that every closed ideal of a BCH-algebra is a subalgebra, but the
converse is not true (see [1]). A mapping f : X → Y of BCH-algebras
is called a homomorphism if f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ X. Note
that if f : X → Y is a homomorphism of BCH-algebras, then f(0) = 0.

3. Main Results

Throughout this section X is a BCH-algebra and k is a positive integer.
For any elements x and y of X, let us write x∗yk for (· · · ((x∗y)∗y)∗· · · )∗y
in which y occurs k times.

Definition 3.1. Let I be a nonempty subset of X. Then the set

k
√

I := {x ∈ X | 0 ∗ xk ∈ I}

is called the k-nil radical of I.
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Lemma 3.2. ([9, Lemmas 3.2 and 3.3]) For any x, y ∈ X, we have

(1) 0 ∗ (0 ∗ x)k = 0 ∗ (0 ∗ xk),

(2) 0 ∗ (x ∗ y)k = (0 ∗ xk) ∗ (0 ∗ yk).

Proposition 3.3. If I and J are nonempty subsets of X, then

k
√

I ∪ J =
k
√

I ∪ k
√

J.

Proof. Note that

x ∈ k
√

I ∪ J ⇔ 0 ∗ xk ∈ I ∪ J
⇔ 0 ∗ xk ∈ I or 0 ∗ xk ∈ J

⇔ x ∈ k
√

I or x ∈ k
√

J

⇔ x ∈ k
√

I ∪ k
√

J.

This completes the proof.

Proposition 3.4. Let {Iα | α ∈ Λ} be a collection of nonempty subsets
of X, where Λ is any index set. Then

(i) k

√

⋂

α∈Λ

Iα =
⋂

α∈Λ

k
√

Iα.

(ii) ∀α ∈ Λ, 0 ∈ Iα ⇒ 0 ∈ k
√

Iα.

(iii) ∀α, β ∈ Λ, Iα ⊆ Iβ ⇒ k
√

Iα ⊆ k

√

Iβ.

Proof. (i) Note that

x ∈ k

√

⋂

α∈Λ

Iα ⇔ 0 ∗ xk ∈ ⋂

α∈Λ

Iα

⇔ 0 ∗ xk ∈ Iα for all α ∈ Λ
⇔ x ∈ k

√
Iα for all α ∈ Λ

⇔ x ∈ ⋂

α∈Λ

k
√

Iα,

and hence (i) is valid.

(ii) and (iii) are straightforward.

Proposition 3.5. If I is a subalgebra of X and x ∈ k
√

I, then 0∗x ∈ k
√

I.

Proof. If x ∈ k
√

I, then 0 ∗ xk ∈ I. Since I is a subalgebra of X, we have
0 ∗ (0 ∗ x)k = 0 ∗ (0 ∗ xk) ∈ I by using Lemma 3.2(1). This shows that
0 ∗ x ∈ k

√
I.
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Theorem 3.6. If I is a subalgebra of X, then so is the k-nil radical k
√

I
of I.

Proof. Let x, y ∈ k
√

I. Then 0 ∗ xk ∈ I and 0 ∗ yk ∈ I. Since I is a
subalgebra, it follows from Lemma 3.2(2) that

0 ∗ (x ∗ y)k = (0 ∗ xk) ∗ (0 ∗ yk) ∈ I

so that x ∗ y ∈ k
√

I. Hence k
√

I is a subalgebra of X.

Theorem 3.7. If I is an ideal of X, then so is the k-nil radical k
√

I of
I.

Proof. Assume that I is an ideal of X. Obviously 0 ∈ k
√

I. Let x, y ∈ X
be such that x∗y ∈ k

√
I and y ∈ k

√
I. Then 0∗yk ∈ I and (0∗xk)∗(0∗yk) =

0∗(x∗y)k ∈ I. Since I is an ideal of X, it follows from (I2) that 0∗xk ∈ I
so that x ∈ k

√
I. Hence k

√
I is an ideal of X.

Lemma 3.8. ([1, Theorem 4]) Let I be a subalgebra of a BCH-algebra
X such that x ∗ y ∈ I implies y ∗ x ∈ I for all x, y ∈ X. Then I is a
closed ideal of X.

Theorem 3.9. For any closed ideal I of a BCH-algebra X, the k-nil
radical k

√
I of I is also a closed ideal of X.

Proof. Let I be a closed ideal of X. Then I is a subalgebra of X, and so
k
√

I is a subalgebra of X. Let x, y ∈ X be such that x ∗ y ∈ k
√

I. Then
0 ∗ (x ∗ y)k ∈ I. Using (H3), (p3), (p5) and Lemma 3.2(2), we have

0 ∗ (y ∗ x)k = (0 ∗ yk) ∗ (0 ∗ xk)
=

(

0 ∗ (0 ∗ (0 ∗ yk))
)

∗ (0 ∗ xk)
=

(

0 ∗ (0 ∗ xk)
)

∗
(

0 ∗ (0 ∗ yk)
)

= 0 ∗
(

(0 ∗ xk) ∗ (0 ∗ yk)
)

= 0 ∗
(

0 ∗ (x ∗ y)k
)

∈ I,

since I is a subalgebra. Hence y ∗ x ∈ k
√

I, and so, by Lemma 3.8, k
√

I is
a closed ideal of X.

Definition 3.10. ([1, Definition 12]) A nonempty subset I of a BCH-
algebra X is called a semi-ideal of X if it satisfies (I1) and

(I4) x ≤ y and y ∈ I imply x ∈ I

where x ≤ y means x ∗ y = 0.

Note that every closed ideal is a semi-ideal, but the converse may not
be true (see [1]).
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Theorem 3.11. If I is a semi-ideal of X, then so is k
√

I.

Proof. Obviously 0 ∈ k
√

I . Let x, y ∈ X be such that x ≤ y and y ∈ k
√

I.
Then 0 ∗ yk ∈ I and x ∗ y = 0. These imply that

0 = 0 ∗ (x ∗ y)k = (0 ∗ xk) ∗ (0 ∗ yk), that is, 0 ∗ xk ≤ 0 ∗ yk.

Since I is a semi-ideal of X, it follows that 0 ∗ xk ∈ I or equivalently
x ∈ k

√
I. Hence k

√
I is a semi-ideal of X.

Proposition 3.12. Let f : X → Y be a homomorphism of BCH-
algebras. If S is a nonempty subset of Y , then k

√

f−1(S) ⊆ f−1( k
√

S).

Proof. Let x ∈ k
√

f−1(S). Then 0 ∗ xk ∈ f−1(S), and so 0 ∗ f(x)k =
f(0 ∗ xk) ∈ S. Hence f(x) ∈ k

√
S which implies x ∈ f−1( k

√
S). This

completes the proof.

Theorem 3.13. Let f : X → Y be a homomorphism of BCH-algebras.
If J is a closed ideal of Y , then f−1( k

√
J) is a closed ideal of X containing

k
√

f−1(J).

Proof. The inclusion k

√

f−1(J) ⊆ f−1( k
√

J) is by Proposition 3.12. Let
x, y ∈ f−1( k

√
J). Then f(x), f(y) ∈ k

√
J, and so 0 ∗ f(x)k ∈ J and 0 ∗

f(y)k ∈ J . Since J is a subalgebra of Y , it follows from Lemma 3.2(2)
that

f
(

0 ∗ (x ∗ y)k
)

= 0 ∗ f(x ∗ y)k = 0 ∗
(

f(x) ∗ f(y)
)k

=
(

0 ∗ f(x)k
)

∗
(

0 ∗ f(y)k
)

∈ J

so that 0∗(x∗y)k ∈ f−1(J), that is, x∗y ∈ k
√

f−1(J) ⊆ f−1( k
√

J). Hence
f−1( k

√
J) is a subalgebra of X. Now let a, b ∈ X be such that a ∗ b ∈

f−1( k
√

J). Then f(a)∗f(b) = f(a∗b) ∈ k
√

J, and so 0∗
(

f(a)∗f(b)
)k ∈ J.

Using Lemma 3.2(2), (p5), (H3) and (p3), we have

0 ∗ f(b ∗ a)k = 0 ∗
(

f(b) ∗ f(a)
)k

=
(

0 ∗ f(b)k
)

∗
(

0 ∗ f(a)k
)

=
(

0 ∗ (0 ∗ (0 ∗ f(b)k))
)

∗
(

0 ∗ f(a)k
)

=
(

0 ∗ (0 ∗ f(a)k)
)

∗
(

0 ∗ (0 ∗ f(b)k)
)

= 0 ∗
(

(0 ∗ f(a)k) ∗ (0 ∗ f(b)k)
)

= 0 ∗
(

0 ∗ (f(a) ∗ f(b))k
)

∈ J,

because J is a subalgebra. Hence f(b∗a) ∈ k
√

J, and so b∗a ∈ f−1( k
√

J).
Using Lemma 3.8, we know that f−1( k

√
J) is a closed ideal of X.
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Theorem 3.14. Let f : X → Y be a homomorphism of BCH-algebras.
If U is a semi-ideal of Y , then f−1( k

√
U) is a semi-ideal of X containing

k
√

f−1(U).

Proof. Obviously 0 ∈ f−1( k
√

U). Let x, y ∈ X be such that x ≤ y and
y ∈ f−1( k

√
U). Then x ∗ y = 0 and f(y) ∈ k

√
U, that is, 0 ∗ f(y)k ∈ U .

Using Lemma 3.2(2), we have

(

0∗f(x)k
)

∗
(

0∗f(y)k
)

= 0∗
(

f(x)∗f(y)
)k

= 0∗f(x∗y)k = 0∗f(0)k = 0,

and so 0 ∗ f(x)k ≤ 0 ∗ f(y)k. Since U is a semi-ideal, it follows that

f(0 ∗ xk) = f(0) ∗ f(x)k = 0 ∗ f(x)k ∈ U

so that 0 ∗ xk ∈ f−1(U), i.e., x ∈ k

√

f−1(U) ⊆ f−1( k
√

U). Therefore
f−1( k

√
U) is a semi-ideal of X.

Theorem 3.15. Let f : X → Y be a homomorphism of BCH-algebras.
Then f( k

√
I) ⊆ k

√

f(I) for every nonempty subset I of X. Moreover, the
equality is valid when f is one-to-one.

Proof. Let y ∈ f( k
√

I). Then there exists x ∈ k
√

I such that f(x) = y.
Hence 0 ∗ xk ∈ I and

0 ∗ yk = f(0) ∗ f(x)k = f(0 ∗ xk) ∈ f(I),

and so y ∈ k

√

f(I). Thus f( k
√

I) ⊆ k

√

f(I). Assume that f is one-to-one
and let y ∈ k

√

f(I). Then y = f(x) for some x ∈ X, and

f(0 ∗ xk) = 0 ∗ f(x)k = 0 ∗ yk ∈ f(I).

Since f is one-to-one, it follows that 0 ∗ xk ∈ f−1
(

f(I)
)

= I so that

x ∈ k
√

I. Therefore y = f(x) ∈ f( k
√

I). This completes the proof.

Definition 3.16. [10] A translation ideal of X is defined to be an ideal
U of X satisfying an additional condition:

∀x, y, z ∈ X, x∗y ∈ U, y∗x ∈ U ⇒ (x∗z)∗(y∗z) ∈ U, (z∗x)∗(z∗y) ∈ U.

Theorem 3.17. If U is a translation ideal of X, then so is k
√

U .

Proof. If U is a translation ideal of X, then U is an ideal of X and so
k
√

U is an ideal of X (see Theorem 3.7). Let x, y, z ∈ X be such that
x ∗ y ∈ k

√
U and y ∗ x ∈ k

√
U. Then

(0 ∗ xk) ∗ (0 ∗ yk) = 0 ∗ (x ∗ y)k ∈ U
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and

(0 ∗ yk) ∗ (0 ∗ xk) = 0 ∗ (y ∗ x)k ∈ U.

Since U is a translation ideal, it follows from Lemma 3.2(2) that

0 ∗
(

(x ∗ z) ∗ (y ∗ z)
)k

=
(

(0 ∗ xk) ∗ (0 ∗ zk)
)

∗
(

(0 ∗ yk) ∗ (0 ∗ zk)
)

∈ U

and

0 ∗
(

(z ∗ x) ∗ (z ∗ y)
)k

=
(

(0 ∗ zk) ∗ (0 ∗ xk)
)

∗
(

(0 ∗ zk) ∗ (0 ∗ yk)
)

∈ U,

and so (x ∗ z) ∗ (y ∗ z) ∈ k
√

U and (z ∗ x) ∗ (z ∗ y) ∈ k
√

U. Therefore k
√

U
is a translation ideal of X.

Theorem 3.18. Let f : X → Y be a homomorphism of BCH-algebras.
If U is a translation ideal of Y , then f−1( k

√
U) is a translation ideal of

X containing k
√

f−1(U).

Proof. Let x, y, z ∈ X be such that x∗y ∈ f−1( k
√

U) and y∗x ∈ f−1( k
√

U).
Then f(x) ∗ f(y) = f(x ∗ y) ∈ k

√
U and f(y) ∗ f(x) = f(y ∗ x) ∈ k

√
U.

Hence
(

0 ∗ f(x)k
)

∗
(

0 ∗ f(y)k
)

= 0 ∗
(

f(x) ∗ f(y)
)k ∈ U

and
(

0 ∗ f(y)k
)

∗
(

0 ∗ f(x)k
)

= 0 ∗
(

f(y) ∗ f(x)
)k ∈ U.

Since U is a translation ideal of Y , it follows that

0 ∗ f
(

(x ∗ z) ∗ (y ∗ z)
)k

= 0 ∗
(

f(x ∗ z) ∗ f(y ∗ z)
)k

=
(

0 ∗ f(x ∗ z)k
)

∗
(

0 ∗ f(y ∗ z)k
)

=
(

0 ∗ (f(x) ∗ f(z))k
)

∗
(

0 ∗ (f(y) ∗ f(z))k
)

=
(

(0 ∗ f(x)k) ∗ (0 ∗ f(z)k)
)

∗
(

(0 ∗ f(y)k) ∗ (0 ∗ f(z)k)
)

∈ U

and

0 ∗ f
(

(z ∗ x) ∗ (z ∗ y)
)k

= 0 ∗
(

f(z ∗ x) ∗ f(z ∗ y)
)k

=
(

0 ∗ f(z ∗ x)k
)

∗
(

0 ∗ f(z ∗ y)k
)

=
(

0 ∗ (f(z) ∗ f(x))k
)

∗
(

0 ∗ (f(z) ∗ f(y))k
)

=
(

(0 ∗ f(z)k) ∗ (0 ∗ f(x)k)
)

∗
(

(0 ∗ f(z)k) ∗ (0 ∗ f(y)k)
)

∈ U

so that f
(

(x ∗ z) ∗ (y ∗ z)
)

∈ k
√

U and f
(

(z ∗ x) ∗ (z ∗ y)
)

∈ k
√

U. Hence

(x ∗ z) ∗ (y ∗ z) ∈ f−1( k
√

U) and (z ∗ x) ∗ (z ∗ y) ∈ f−1( k
√

U), completing
the proof.
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Let U be a translation ideal of X and define a relation “∼” on X by
x ∼ y if and only if x∗y ∈ U and y ∗x ∈ U for every x, y ∈ X. Then “∼”
is a congruence relation on X. By [x] we denote the equivalence class
containing x, and by X/U we denote the set of all equivalence classes,
that is, X/U := {[x] | x ∈ X}. Then (X/U ;⊙, [0]) is a BCH-algebra,
where [x]⊙ [y] = [x∗y] for every x, y ∈ X (see [10]). If U is a translation
ideal of X, then so is k

√
U (see Theorem 3.17). Hence (X/ k

√
U ;⊙, [0]) is

a BCH-algebra and [0] = k
√

U . For any two BCH-algebras X and Y ,
the product BCH-algebra is defined to be a BCH-algebra (X × Y ; ∗, 0),
where X×Y = {(x, y) | x ∈ X, y ∈ Y }, (x1, y1)∗(x2, y2) = (x1∗x2, y1∗y2)
for all (x1, y1), (x2, y2) ∈ X × Y , and 0 = (0, 0) (see [4, 5]).

Lemma 3.19. Let X and Y be BCH-algberas. For any (x, y) ∈ X ×Y ,
we have (0, 0) ∗ (x, y)k = (0 ∗ xk, 0 ∗ yk).

Proof. It is straightforward.

Theorem 3.20. Let A and B be nonempty subsets of BCH-algebras X
and Y , respectively. Then

(i) k
√

A × k
√

B = k
√

A × B,

(ii) if A and B are translation ideals of X and Y respectively, then
k
√

A × B is a translation ideal of X × Y and

X × Y
k
√

A × B
∼= X/

k
√

A × Y/
k
√

B.

Proof. (1) We have that

k
√

A × B = {(a, b) ∈ X × Y | (0, 0) ∗ (a, b)k ∈ A × B}
= {(a, b) ∈ X × Y | (0 ∗ ak, 0 ∗ bk) ∈ A × B}
= {(a, b) ∈ X × Y | 0 ∗ ak ∈ A, 0 ∗ bk ∈ B}
= {(a, b) ∈ X × Y | a ∈ k

√
A, b ∈ k

√
B}

= {a ∈ X | a ∈ k
√

A} × {b ∈ X | b ∈ k
√

B}
= k

√
A × k

√
B

(ii) Obviously k
√

A × B is a translation ideal of X × Y . Consider
natural homomorphisms

πX : X → X/
k
√

A, x 7→ [x] and πY : Y → Y/
k
√

B, y 7→ [y].

Define a mapping Φ : X×Y → X/ k
√

A×Y/ k
√

B by Φ(x, y) = ([x], [y]) for
all (x, y) ∈ X ×Y . Then clearly Φ is a well-defined onto homomorphism.
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Moreover,

KerΦ = {(x, y) ∈ X × Y | Φ(x, y) = ([0], [0])}
= {(x, y) ∈ X × Y | ([x], [y]) = ([0], [0])}
= {(x, y) ∈ X × Y | [x] = [0], [y] = [0]}
= {(x, y) ∈ X × Y | x ∈ k

√
A, y ∈ k

√
B}

= k
√

A × k
√

B = k
√

A × B.

By the homomorphism theorem (see [10, Theorem 3.7]), we have

X × Y
k
√

A × B
=

X × Y

KerΦ
∼= X/

k
√

A × Y/
k
√

B.

Acknowledgements. One of the authors (Young Bae Jun) would like
to express his thanks to the KOSEF and PAS for providing the neces-
sary funds for his trip to the Technical University of Wroclaw, Poland
exploring the issues of this paper.

References

[1] M. A. Chaudhry and Hafiz Fakhar-Ud-Din, Ideals and filters in BCH-algebras,
Math. Japonica 44(1) (1996), 101 − 112.

[2] W. A. Dudek and R. Rousseau, Set-theoretic relations and BCH-algebras with
trivial structure, Zbornik Radova Prirod.-Mat. Fak. Univ. u Novom Sadu 25.1
(1995), 75 − 82.

[3] W. A. Dudek and J. Thomys, On decompositions of BCH-algebras, Math. Japon-
ica 35 (1990), 1131 − 1138.

[4] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313−320.

[5] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30(4) (1985),
659 − 661.

[6] W. P. Huang, Nil-radical in BCI-algebras, Math. Japonica 37(2) (1992), 363 −

366.
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