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Abstract. In this article the investigation of groups of fi-
nite normal rank is continued. The finiteness of normal rank of
nonabelian p-group G is proved where G has a normal elementary
abelian p-subgroup A for which quotient group G/A is isomorphic
to the direct product of finite number of quasicyclic p-groups.

A number of authors studied the groups in which finiteness conditions
were laid on some systems of their subgroups [1]. Earlier the author
investigated the groups of finite F -rank [2], where F was some system of
nonabelian finitely generated subgroups of a group and some classes of
groups of finite normal rank.

In this article the investigation of groups of finite normal rank is
continued.

Definition. We shall say that a group G has finite normal rank r, if r
is a minimal number with the property that for any finite set of elements

g1, g2, ..., gn of a group G there are the elements h1, h2, ..., hm of G such

that m ≤ r and

< h1, h2, ..., hm >G=< g1, g2, ..., gn >G .

In the case when there is not such number r, the normal rank of group

G is considered to be infinite.

We shall use the notation rn(G) for the normal rank of group G.
The special rank of group G is denoted by the generally accepted symbol
r(G).

The principal result of this article is the theorem.
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Theorem. Let G be a nonabelian p-group, where p is a prime number.

Let A be a normal subgroup of G, which is an elementary abelian p-group.

Quotient group G/A is isomorphic to the direct product of l quasicyclic

p-groups. If subgroup A can be generated as a G-subgroup by n elements,

i.e.

A =< a1, a2, ...an >G,

and n, l are the finite numbers, then the normal rank of group G is finite

and rn(G) ≤ n + l.

This result was announced in [3] earlier.
We shall need the following lemma in proof of the theorem.

Lemma. The normal rank of wreath product of group of prime order p
and direct product of l quasicyclic p-groups is equal to l + 1.

Proof. Let A be the basis of wreath product W ,W =< a > wr(X l
j=1Pj),

where Pj is a quasicyclic p-group. We shall prove at first that for any
b1, b2, ..., bn from A there is such element b ∈ A, for which

< b1, b2, ..., bn >G=< b >G .

Since the group W = ∪∞

i=1
(< a > wr(X l

j=1
< gji >), |gji| = pi, then the

elements b1, b2, ..., bn are contained in subgroup V =< a > wr(X l
j=1

<
gij >) for some number i. The upper central series of subgroup V is

E = Z0 < Z1 < Z2 < ... < Zlpi
−1 < Zlpi < V,

where Zlpi is the basis of wreath product V , factors Zk+1/Zk, k =
0, 1, ..., lpi have orders p, factors V/Zlpi is isomorphic to the direct prod-
uct of l cyclic groups of orders pi [4] .

The subgroups Bk =< bk >Xl
j=1

<gij>, k = 1, 2, ..., n are normal in
group V , therefore intersections Bk ∩ Zj, j = 1, 2, ..., lpi are nontrivial.
Since the factors Zk+1/Zk, k = 0, 1, ..., lpi are cyclic of prime order, then
the equalities Bk ∩ Zq = Zq, q = 0, 1, ..., tk , are valid, where tk ≤ lpi.

From here it follows that Bk = Ztk , therefore for any m1,m2 ≤ n
the one from subgroups Bm1

, Bm2
embeds in another. Consequently the

subgroups Bk, k = 1, 2, ..., n form a series of embeded subgroups

Bk1
< Bk2

< ... < Bkn
= B,

where B =< b1, b2, ..., bn >Xl
j=1

<gji>. Thererore B =< b >Xl
j=1

<gji>,
where b = bkn

. From here follows the equality

< b1, b2, ..., bn >G=< b >G .
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Now we shall prove that for any c1, c2, ..., cr ∈ W the subgroup C =<
c1, c2, ..., cr >G can be generated as G-subgroup by no more than l + 1
elements. It is sufficient to consider the case C1 6≤ A, where C1 =<
c1, c2, ..., cr >. Since C1A/A ≃ C1/(C1 ∩ A), the subgroup C1 is finite
and r(C1A/A) ≤ l, then we can choose the elements d1, d2, ..., ds+u such
that

C =< d1, d2, ..., ds, ds+1, ..., ds+u >G

and di ∈ A, i = 1, 2, ..., s, ds+1, ds+2, ..., ds+u 6∈ A,u ≤ l. As we proved,
there is the element d ∈ A for which

< d1, d2, ..., ds >G=< d >G,

therefore C =< d, ds+1, ..., ds+u >G. Consequently the normal rank of
wreath product W is no more than l + 1.

For proving the equality rn(W ) = l + 1 we numerate the elements
of subgroup X∞

j=1Pj as h1, h2, ... and assume ahi = ai. According to the

structure of subgroup W the subgroup A0 =< aia
−1

j , i, j = 1, 2, ... >
is normal in W and quotient group W/A0 is isomorphic to the direct
product of a group of prime order p and l quasicyclic p-groups. Since the
normal rank of quotient group W/A0 is equal to l + 1 and rn(W/A0) ≤
rn(W ), where rn(W ) ≤ l + 1, then we have the equality rn(W ) = l + 1.
Lemma is proved.

Proof of the theorem. At first we shall prove that for any finite set of el-
ements b1, b2, ..., bk of A there are the elements c1, c2, ..., ct of A such that
t ≤ n and < b1, b2, ..., bk >G=< c1, c2, ..., ct >G. We shall prove at first
this statement by the induction on number v of elements a1, a2, ..., av ,
where A =< a1, a2, ..., av >G. If v = 1 then A =< a1 >G, therefore group
G is isomorphic to some quotient group of wreath product of a group of
prime order p and direct product of l quasicyclic p-groups. From the
proof of the lemma it follows that there is an element b ∈ A for which

< b1, b2, ..., bk >G=< b >G .

Let our statement be valid for u = n − 1. Let u = n and

B =< b1, b2, ..., bk >G, A1 =< a1, a2, ..., an−1 >G .

If subgroup B is contained in A1 then according to the inductive assump-
tion there are such elements c1, c2, ..., ct, t ≤ n that B =< c1, c2, ..., ct >G.
Let now B 6≤ A1. Quotient group G/A1 is isomorphic to some quotient
group of wreath product of a group of prime order p and direct product of
l quasicyclic p-groups. From this and isomorphism BA1/A1 ≃ B/B∩A1
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it follows by the lemma that there is an element b ∈ B for which
B/B ∩ A1 =< b(B ∩ A1) >G. Consequently for every bi, i = 1, 2, ..., k,
there are such integers n1, n2, ..., nri

and the elements g1, g2, ..., gri
of G

that the equalities

bi = (bn1)g1(bn2)g2 ...(bnri )gri hi

are valid, where hi ∈ (B ∩ A1). Since the element b belongs to the
subgroup B then B =< b, h1, h2, ..., hk >G, therefore

B =< b >G< h1, h2, ..., hk >G . (1)

According to the inductive assumption and inclusion < h1, h2, ..., hk >G≤
A1 there are such elements d1, d2, ..., dm of A that m ≤ n − 1 and

< h1, h2, ..., hk >G=< d1, d2, ..., dm >G .

From this equality and (1) it follows that B =< b, d1, ..., dm >G,m ≤
n − 1. Our statement is proved.

Let now B =< b1, b2, ..., bk >G, where even if one from the elements
bi, i = 1, 2, ..., k does not belong to the subgroup A. Since the subgroup
D generated by the elements b1, b2, ..., bk is finite, then the intersection
D ∩ A is finite too. Therefore there are the elements c1, c2, ..., cj , j ≤ n,
for which < D ∩ A >G=< c1, c2, ..., cj >G. Since quotient group G/A is
a direct product of l locally cyclic groups and DA/A ≃ D/D ∩ A, then
there are such elements cj+1, ..., ci+y of D that

< D >G=< c1, c2, ..., cj+y >G,

y ≤ l. Consequently the equality B =< c1, c2, ..., cj+y >G is valid, where
j + y ≤ n + l. The theorem is proved.
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