Algebra and Discrete Mathematics Number 2. **(2003).** pp. 103–110

© Journal "Algebra and Discrete Mathematics"

An additive divisor problem in $\mathbb{Z}[i]$

O. V. Savasrtu and P. D. Varbanets

Communicated by V. V. Kirichenko

ABSTRACT. Let $\tau(\alpha)$ be the number of divisors of the Gaussian integer α . An asymptotic formula for the summatory function $\sum_{N(\alpha) \leq x} \tau(\alpha) \tau(\alpha + \beta)$ is obtained under the condition $N(\beta) \leq x^{3/8}$.

This is a generalization of the well-known additive divisor problem for the natural numbers.

1. Introduction

In 1927 A.E. Ingham [1] obtained the asymptotic formula for the number of solutions I(x) the diophantic equation

$$u_1 u_2 - v_1 v_2 = 1$$

under conditions: $u_1, u_2, v_1, v_2 \in \mathbb{N}, u_1u_2 \leq x$.

Obviously

$$I(x) = \sum_{n \le x} \tau(n)\tau(n+1),$$

where $\tau(n) = \sum_{n=ab} 1$ denote the number of ways n may be written as a product of two natural numbers.

Ingham proved that

$$I(x) = \frac{6}{\pi^2} x \log^2 x + O(x \log x).$$

T. Estermann [2] improved this result in form

$$I(x) = xP_2(\log x) + E(x),$$

2001 Mathematics Subject Classification: 11N37; 11R42. Key words and phrases: additive divisor problem; asymptotic formula. where $P_2(u)$ is a polynom $a_0u^2 + a_1u + a_2$ and E(x) is an error term.

Estermann gave $E(x) \ll x^{\theta+\varepsilon}$, $\theta = \frac{11}{12}$. The exponent θ was subsequently improved to $\frac{5}{6}$ by D.R. Heath-Brown [3] and then to $\frac{2}{3}$ by J.-M. Deshouillers and H. Ivaniec [4]. In 1994 Y. Motohashi [5] employed powerful methods from the spectral theory of automorphic forms and obtained very precise result:

$$I(x) = \sum_{n \le x} \tau(n)\tau(n+h) = x \sum_{i=0}^{2} (\log x)^{i} \sum_{j=0}^{2} c_{ij} \sum_{d|h} \frac{(\log d)^{j}}{d} + O\left(x^{\frac{2}{3} + \varepsilon}\right)$$

holds uniformly for $1 \le h \le x^{20/27}$.

The purpose of this paper is to build the asymptotic formula for sum

$$\sum_{\substack{\alpha \in \mathbb{Z}[i] \\ 0 < N(\alpha) \le x}} \tau(\alpha)\tau(\alpha+\beta)$$

where $\tau(\alpha) = \sum_{\delta \mid \alpha} 1$ is a number of divisors of a Gaussian integer α .

Notations. Denote by \mathbb{Z} the ring of Gaussian integers. We write $N(\alpha) = a^2 + b^2$, $Sp(\alpha) = 2a$ for $\alpha = a + bi \in \mathbb{Z}[\alpha]$; $\varphi(\alpha) = N(\alpha) \prod_{p \mid \alpha} (1 - a^2 + b^2)$

 $N(p)^{-1}$), p is prime divisor α ; $e(x) = \exp(2\pi i x)$ for the real number x; the Vinogradov symbol $f \ll g$ means f = O(g); ε is an arbitrary small positive number that is not necessarily the same at each occurrence; the constants implied by the O (or \ll) – notation depend at most on ε .

2. Statement of Result

Let β be Gaussian integer and x be real positive number. By $I(x, \beta)$ we denote the number of solutions in Gaussian integers of the equation

$$\alpha_1 \alpha_2 - \alpha_3 \alpha_4 = \beta, \quad N(\alpha_1 \alpha_1) \le x.$$

Theorem. For $N(\beta) \ll x^{3/8}$ and any $\varepsilon > 0$ the following formula

$$I(x,\beta) = xP_2(\log x) + O(x^{\frac{7}{8} + \varepsilon})$$

holds.

Here $P_2(u) = A_0u^2 + A_1u + A_2$, $A_i = A_i(\beta)$, i = 0, 1, 2, moreover $A_i(\beta)$ are computable and $1 \ll A_i(\beta) \ll \tau(\beta)$, $A_0(\beta) > 0$.

3. Auxiliary Results

Let δ_0, δ be the Gaussian rationals $(\delta_0, \delta \in \mathbb{Q}(i))$ not necessarily integers. Let for Re(s) > 1

$$\zeta(s,\delta,\delta_0) = \sum_{\substack{\omega \in \mathbb{Z}[i] \\ \omega \neq -\delta}} e\left(\frac{1}{2}Sp(\delta_0\omega)\right) N(\delta + \omega)^{-s}.$$

Lemma 1 (see [5],lemmas 1 and 3). The function $\zeta(s, \delta, \delta_0)$ is entire function if $\delta_0 \notin \mathbb{Z}[i]$. For $\delta_0 \in \mathbb{Z}[i]$, $\zeta(s, \delta, \delta_0)$ is holomorphic except at s = 1, where it has a simple pole and

$$\zeta(s,\delta,0) = \frac{\pi}{s-1} + a_0(\delta) + a_1(\delta)(s-1) + \dots$$

where

$$a_0(\delta) = \begin{cases} \pi E + 4L'(1, \chi_4) & \text{if } \delta \in \mathbb{Z}[i], \\ \pi E + 4L'(1, \chi_4) + \sum_{\beta \in B} N(\delta + \beta) + b_0(\delta) & \text{if } 0 < N(\delta) < 1; \end{cases}$$

E is the Euler constant, $L'(s, \chi_4) = \frac{d}{ds}L(s, \chi_4)$, $L(s, \chi_4)$ is L-Dirichlet function with non-principal character mod 4; $b_0(\delta) = -4 + O\left(N^{1/2}(\delta)\right)$, B denotes the set $\{0, \pm 1, \pm i\}$. Moreover, the functional equation

$$\pi^{-s}\Gamma(s)\zeta(s,\delta,\delta_0) = \pi^{-(1-s)}\Gamma(1-s)\zeta(1-s,-\delta_0,\delta)e\left(-\frac{1}{2}Sp(\delta_0\delta)\right)$$
(1)

holds.

Let $\alpha, \beta, \gamma \in \mathbb{Z}[i]$. We define the Kloosterman sum for the ring of Gaussian integer

$$K(\alpha, \beta; \gamma) = \sum_{\substack{\xi, \xi' \pmod{\gamma} \\ \xi \cdot \xi' \equiv 1(\gamma)}} e\left(\frac{1}{2} Sp\left(\frac{\alpha\xi + \beta\xi'}{\gamma}\right)\right).$$

Lemma 2. Let α, β, γ be Gaussian integers, $\gamma \neq 0$. Then the estimate

$$|K(\alpha, \beta; \gamma)| \ll (N(\gamma)N((\alpha, \beta; \gamma)))^{1/2}\tau(\gamma)$$
 (2)

holds, (where $(\alpha, \beta; \gamma)$ is the greate common divisor of α, β, γ). Moreover,

$$K(\alpha, \beta; \gamma) = \sum_{\delta \mid (\alpha, \beta, \gamma)} N(\delta) K\left(1, \frac{\alpha\beta}{\delta^2}; \frac{\gamma}{\delta}\right). \tag{3}$$

This lemma follow from a multiplicative property of $K(\alpha, \beta; \gamma)$ on γ and the Bombieri estimate of an exponential sum on the algebraic curve over the finite field. The formula (3) is a generalized Kuznetsov's identity for Kloosterman sums.

Lemma 3. Let $\alpha_0, \gamma \in \mathbb{Z}[i]$, $(\alpha_0, \gamma) = \beta$, $N(\beta) < N(\gamma)$. Then for $N(\gamma) \ll x^{2/3+\varepsilon}$ we have

$$\sum_{\substack{\alpha \equiv \alpha_0(\gamma) \\ N(\alpha) \le x}} \tau(\alpha) = c_0(\alpha_0, \gamma) \frac{x}{N(\gamma)} \log \frac{x}{N(\beta)} + c_1(\alpha_0, \gamma) \frac{x}{N(\gamma)} + O\left(x^{1/2 + \varepsilon} N(\gamma)^{-1/4}\right),$$
where $c_0(\alpha_0, \gamma) = \pi^2 N(\beta) \varphi\left(\frac{\gamma}{\beta}\right) N^{-1}(\gamma) \tau(\beta),$

$$\sum_{\alpha \equiv \alpha_0(\gamma) \\ N(\alpha) \le x} \left[c_{\alpha = 1} - c_{\alpha} L'(1, \gamma_4) \right] \sum_{\alpha \in A} N(p)$$

$$c_1(\alpha_0, \gamma) = \pi^2 \sum_{\delta \mid \beta} \left[2E - 1 + 2\frac{L'(1, \chi_4)}{L(1, \chi_4)} + \sum_{p \mid \gamma/\delta} {}^* \log \frac{N(p)}{N(p) - 1} \right] \prod_{\gamma \mid \gamma/\delta} {}^* (1 - N^{-1}(p)).$$

Proof. Without loss of generality we will consider only a case $(\alpha_0, \gamma) = 1$. We have for $c = 1 + \varepsilon$:

$$\sum_{\substack{\alpha \equiv \alpha_0(\gamma) \\ N(\alpha) \le x}} \tau(\alpha) - \sum_{\substack{\alpha = \alpha_0 + \beta\gamma \\ \beta \in B}} \tau(\alpha) =$$

$$= \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \left(F(s) - \sum_{\beta \in B} \frac{\tau(\alpha_0 + \beta\gamma)}{N(\alpha_0 + \beta\gamma)^s} \right) \frac{x^s}{s} ds + O\left(\frac{x^c}{TN(\gamma)}\right), \quad (4)$$

where

$$F(s) = N(\gamma)^{-2s} \sum_{\substack{\alpha_1,\alpha_2 (\text{mod } \gamma) \\ \alpha_1\alpha_2 \equiv \alpha_0(\gamma)}} \zeta\left(s,\frac{\alpha_1}{\gamma},0\right) \zeta\left(s,\frac{\alpha_2}{\gamma},0\right) = \sum_{\substack{\alpha \equiv \alpha_0(\gamma) \\ \alpha \in \mathbb{Z}[i]}} \frac{\tau(\alpha)}{N(\alpha)^s}.$$

From lemma 1 we have the functional equation

F(s) =
$$\frac{\pi^{2(2s-1)}}{N^{2s}(\gamma)} \frac{\Gamma^2(1-s)}{\Gamma^2(s)} \Psi(1-s),$$

where

$$\Psi(s) = \sum_{\omega} \frac{1}{N(\omega)^s} \sum_{\alpha\beta = \omega} \Phi(\alpha, \beta; \gamma),$$

$$\Phi(\alpha, \beta; \gamma) \sum_{\substack{\alpha_1, \alpha_2 \pmod{\gamma} \\ \alpha_1 \alpha_2 \equiv \alpha_0(\gamma)}} e\left(\frac{1}{2} Sp\left(\frac{\alpha \alpha_1 + \beta \alpha_2}{\gamma}\right)\right).$$

Moreover, F(0) = 0 if $N(\gamma) > 1$ and $\alpha \not\equiv 0 \pmod{\gamma}$. By lemma 1 we obtain

$$G(s) = F(s) - \sum_{\beta \in B} \frac{\tau(\alpha_0 + \beta \gamma)}{N(\alpha_0 + \beta \gamma)^s} \ll \begin{cases} N(\gamma)^{-1+\varepsilon} & \text{if } Re(s) = 1 + \varepsilon, \\ N(\gamma)^{1/2+\varepsilon} T^3 & \text{if } Re(s) = -\frac{1}{4}. \end{cases}$$
(5)

Applying Phragmen-Lindelöf principle we infer

$$G(-\varepsilon + it) \ll N(\gamma)^{1/5 + \varepsilon} T^{12/5 + \varepsilon}$$
 for $|t| \le T$.

To deal with integral in (4) we move the segment of integration to $Re(s) = -\varepsilon$.

By the theorem of residues we obtain

$$\sum_{\substack{\alpha \equiv \alpha_0(\gamma) \\ N(\alpha) \le x}} \tau(\alpha) = \operatorname{res}_{s=0} \left(G(s) \frac{x^s}{s} \right) + \operatorname{res}_{s=1} \left(G(s) \frac{x^s}{s} \right) +
+ \frac{1}{2\pi i} \int_{-\varepsilon - iT}^{-\varepsilon + iT} G(s) \frac{x^s}{s} ds + O(x^{\varepsilon}) + O\left(N(\gamma)^{1/5 + \varepsilon} T^{12/5 + \varepsilon} \right) +
+ O\left(\frac{x^{1 + \varepsilon}}{TN(\gamma)} \right). \quad (6)$$

Further,

$$\operatorname{res}_{s=0}\left(G(s)\frac{x^{s}}{s}\right) = \frac{\pi^{2}x\log x}{N(\gamma)} \prod_{\gamma|\alpha} (1 - N(\gamma)^{-1}) + \frac{\pi^{2}x}{N(\gamma)} \prod_{p|\alpha} (1 - N(p)^{-1}) \left[-1 + 2\left(E + \frac{L'(1, \chi_{4})}{L(1, \chi_{4})} + \sum_{p|\delta} \frac{\log N(p)}{N(p) - 1}\right) \right],$$

$$\operatorname{res}_{s=0}\left(G(s)\frac{x^{s}}{s}\right) = \operatorname{res}_{s=0}\left(-\sum_{\beta \in B} \frac{\tau(\alpha_{0} + \beta\gamma)}{N(\alpha_{0} + \beta\gamma)^{s}} \frac{x^{s}}{s}\right) \ll N(\gamma)^{\varepsilon}.$$

Observe that by lemma 2

$$\sum_{\alpha\beta=\omega} |\Phi(\alpha,\beta;\gamma)| = \sum_{\alpha\beta=\omega} |K(\alpha,\beta\alpha_0;\gamma)| \ll N(\gamma)^{1/2} N((\omega,\gamma))^{1/2} \tau(\gamma) \tau(\omega).$$

Now by termwise integration and applying the Stirling formula for the gamma function and the method of stationary phase we get

$$\frac{1}{2\pi i} \int_{-\varepsilon - iT}^{-\varepsilon + iT} G(s) \frac{x^s}{s} ds =$$

$$= \sum_{0 < N(\omega) \le Y} \frac{\pi^2}{N(\omega)} \sum_{\alpha \beta = \omega} \Phi(\alpha, \beta; \gamma) \frac{y^{3/8}}{4\sqrt{2/\pi}} e\left(-\frac{1}{8} - \frac{1}{2\pi}y^{1/4}\right) \cdot \left(1 + O\left(y^{-1/8}\right)\right) + O\left(\frac{x^{1+\varepsilon}}{TN(\gamma)}\right) + O\left(x^{\varepsilon}\right) + O\left(\sum_{N(\omega) > Y} y^{-\varepsilon} T^{1+4\varepsilon} N(\gamma)^{1/2+\varepsilon} N((\omega, \gamma))^{1/2} \tau(\omega) N(\omega)^{-1}\right), \quad (8)$$

where $Y \leq X = \left(\frac{4}{\pi}\right)^4 \frac{T^4 N^2(\gamma)}{x}, \ y = \frac{\pi^4 x N(\omega)}{N^2(\gamma)}$.

The assertion of the lemma follow from (4),(6)-(8) if we put

$$T = x^{1/2}N(\gamma)^{-3/4}, Y = x^{1/3}.$$

4. Proof of the theorem

We start the proof of our theorem by observing that

$$\tau(\alpha)=2\#\{\gamma|\alpha;N(\gamma)\leq x^{1/2}\}-\#\{\gamma|\alpha;N(\alpha)x^{-1/2}\leq N(\gamma)\leq x^{1/2}\}$$
 whenever $\alpha,\,N(\alpha)\leq x.$

Hence

$$\sum_{N(\alpha) \le x} \tau(\alpha) \tau(\alpha + \beta) =$$

$$= \sum_{N(\gamma) \le x^{1/2}} \left(2 \left\{ \sum_{\substack{\alpha \equiv \beta(\gamma) \\ N(\alpha - \beta) \le x}} \tau(\alpha) - 1 \right\} - \left\{ \sum_{\substack{\alpha \equiv \beta(\gamma) \\ N(\alpha - \beta) \le N(\gamma) x^{1/2}}} \tau(\alpha) - 1 \right\} \right) =$$

$$= 2 \sum_{N(\gamma) \le x^{1/2}} \sum_{\substack{\alpha \equiv \beta(\gamma) \\ N(\alpha) \le x}} \tau(\alpha) - \sum_{N(\gamma) \le x^{1/2}} \sum_{\substack{\alpha \equiv \beta(\gamma) \\ N(\alpha) \le N(\gamma) x^{1/2}}} \tau(\alpha) + O(x^{7/8 + \varepsilon})$$

Indeed, we have

$$N(\alpha - \beta) = |\alpha - \beta|^2 \ge ||\alpha|^2 - |\beta|^2| = N(\alpha) - N(\beta) \quad \text{for } N(\alpha) \ge N(\beta),$$

and

$$N(\alpha - \beta) \le |\alpha|^2 + |\beta|^2 = N(\alpha) + N(\beta).$$

Therefore we carry an error in the asymptotic formula $\ll N(\beta)x^{1/2} \ll$ $x^{7/8}$ if we replace the condition $N(\alpha - \beta) \le x$ on the condition $N(\alpha) \le x$ (we take into account that $N(\beta) \leq x^{3/8}$).

Now, by lemma 3 we obtain

$$\begin{split} \sum_{N(\alpha) \leq x^{1/2}} \sum_{\substack{\alpha \equiv \beta(\gamma) \\ N(\alpha) \leq x}} &= \sum_{\delta \mid \beta} \sum_{\substack{N(\gamma) \leq x^{1/2} N(\delta) - 1 \\ (\gamma, \beta/\delta) = 1}} \sum_{\substack{\alpha \equiv \beta \pmod{\gamma \delta} \\ N(\alpha) \leq x}} \tau(\alpha) = \\ &= \sum_{\delta \mid \beta} \sum_{\substack{N(\gamma) \leq \frac{x^{1/2}}{N(\delta)} \\ (\gamma, \alpha_0/\delta) = 1}} \left\{ \frac{\pi^2 x}{N^2 (\gamma \delta)} N(\delta) \varphi(\gamma) \tau(\delta) \left(\log \frac{x}{N(\delta)} - 1 \right) + \right. \\ &+ \frac{2\pi^2 x}{N(\gamma)} \sum_{t \mid \delta} \left(E + \frac{L'(1, \chi_4)}{L(1, \chi_4)} + \sum_{p \mid \gamma \delta/t} \log \frac{N(p)}{N(p) - 1} \right) \prod_{p \mid \gamma \delta/t} (1 - N(p)^{-1}) \right\} + \\ &+ O\left(\sum_{\delta \mid \beta} \sum_{N(\gamma) \leq \frac{x^{1/2}}{N(\delta)}} x^{1/2} N(\gamma \delta)^{-1/4} \right). \end{split}$$

Using the equality

$$\varphi(\alpha) = N(\alpha) \prod_{p \mid \alpha} (1 - N(p)^{-1}) = N(\alpha) \sum_{\delta \mid \alpha} \frac{\mu(\delta)}{N(\delta)}$$

we infer

$$\sum_{\substack{N(\alpha) \le x \\ (\alpha,\beta)=1}} \frac{\varphi(\delta)}{N(\delta)} = \sum_{\substack{N(\alpha) \le x \\ (\alpha,\beta)=1}} \sum_{\delta \mid \alpha} \frac{\mu(\delta)}{N(\delta)} = \sum_{\substack{N(\delta) \le x \\ (\alpha\delta,\beta)=1}} \frac{\mu(\delta)}{N(\delta)} \sum_{N(\alpha) \le \frac{x}{N(\delta)}} 1 =$$

$$= \prod_{p \mid \beta} (1 - N(p)^{-1}) \left(\pi x \sum_{\substack{N(\alpha) \le x \\ (\delta,\beta)=1}} \frac{\mu(\delta)}{N^{2}(\delta)} + O(x^{1/3}) \right)$$

$$= c_{0}(\beta)x + O(x^{1/3}). \tag{11}$$

where $c_0(\beta) = c_0 \frac{\varphi(\beta)}{N(\beta)} \prod_{p|\beta} (1 - N(\rho)^{-2}), \quad c_0 = const.$ Therefore

$$\sum_{\substack{N(\gamma) \le \frac{x^{1/2}}{N(\delta)} \\ (\gamma, \beta/\delta) = 1}} c_0(\beta/\delta) \left(\log x + 1 + O\left(x^{1/3}\right)\right). \tag{12}$$

Hence, from (10),(12), we get

$$\sum_{N(\gamma) \le x^{1/2}} \sum_{\substack{\alpha \equiv \beta(\gamma) \\ N(\alpha) \le x}} \tau(\alpha) = x(a_0(\beta) \log^2 x + a_1(\beta) \log x + a_2(\beta)) + O(x^{7/8 + \epsilon}). \quad (13)$$

Similarly

$$\sum_{N(\gamma) \le x^{1/2}} \sum_{\substack{\alpha \equiv \beta(\gamma) \\ N(\alpha) \le N(\gamma)x^{1/2}}} \tau(\alpha) = x(b_1(\beta)\log x + b_2(\beta)) + O(x^{7/8 + \varepsilon}). \quad (14)$$

From (9),(13),(14) we obtain the assertion of theorem.

References

- [1] A.E. Ingham, Some asymptotic formulae in the theory of numbers, 2. J. London Math. Soc. 2(1927), 202-208.
- [2] T. Estermann, Über die Darstellungen einer Zahl als Differenz von zwei Producten, J. Reine Angew. Math. 164(1931), 173-182.
- [3] D.R.Heath-Brown, The divisor function $d_3(n)$ in arithmetic progression, Acta Arithm. XLVII.1 (1986), 29-56.
- [4] J.-M. Deshoillers and H. Ivaniec, An additive divisor problem, Proc. London Math. Soc (2) 26(1982), 1-14.
- [5] Y.Motohashi, The binary additive divisor problem, Ann. Sci. École Normale Supériure (4) 27 (1994), 529-572.
- [6] P.D. Vatbanets and P.A. Zarzycki, Divisors of the Gaussian integers in an Arithmetic Progression, J. Number Theory (2) 33(1989), 152-269.

CONTACT INFORMATION

O. V. Savasrtu

ul. Dvoryanskaya 2, Dept. of computer algebra and discrete mathematics, Odessa national university, Odessa 65026 Ukraine *E-Mail:* prik@imem.odessa.ua

P. D. Varbanets

ul.Solnechnaya 7/9 apt.18, Odessa 65009 Ukraine

E-Mail: varb@te.net.ua

Received by the editors: 22.02.2003.