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Abstract. A subgroup H of a finite group G is said to

be Hall normally embedded in G if there is a normal subgroup N
of G such that H is a Hall subgroup of N . A Schmidt group is a

non-nilpotent finite group whose all proper subgroups are nilpotent.

In this paper, we prove that if each Schmidt subgroup of a finite

group G is Hall normally embedded in G, then the derived subgroup

of G is nilpotent.

1. Introduction

All groups in this paper are finite. We use the standard notation and
terminology of [1, 2].

A Schmidt group is a non-nilpotent group in which every proper
subgroup is nilpotent. O.Y. Schmidt [3] initiated the investigations of
such groups. He proved that a Schmidt group is biprimary (i. e. its order is
divided by only two different primes), one of its Sylow subgroups is normal
and other one is cyclic. In [3], it was also specified the index system of the
chief series of a Schmidt group. Reviews on the structure of the Schmidt
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groups and their applications in the theory of finite groups are available
in [4, 5].

Since every non-nilpotent group contains a Schmidt subgroup, Schmidt
groups are universal subgroups of groups. So naturally the properties of
Schmidt subgroups contained in a group have a significant influence on
the group structure. Groups with some restrictions on Schmidt subgroups
was investigated in many papers. For example, groups with subnormal
Schmidt subgroups were studied in [6]–[8], and groups with Hall Schmidt
subgroups were described in [9].

The normal closure of a subgroup H in a group G is the smallest
normal subgroup of G containing H. It is clear that the normal closure

HG = 〈Hx | x ∈ G〉 =
⋂

H6N⊳G

N

coincides with the intersection of all normal subgroups of G containing H .
A subgroup H of a group G is said to be Hall normally embedded in

G if there is a normal subgroup N of G such that H 6 N and H is a Hall
subgroup of N , i.e., (|H|, |N : H|) = 1. In this situation the subgroup H
is a Hall subgroup of HG. It is clear that all normal and all Hall subgroups
of G are Hall normally embedded in G.

Groups in which some subgroups are normally embedded were studied,
for example, in [10]–[13].

In this paper, we study groups with Hall normally embedded Schmidt
subgroups. The following theorem is proved.

Theorem. If each Schmidt subgroup of a group G is Hall normally em-

bedded in G, then the derived subgroup of G is nilpotent.

2. Preliminaries

Throughout this paper, p and q are always different primes. Recall
that a p-closed group is a group with a normal Sylow p-subgroup, and a
p-nilpotent group is a group of order pam, where p does not divide m, with
a normal subgroup of order m. A pd-group is a group of the order divided
by p. A group of order paqb, where a and b are non-negative integers, is
called a {p, q}-group.

If q divides pn− 1 and does not divide pn1 − 1 for all 1 6 n1 < n, then
we say that the positive integer n is the order of p modulo q.

Let G be a group. We denote by π(G) the set of all prime divisors
of the order of G. We use Z(G), Φ(G) and F (G) to denote the center,
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the Frattini subgroup and the Fitting subgroup of G, respectively. As
usual, Op(X) and Op′(X) are the largest normal p- and p′-subgroups of X,
respectively. We denote by [A]B a semidirect product of two subgroups A
and B with a normal subgroup A. The symbol � indicates the end of the
proof.

We need the following properties of Schmidt groups.

Lemma 1 ([3,5]). Let S be a Schmidt group. Then the following statements

hold:

(1) π(S) = {p, q}, S = [P ]〈y〉, where P is a normal Sylow p-subgroup,
〈y〉 is a non-normal Sylow q-subgroup, yq ∈ Z(S);

(2) P/Φ(P ) is a minimal normal subgroup of G/Φ(P ), Φ(P ) = P ′ 6

Z(G);
(3) |P/Φ(P )| = pn, n is the order of p modulo q.

Following [6], a Schmidt group with a normal Sylow p-subgroup and a
non-normal cyclic Sylow q-subgroup is called an S〈p,q〉-group. So if G is
an S〈p,q〉-group, then G = [P ]Q, where P is a normal Sylow p-subgroup
and Q is a non-normal cyclic Sylow q-subgroup.

Lemma 2 ([6, Lemma 6]). (1) If a group G has no p-closed Schmidt

subgroups, then G is p-nilpotent.

(2) If a group G has no 2-nilpotent Schmidt 2d-subgroups, then G is

2-closed.
(3) If a p-soluble group G has no p-nilpotent Schmidt pd-subgroups, then

G is p-closed.

Lemma 3. Let A be a subgroup of a group G such that A is a Hall

subgroup of AG.

(1) If H is a subgroup of G, A 6 H, then A is a Hall subgroup of AH .

(2) If N is a normal subgroup of G, then AN/N is a Hall subgroup of

(AN/N)(G/N).

Proof. 1. By the hypothesis, A is a Hall subgroup of AG and A 6 H ∩AG.
Since AG is normal in G, it follows that H ∩ AG is normal in H. So
AH 6 H ∩AG 6 AG and A is a Hall subgroup of AH .

2. Since AGN is normal in G and AN 6 AGN , so (AN/N)(G/N) 6

AGN/N . By the hypothesis, A is a Hall subgroup of AG, thus AN/N
is a Hall subgroup of AGN/N . Therefore, AN/N is a Hall subgroup of
(AN/N)(G/N).
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Lemma 4. Let K and D be subgroups of a group G such that D is normal

in K. If K/D is an S〈p,q〉-subgroup, then each minimal supplement L to

D in K has the following properties:

(1) L is a p-closed {p, q}-subgroup;
(2) all proper normal subgroups of L are nilpotent;

(3) L includes an S〈p,q〉-subgroup [P ]Q such that D does not include Q

and L = ([P ]Q)L = QL;

(4) if [P ]Q is a Hall subgroup of ([P ]Q)G, then L = [P ]Q.

Proof. Assertions (1)–(3) were established in [6, Lemma 2]. Let us verify
assertion (4). If [P ]Q is a Hall subgroup of ([P ]Q)G, then [P ]Q is a Hall
subgroup of ([P ]Q)L = L by Lemma 3 (1), and L = [P ]Q.

Lemma 5. If H is a subgroup of a group G generated by all S〈p,q〉-sub-

groups of G, then G/H has no S〈p,q〉-subgroups.

Proof. Assume the contrary. Suppose that A/H is a S〈p,q〉-subgroup of

G/H . By Lemma 4, in A there is an S〈p,q〉-subgroup S such that SAH = A.

However, SA 6 H by the choice of H, i. e A = H, a contradiction.

Lemma 6. Let each S〈p,q〉-subgroup of a group G be Hall normally em-

bedded in G.

(1) If H is a subgroup of G, then each S〈p,q〉-subgroup of H is Hall

normally embedded in H.

(2) If N is a normal subgroup of G, then each S〈p,q〉-subgroup of G/N
is Hall normally embedded in G/N .

Proof. 1. Let A be an S〈p,q〉-subgroup of H . Therefore, A is an S〈p,q〉-sub-

group of G. By the hypothesis,A is a Hall subgroup of AG. By Lemma 3 (1),
A is a Hall subgroup of AH .

2. Let K/N be an S〈p,q〉-subgroup of G/N , and let L be a minimal
supplement to N in K. By Lemma 4 (4), L is an S〈p,q〉-subgroup, therefore,
L is Hall normally embedded in G. By Lemma 3 (2), LN/N = K/N is
Hall normally embedded in G/N .

Lemma 7. Let G be a p-soluble group and lp(G) > 1. If lp(H) 6 1 and

lp(G/K) 6 1 for each H < G, 1 6= K ⊳G, then the following hold:

(1) Φ(G) = Op′(G) = 1;
(2) G has a unique minimal normal subgroup N=F (G)=Op(G)=CG(N);
(3) lp(G) = 2;
(4) G = [N ]S, where S=[Q]P is a p-nilpotent Schmidt subgroup, |P |=p.
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Proof. Assertions (1)–(2) follow from [2, VI.6.9]. As lp(N) = 1 and
lp(G/N) 6 1 we have lp(G) = 2. It remains to prove assertion (4). Since
G is a p-soluble non-p-closed group, we conclude from Lemma 2 (3) that
in G there is an S〈q,p〉-subgroup S = [Q]P for some q ∈ π(G). Suppose
that NS is a proper subgroup of G. Then Op′(NS) 6 CG(N) = N . Thus,
Op′(NS) = 1. By the hypothesis, lp(NS) = 1, so NS is p-closed. This
contradicts the fact that S is not p-closed. Therefore, NS = G. Moreover
N ∩S⊳G, N ∩S = 1, and S is a maximal subgroup of G. Since Op(S) = 1,
it follows from Lemma 1 that |P | = p.

Lemma 8. If each p-nilpotent Schmidt pd-subgroup of a p-soluble group G
is Hall normally embedded in G, then lp(G) 6 1.

Proof. Let G be a counterexample of minimal order. By Lemma 6, each
proper subgroup and each non-trivial quotient group of G have a p-length 6

1. By Lemma 7,

G = [N ]S, Φ(G) = Op′(G) = 1, N = Op(G) = F (G) = CG(N),

where S = [Q]P is a maximal subgroup of G and is an S〈p,q〉-subgroup

for some q ∈ π(G). By the hypothesis, S is a Hall subgroup of SG. Since
SG = G, it follows that N is a p′-subgroup, a contradiction.

Lemma 9. Let n > 2 be a positive integer, let r be a prime, and let π be

the set of primes t such that t divides rn − 1 but t does not divide rn1 − 1
for all 1 6 n1 < n. Then the group GL(n, r) contains a cyclic π-Hall

subgroup.

Proof. The group G = GL(n, r) is of order

rn(n−1)/2(rn − 1)(rn−1 − 1) . . . (r2 − 1)(r − 1).

By Theorem II.7.3 [2], G contains a cyclic subgroup T of order rn − 1. Its
π-Hall subgroup Tπ is a π-Hall subgroup of G, because t does not divide
rn1 − 1 for all t ∈ π and all 1 6 n1 < n.

3. Proof of the theorem

We proceed by induction on the order of G. First, we verify that G
is soluble. Assume the contrary. It follows that G is not 2-closed, and by
Lemma 2 (2), in G there exists a 2-nilpotent Schmidt subgroup S = [P ]Q
of even order, where P is a Sylow p-subgroup of order p > 2, Q is a
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cyclic Sylow 2-subgroup. By the hypothesis, S is a Hall subgroup of SG,
therefore, Q is a Sylow 2-subgroup of SG, and SG is 2-nilpotent. Thus,
S 6 SG 6 R(G). Here R(G) is the largest normal soluble subgroup of G.
Since S is arbitrary, we conclude that all 2-nilpotent Schmidt subgroups of
even order are contained in R(G). By Lemma 5, the quotient group G/R(G)
has no 2-nilpotent Schmidt subgroups of even order. By Lemma 2 (2), the
quotient group G/R(G) is 2-closed, therefore, G is soluble.

Note that the derived subgroup G′ is nilpotent if and only if G ∈ NA.
Here N, A and E are the formations of all nilpotent, abelian and finite
groups, respectively, and

NA = { G ∈ E | G′ ∈ N}

is the formation product of N and A. According to [14, p. 337], NA is
an s-closed saturated formation. The quotient group G/N ∈ NA for each
non-trivial normal subgroup N of G by Lemma 6 (2). A simple check
shows that

G = [N ]M, N = Op(G) = F (G) = CG(N), |N | = pn, MG = 1,

where N is a unique minimal normal subgroup of G, M is a maximal
subgroup of G. In view of Lemma 7, N is a Sylow p-subgroup of G.

Let π = π(M) = π(G) \ {p}, r ∈ π, and let R be a Sylow r-subgroup
of G. Since N = CG(N), we obtain from Lemma 2 (1) that in [N ]R
there is an S〈p,r〉-subgroup [P1]R1. By the hypothesis, [P1]R1 is a Hall

subgroup of ([P1]R1)
G, therefore, P1 is a Sylow p-subgroup of ([P1]R1)

G.
Since N 6 ([P1]R1)

G and N is a Sylow p-subgroup of G, it follows that
N = P1. By Lemma 1, n is the order of p modulo r. But r is an arbitrary
number from π, so n is the order of p modulo q for all q ∈ π. The group
M ≃ G/N is isomorphic to a subgroup of GL(n, p), which contains a
cyclic Hall π-subgroup H by Lemma 9. In view of Theorem 5.3.2 [15], M
is contained in a subgroup Hx, x ∈ GL(n, p). Therefore, M is cyclic.
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