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Abstract. In this work, we study strongly prime submod-

ules and strongly 0-dimensional modules. We give some equivalent

conditions for being a strongly 0-dimensional module. Besides we

show that the quasi-Zariski topology on the spectrum of a strongly

0-dimensional module satisfies all separation axioms and it is a

metrizable space.

Introduction

Prime ideals have a distinguished place in commutative ring theory.
Their generalization to module theory, namely prime submodules are
one of the useful tools in understanding the structure of modules over
commutative rings. Let R be a commutative ring, and M an R-module.
A submodule P of M is called a prime submodule if whenever rm ∈ P
for some m ∈ M and r ∈ R, either m ∈ P or r ∈ (P : M). It is
still an appealing problem to extend properties of prime ideals to prime
submodules.

One of the well-known properties of prime ideals is that: For a commu-
tative ring R and a prime ideal P of R, if P contains the intersection of a
finite family of ideals, it contains at least one of those ideals. In [8], Gilmer
examined that when this property is valid for an infinite family of ideals.
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In [12], Jayaram et al. named prime ideals satisfying this property for any
infinite family of ideals as strongly prime ideals. That is, a prime ideal P
is called strongly prime if whenever an infinite intersection of a family of
ideals is contained in P , at least one of the ideals in that family is in P .
Jayaram et al. called a ring strongly 0-dimensional if every prime ideal of
the ring is strongly prime. They proved that strongly 0-dimensional rings
are zero dimensional and examined some properties of these rings includ-
ing their relation with von Neumann regular, Artinian and Noetherian
rings. In [9], Gottlieb conducted a further study on strongly prime ideals
and strongly 0-dimensional rings. He gave some equivalent conditions for
being a strongly 0-dimensional ring, and determined a class of strongly
0-dimensional rings, namely strongly n-regular rings.

We note that there is another type of ideals in commutative ring theory
named strongly prime ideals defined by Hedstrom and Houston in [10].
According to that a prime ideal of a domain R with quotient field K is
called strongly prime if x, y ∈ K and xy ∈ P imply that x ∈ P or y ∈ P .
This concept is unrelated to strongly prime ideals that are considered in
this paper.

An R-module M is called a multiplication module if every submodule
of M can be written in the form IM for some ideal I of R. Multiplication
modules are investigated by many authors, for detailed information see
[2], [5], [1] and [16]. In [15], Oral et al. generalized the concept of strongly
0-dimensional rings to the class of multiplication modules as follows: Let
R be a commutative ring and M an R-module. A prime submodule P of
M is said to be a strongly prime submodule if whenever an intersection of
a family of submodules is contained in P , at least one of the submodules
in the family is in P . If every prime submodule of M is strongly prime
then M is called a strongly 0-dimensional module. Among other things,
Oral et al. investigated relations between strongly 0-dimensional modules,
von Neumann regular modules and Q-modules.

In this work, we examine some further properties of strongly prime
submodules and strongly 0-dimensional modules. All rings are assumed to
be commutative with identity and all modules are unitary and multipli-
cation. In [2], Ameri defined a product for submodules of multiplication
modules as follows: Let N = IM and K = JM be two submodules of a
multiplication R-module M where I and J are ideals of R. The product of
N and K is defined as (IJ)M . For elements m and m′ of M , the product
of m and m′ is defined as RmRm′ where Rm is the cyclic submodule of M
generated by m. Among other things, Ameri obtained a characterization
of radical of a submodule of a multiplication module in terms of elements
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of M . We note that the radical of a submodule of a module is defined
as the intersection of the prime submodules containing that submodule.
Ameri proved that for a submodule N of a multiplication module M , the
radical of N , denoted as rad(N), is

rad(N) = {m ∈ M : mk ⊆ N for some k ∈ N}.

Using that multiplication we extend the notion of descending chain condi-
tion for principal powers, first introduced in [9], to multiplication modules:
A module M satisfies the descending chain condition (DCC) on principal
powers if every chain m ⊇ m2 ⊇ m3 ⊇ · · · stops, i.e., mn = mn+1 for
some n ∈ N. Using DCC on principal powers we give some equivalent
conditions for being a strongly 0-dimensional module (See Theorem 2 and
Theorem 4). A module is called quasi-semi-local if it has finitely many
maximal submodules. In Corollary 4, we prove that a finitely generated
module is strongly 0-dimensional if and only if it is a zero dimensional
quasi-semi-local module. After examining strongly prime submodules and
strongly 0-dimensional modules in Section 2, we investigate strongly prime
and strongly 0-dimensional property for idealization of M in R in Section 3.
The ring

R(+)M = {(r,m) : r ∈ R,m ∈ M}

with component-wise addition and multiplication defined as

(r,m)(s, n) = (rs, rn+ sm)

is called the idealization of M in R. The reader may consult [3] and [11]
for further information and the ideal structure of an idealization of M .

Finally, in Section 4, we examine topological structure of the space
of prime submodules of a strongly 0-dimensional module. Let M be a
module and Spec(M) the set of prime submodules of M . For a submodule
N of M set V (N) = {P ∈ Spec(M) : N ⊆ P}. The family {V (N) :
N a submodule of M} determines a topology on Spec(M) as closed sets
if and only if it is closed under finite unions. In that case, this topology is
called quasi-Zariski topology and M is called a top module, for details, see
[13]. Note that every multiplication module is a top module. In Proposition
2, we characterize all finitely generated strongly 0-dimensional modules
in terms of its quasi-Zariski topology. In view of this result, Spec(M)
satisfies all separation axioms if M is strongly 0-dimensional. Furthermore,
a finitely generated module M is strongly 0-dimensional if and only if
Spec(M) is finite T1-space (see Theorem 10).
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1. Strongly prime submodules and strongly
0-dimensional modules

Throughout this study all rings are assumed to be commutative with
nonzero identity and all modules are unitary multiplication. Let R denote
such a ring and M denote such an R-module. In this section we examine
some properties of strongly prime submodules and strongly 0-dimensional
modules.

Definition 1. [15, Definition 2.1] A prime submodule P of an R-module
M is called strongly prime if

⋂

i∈J Ni ⊆ P implies that Nj ⊆ P for some
j ∈ J . An R-module M is called strongly 0-dimensional if all prime
submodules are strongly prime.

Lemma 1. Let P be a strongly prime submodule of M . Then (P : M) is
a maximal ideal of R.

Proof. Assume that r /∈ (P : M). Then there exists m ∈ M such that
rm /∈ P . Since rm /∈ P , we have Rm * P . Set K =

⋂

Q*P Q. Thus

we have K * P since P is a strongly prime submodule. Then there
exists m′ ∈ K − P. Since Rm′ * P , we have Rm′ = K. As P is prime
and r 6∈ (P : M), we have rm′ /∈ P . So, we get Rrm′ * P and thus
Rrm′ ⊆ Rm′ = K. This implies Rrm′ = Rm′. Then there exists r′ ∈ R
such that r′rm′ = m′ and hence (1 − rr′)m′ = 0 ∈ P . Since m′ /∈ P we
get 1− rr′ ∈ (P : M). Consequently (P : M) is a maximal ideal of R.

Corollary 1. If P is a strongly prime submodule of M , then P is a
maximal submodule of M .

Proof. By Lemma 1, (P : M) is a maximal ideal of R and so P = (P :
M)M is a maximal submodule of M .

Lemma 2. If (P : M) is a strongly prime ideal of R, then P is a strongly
prime submodule of M .

Proof. If (P : M) is a strongly prime ideal of R, then the ideal (P : M)
is maximal by [9, Proposition 1.2]. So, the submodule P is a maximal
submodule of M . Assume that

⋂

i∈J Ni ⊆ P for a family of submodules
{Ni}i∈J . Then we have (

⋂

i∈J Ni : M) =
⋂

i∈J(Ni : M) ⊆ (P : M). Since
(P : M) is a strongly prime ideal, we conclude that (Nj : M) ⊆ (P : M)
for some j ∈ J. This implies (Nj : M)M = Nj ⊆ (P : M)M = P and this
completes the proof.
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Corollary 2. If R is a strongly 0-dimensional ring, then M is a strongly
0-dimensional R-module.

Next, we give a chain condition for submodules generated by powers
of a single element.

Definition 2. An R-module M satisfies the descending chain condition
(DCC) on principal powers if, for any m ∈ M the chain

m ⊇ m2 ⊇ m3 ⊇ ...

stops, i.e, mn = mn+1 for some n.

The following condition is defined by Bilgin and Oral in [6].

Definition 3. A family {Ni}i∈J of submodules of M satisfies (∗) property
if for all x ∈ M there exists n ∈ N such that x ∈ rad(Ni) implies xn ⊆ Ni.

Bilgin and Oral proved that a family satisfies (∗) property if and only
if intersection and radical operation commutes for this family as can be
seen in the following result:

Theorem 1 ([6, Lemma 4.4.]). A family {Ni}i∈I of submodules of M
satisfies (∗) property if and only if for each subset J ⊆ I,

rad

(

⋂

i∈J

Ni

)

=
⋂

i∈J

rad(Ni).

We prove in the following lemma that DCC on principal powers is
equivalent to the condition that every family satisfies (∗) property.

Lemma 3. M satisfies DCC on principal powers if and only if every
family of submodules satisfies (∗) property.

Proof. (⇒) : Let {Ni} be a family of submodules and x ∈
⋂

i∈J rad(Ni).
Let

x ⊇ x2 ⊇ x3 ⊇ · · ·
be a descending chain of principal powers. Then, by assumption, we have
xn = xn+1 for some n. Since x ∈ rad(Ni) for each i, we have xti ⊆ Ni. If
ti > n, then xn = xti ⊆ Ni, so xn ⊆ Ni. If ti 6 n, then xn ⊆ xti ⊆ Ni,
and thus xn ⊆ Ni.

(⇐) : Let x ⊇ x2 ⊇ x3 ⊇ ... be a descending chain of principal powers.
Observe that rad(x) = rad(xi) for each i: Assume that Rx = IM . Then

rad(IM) = rad(
√
IM) = rad(

√
IiM) = rad(IiM)



“adm-n4” — 2020/1/24 — 13:02 — page 176 — #26

176 Strongly 0-dimensional modules

and thus rad(x) = rad(xi). As x ∈ rad(x) = rad(xi) for each i, by
(∗) property, there exists n ∈ N such that xn ⊆ xi for all i, and so
xn = xn+1.

Now, we give one of the main results of this paper. The following the-
orem gives some equivalent conditions for being a strongly 0-dimensional
module.

Theorem 2. M is strongly 0-dimensional if and only if the following
conditions hold:

(i) M satisfies DCC on principal powers.
(ii) For every family {Pi}i∈J of prime submodules and any prime sub-

module P of M , the inclusion
⋂

i∈J Pi ⊆ P implies Pj ⊆ P for some
j ∈ J .

Proof. Let M be a strongly 0-dimensional module, {Ni}i∈J a family of
submodules and P a prime submodule containing

⋂

i∈J Ni. Then Nj ⊆ P
for some j ∈ J, so rad(Nj) ⊆ P . Then

⋂

i∈J rad(Ni) ⊆ rad(Nj) ⊆ P ,
hence rad(

⋂

i∈J Ni) ⊇
⋂

i∈J rad(Ni). Since the opposite inclusion always
holds, M satisfies DCC on principal powers by Lemma 3. The condition
(ii) is clear. Now, assume (i) and (ii) hold. Let P be a prime submodule
and

⋂

i∈J Ni ⊆ P for any family of submodules {Ni}i∈J of M . Then, by
(i), we have rad(

⋂

i∈J Ni) =
⋂

i∈J rad(Ni) =
⋂

Ni⊆Pik

Pik ⊆ P = rad(P ).

This implies Nj ⊆ Pjk ⊆ P for some j ∈ J by (ii). Consequently, M is a
strongly 0-dimensional module.

The following theorem gives an equivalent condition for a finitely
generated module to satisfy DCC on principal powers.

Theorem 3. Let M be a finitely generated R-module. M satisfies DCC
on principal powers if and only if, for every x ∈ M , I +Ann(xn) = R for
some n ∈ N, where Rx = IM.

Proof. (⇒) : Let x ∈ M. Then Rx = IM for some finitely generated ideal
I of R. Since M satisfies DCC on principal powers, InM = In+1M for
some n ∈ N. Then InM is finitely generated, because M and I are finitely
generated. By [4, Corollary 2.5], there is an r ∈ I such that (1−r)InM = 0.
Then 1− r ∈ Ann(InM) = Ann(xn). Hence I +Ann(xn) = R.

(⇐) : Let x ∈ M and I + Ann(xn) = R. Then we have InM =
(I +Ann(xn))InM = In+1M.

We conclude that if a finitely generated module satisfies DCC on
principal powers, then its Krull dimension is zero.
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Corollary 3. Let M be a finitely generated module. If M satisfies DCC
on principal powers, then M is zero dimensional.

Proof. Assume that P1  P2 are prime submodules of M. Let x ∈ P2−P1.
Then xn * P1 for all n ∈ N. This implies Ann(xn) ⊆ (P1 : M) ⊆ (P2 : M)
and so I +Ann(xn) ⊆ (P2 : M) 6= R. Thus M does not satisfy the DCC
on principal powers.

In the following theorem, we give some further equivalent conditions
for a finitely generated module to be strongly 0-dimensional.

Theorem 4. Let M be a finitely generated module. Then M is strongly
0-dimensional if and only if the following two conditions hold:

(i) No maximal submodule of M contains the intersection of the other
maximal submodules, and

(ii) M satisfies the DCC on principal powers.

Proof. Assume that M is strongly 0-dimensional. Since M is zero di-
mensional, (i) is clear and (ii) follows from Theorem 2. For the converse,
assume that M satisfies (i) and (ii). Then M is zero dimensional by
Corollary 3. Let K be a maximal submodule of M and {Ni}i∈J a family
of submodules such that K ⊇

⋂

i∈JNi. Then K ⊇ rad(
⋂

i∈J Ni). Hence,
K ⊇ ⋂

i∈J rad(Ni) by (ii). For each i ∈ J , the submodule rad(Ni) is an
intersection of maximal submodules as M is zero dimensional. Thus K
must be one of these maximal submodules. Then K ⊇ Nj for some j ∈ J.
Consequently M is strongly 0-dimensional.

A module M is called quasi-semi-local if it has only finitely many max-
imal submodules. The following theorem shows that a finitely generated
strongly 0-dimensional module is quasi-semi-local.

Theorem 5. Let M be a finitely generated R-module. If M is a strongly
0-dimensional module, then M is quasi-semi-local.

Proof. Let Ω = {Ni : i ∈ J} be the set of all distinct maximal submodules
of M. Assume that Ω is an infinite set. Since all Ni’s are distinct, Ω′ =
{(Ni : M) : Ni ∈ Ω for all i ∈ J} is an infinite set of distinct maximal
ideals (not necessarily the set of all maximal ideals) of R. Then, by [9,
Proposition 1.9], either we have

⋂

j 6=i(Nj : M) ⊆ (Ni : M) for some i ∈ J
or there exists a maximal ideal K of R such that

⋂

j∈J (Nj : M) ⊆ K, where
K 6= (Nj : M). If

⋂

j∈J (Nj : M) ⊆ K, then (0 : M) ⊆ K and so N = KM
is a maximal submodule, by assumption, we have N = KM = Nk for
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some k ∈ J. This implies that (N : M) = (KM : M) = K = (Nk : M)
which is a contradiction. Now assume that

⋂

j 6=i(Nj : M) ⊆ (Ni : M) for
i ∈ J. Then we get (

⋂

j 6=i(Nj : M))M ⊆ (Ni : M)M and this yields

⋂

j 6=i

((Nj : M)M) =
⋂

j 6=i

Nj ⊆ Ni.

Since Ni is a strongly prime submodule, we have Nj ⊆ Ni for some j ∈ J,
a contradiction.

It can be easily seen that there is a one-to-one correspondence between
maximal submodules of a finitely generated multiplication R-module M
and maximal ideals of the ring R/(0 : M). Therefore, such a module M is
zero-dimensional if and only if the ring R/(0 : M) is zero dimensional. As
a consequence, we have the following result:

Lemma 4. Suppose that M is a finitely generated R-module. Then M is
a zero dimensional module if and only if

√

⋂

j∈J

Ij =
⋂

j∈J

√

Ij

for each family {Ij}j∈J of ideals of R such that (0 : M) ⊆ Ij.

Lemma 5. Suppose that M is a finitely generated R-module. If M is zero
dimensional, then M satisfies DCC on principal powers.

Proof. It is sufficient to show that

rad

(

⋂

i∈J

Ni

)

=
⋂

i∈J

rad(Ni).

Assume that
⋂

i∈J Ni ⊆ P for some prime submodule P of M. Then

(

⋂

i∈J

Ni : M

)

=
⋂

i∈J

(Ni : M) ⊆ (P : M).

By Lemma 4, we have

√

⋂

i∈J

(Ni : M) =
⋂

i∈J

√

(Ni : M) ⊆ (P : M).
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Thus (
⋂

i∈J(rad (Ni) : M))M ⊆ (P : M)M by [14, Lemma 2.4]. This
implies that

⋂

i∈J

[rad (Ni) : M)M ] =
⋂

i∈J

rad(Ni) ⊆ P.

Then we get
⋂

i∈J rad(Ni) ⊆ rad(
⋂

i∈J Ni) which completes the proof.

Let M be a finitely generated R-module. If M is a zero dimensional
quasi-semi-local R-module, then M satisfies DCC on principal powers
by Lemma 5. In this case, no maximal submodule contains the inter-
section of other maximal submodules. Thus, by Theorem 4, M is a
strongly 0-dimensional module. Therefore, all finitely generated strongly
0-dimensional modules are exactly zero dimensional quasi-semi-local mod-
ules.

Corollary 4. Let M be a finitely generated R-module. Then M is strongly
0-dimensional if and only if M is zero dimensional quasi-semi-local.

Combining all these results, we have the following corollary:

Corollary 5. Let M be a finitely generated R-module. Then M is a
strongly 0-dimensional module if and only if R/(0 : M) is a strongly
0-dimensional ring.

2. When the idealization of a module is strongly
0-dimensional?

The idealization of M in R is defined as the ring

R(+)M = {(r,m) : r ∈ R,m ∈ M}

with component-wise addition and multiplication

(r,m)(s, n) = (rs, rn+ sm)

for (r,m), (s, n) ∈ R(+)M . It is a commutative ring with identity (1, 0).
The maximal and prime ideals of R(+)M are characterized by Anderson
and Winders in [3] as follows:

Theorem 6 ([3, Theorem 3.2]). The prime (resp., maximal) ideals of
R(+)M have the form P(+)M where P is a prime (resp., maximal) ideal
of R. Hence,

dim(R(+)M) = dim(R).
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Here we determine strongly prime ideals of R(+)M :

Lemma 6. Let P ∗ be a strongly prime ideal of R(+)M. Then P ∗ =
P (+)M for some strongly prime ideal P of R.

Proof. Assume that P ∗ is a strongly prime ideal of R(+)M. Since P ∗ is
also prime, we have P ∗ = P (+)M for some prime ideal P of R. Assume
that

⋂

i∈J Ii ⊆ P for some family of ideals {Ii}i∈J of R. Then we have

⋂

i∈J

Ii(+)M =
⋂

i∈J

(Ii(+)M) ⊆ P (+)M.

Since P (+)M is a strongly prime ideal of R(+)M, we have Ij(+)M ⊆
P (+)M, and thus Ij ⊆ P for some j ∈ J. As a consequence, P is a strongly
prime ideal of R.

Brewer and Richman [7] give an equivalent condition for a ring to be
zero dimensional as follows:

Theorem 7 ([7, Theorem 2.2]). A ring R is zero dimensional if and only
if there exists n such that Rxn = Rxn+1 for each x ∈ R.

This lemma indicates that R is zero dimensional if and only if R
satisfies the DCC on principal powers. In [9], Gottlieb gives the following
theorem as a different characterization of strongly 0-dimensional rings.

Theorem 8 ([9, Theorem 1.8]). R is strongly 0-dimensional if and only
if the following conditions hold:

(i) No maximal ideal of R contains the intersection of the other maximal
ideals.

(ii) R satisfies the DCC on principal powers.

As it mentioned in the introduction, a strongly 0-dimensional ring is
always zero dimensional by [12, Theorem 2.9]. By combining the previous
two theorems, it can be easily seen that the converse is true when the
condition (i) of Theorem 8 is satisfied.

The next theorem shows that strongly 0-dimensional property of
R(+)M depends only on strongly 0-dimensional property of R.

Theorem 9. Let M be an R-module. Then R is a strongly 0-dimensional
ring if and only if R(+)M is a strongly 0-dimensional ring.
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Proof. The necessary condition follows from Lemma 6. For the sufficiency,
suppose that R is a strongly 0-dimensional ring. Then it is also zero
dimensional. Thus, R(+)M is also zero dimensional by Theorem 6 and
satisfies DCC on principal powers by Theorem 7. Now, it is enough to
check that if R(+)M satisfies the condition in Theorem 8 (i). Assume
that

⋂

i∈J(Mi(+)M) ⊆ Mj(+)M where Mi,Mj are maximal ideals of R
for all i ∈ J and i 6= j. Then we have

⋂

i∈J

Mi(+)M ⊆ Mj(+)M

that is,
⋂

i∈J Mi ⊆ Mj , a contradiction.

3. The spectrum of a strongly 0-dimensional module

In this section we will examine topological structure of the set of all
prime submodules Spec(M) of a strongly 0-dimensional module M .

Let N be a submodule of a module M and set

V (N) = {P ∈ Spec(M) : N ⊆ P}.

The set Spec(M) is equipped with the quasi-Zariski topology if and only
if the family {V (N) : N ⊆ M} is closed under finite unions. In this case
M is called a top module, see [13]. Since all modules are assumed to be
multiplication in this article, they are also top modules.

Theorem 10. Let M be a finitely generated R-module. Then M is a
strongly 0-dimensional module if and only if Spec(M) is a finite T1-space.

Proof. Let M be a strongly 0-dimensional module. Then Spec(M) =
Max(M) and also M is quasi-semi-local. This implies that Spec(M) is
a finite T1-space. Conversely, assume that Spec(M) is a finite T1-space.
Since Spec(M) is a T1-space, every prime submodule is maximal and hence
M is 0-dimensional. Also note that M is quasi-semi-local since Spec(M)
is finite topological space. Thus M is a strongly 0-dimensional module by
Corollary 4.

Note that if M is a strongly 0-dimensional module which is not quasi-
local, Spec(M) is not a connected space since all finite T1-spaces are
equipped with discrete topology. Also note that the quasi-Zariski topology
on a strongly 0-dimensional module satisfies all separation axioms. In
particular, Spec(M) is metrizable for a strongly 0-dimensional module M .
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