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ABSTRACT. In this work, we study strongly prime submod-
ules and strongly 0-dimensional modules. We give some equivalent
conditions for being a strongly O-dimensional module. Besides we
show that the quasi-Zariski topology on the spectrum of a strongly
0-dimensional module satisfies all separation axioms and it is a
metrizable space.

Introduction

Prime ideals have a distinguished place in commutative ring theory.
Their generalization to module theory, namely prime submodules are
one of the useful tools in understanding the structure of modules over
commutative rings. Let R be a commutative ring, and M an R-module.
A submodule P of M is called a prime submodule if whenever rm € P
for some m € M and r € R, either m € P orr € (P : M). It is
still an appealing problem to extend properties of prime ideals to prime
submodules.

One of the well-known properties of prime ideals is that: For a commu-
tative ring R and a prime ideal P of R, if P contains the intersection of a
finite family of ideals, it contains at least one of those ideals. In [8], Gilmer
examined that when this property is valid for an infinite family of ideals.
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In [12], Jayaram et al. named prime ideals satisfying this property for any
infinite family of ideals as strongly prime ideals. That is, a prime ideal P
is called strongly prime if whenever an infinite intersection of a family of
ideals is contained in P, at least one of the ideals in that family is in P.
Jayaram et al. called a ring strongly 0-dimensional if every prime ideal of
the ring is strongly prime. They proved that strongly 0-dimensional rings
are zero dimensional and examined some properties of these rings includ-
ing their relation with von Neumann regular, Artinian and Noetherian
rings. In [9], Gottlieb conducted a further study on strongly prime ideals
and strongly O-dimensional rings. He gave some equivalent conditions for
being a strongly 0-dimensional ring, and determined a class of strongly
0-dimensional rings, namely strongly n-regular rings.

We note that there is another type of ideals in commutative ring theory
named strongly prime ideals defined by Hedstrom and Houston in [10].
According to that a prime ideal of a domain R with quotient field K is
called strongly prime if x,y € K and zy € P imply that z € P or y € P.
This concept is unrelated to strongly prime ideals that are considered in
this paper.

An R-module M is called a multiplication module if every submodule
of M can be written in the form IM for some ideal I of R. Multiplication
modules are investigated by many authors, for detailed information see
[2], [5], [1] and [16]. In [15], Oral et al. generalized the concept of strongly
0-dimensional rings to the class of multiplication modules as follows: Let
R be a commutative ring and M an R-module. A prime submodule P of
M is said to be a strongly prime submodule if whenever an intersection of
a family of submodules is contained in P, at least one of the submodules
in the family is in P. If every prime submodule of M is strongly prime
then M is called a strongly 0-dimensional module. Among other things,
Oral et al. investigated relations between strongly 0-dimensional modules,
von Neumann regular modules and Q-modules.

In this work, we examine some further properties of strongly prime
submodules and strongly 0-dimensional modules. All rings are assumed to
be commutative with identity and all modules are unitary and multipli-
cation. In |2], Ameri defined a product for submodules of multiplication
modules as follows: Let N = IM and K = JM be two submodules of a
multiplication R-module M where I and J are ideals of R. The product of
N and K is defined as (I.J)M. For elements m and m’ of M, the product
of m and m/ is defined as RmRm’ where Rm is the cyclic submodule of M
generated by m. Among other things, Ameri obtained a characterization
of radical of a submodule of a multiplication module in terms of elements



Z. BiLGIN, S. Kog, N. A. OzkIRrIscCI 173

of M. We note that the radical of a submodule of a module is defined
as the intersection of the prime submodules containing that submodule.

Ameri proved that for a submodule N of a multiplication module M, the
radical of N, denoted as rad(NV), is

rad(N) = {m € M : m* C N for some k € N}.

Using that multiplication we extend the notion of descending chain condi-
tion for principal powers, first introduced in [9], to multiplication modules:
A module M satisfies the descending chain condition (DCC) on principal
powers if every chain m O m? O m? D .- stops, i.e., m"® = m"t! for
some n € N. Using DCC on principal powers we give some equivalent
conditions for being a strongly 0-dimensional module (See Theorem 2 and
Theorem 4). A module is called quasi-semi-local if it has finitely many
maximal submodules. In Corollary 4, we prove that a finitely generated
module is strongly O-dimensional if and only if it is a zero dimensional
quasi-semi-local module. After examining strongly prime submodules and
strongly O-dimensional modules in Section 2, we investigate strongly prime
and strongly 0-dimensional property for idealization of M in R in Section 3.
The ring
R(+)M = {(r,m):r € R,m e M}

with component-wise addition and multiplication defined as
(r,m)(s,n) = (rs,rn + sm)

is called the idealization of M in R. The reader may consult [3| and [11]
for further information and the ideal structure of an idealization of M.

Finally, in Section 4, we examine topological structure of the space
of prime submodules of a strongly 0-dimensional module. Let M be a
module and Spec(M) the set of prime submodules of M. For a submodule
N of M set V(N) = {P € Spec(M) : N C P}. The family {V(N) :
N a submodule of M} determines a topology on Spec(M) as closed sets
if and only if it is closed under finite unions. In that case, this topology is
called quasi-Zariski topology and M is called a top module, for details, see
[13]. Note that every multiplication module is a top module. In Proposition
2, we characterize all finitely generated strongly 0-dimensional modules
in terms of its quasi-Zariski topology. In view of this result, Spec(M)
satisfies all separation axioms if M is strongly O-dimensional. Furthermore,
a finitely generated module M is strongly O-dimensional if and only if
Spec(M) is finite Ti-space (see Theorem 10).
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1. Strongly prime submodules and strongly
0-dimensional modules

Throughout this study all rings are assumed to be commutative with
nonzero identity and all modules are unitary multiplication. Let R denote
such a ring and M denote such an R-module. In this section we examine
some properties of strongly prime submodules and strongly 0-dimensional
modules.

Definition 1. [15, Definition 2.1] A prime submodule P of an R-module
M is called strongly prime if ;. ; N; € P implies that N; C P for some
j € J. An R-module M is called strongly 0-dimensional if all prime
submodules are strongly prime.

Lemma 1. Let P be a strongly prime submodule of M. Then (P : M) is
a maximal ideal of R.

Proof. Assume that r ¢ (P : M). Then there exists m € M such that
rm ¢ P. Since rm ¢ P, we have Rm ¢ P. Set K = ﬂQ;(_PQ~ Thus
we have K ¢ P since P is a strongly prime submodule. Then there
exists m’ € K — P. Since Rm’ ¢ P, we have Rm/ = K. As P is prime
and r € (P : M), we have rm/ ¢ P. So, we get Rrm’ ¢ P and thus
Rrm/ € Rm' = K. This implies Rrm’ = Rm’. Then there exists ' € R
such that #'rm’ = m’ and hence (1 —rr')m’ =0 € P. Since m’ ¢ P we
get 1 —rr’ € (P : M). Consequently (P : M) is a maximal ideal of R. [

Corollary 1. If P is a strongly prime submodule of M, then P is a
mazimal submodule of M.

Proof. By Lemma 1, (P : M) is a maximal ideal of R and so P = (P :
M)M is a maximal submodule of M. O

Lemma 2. If (P : M) is a strongly prime ideal of R, then P is a strongly
prime submodule of M.

Proof. If (P : M) is a strongly prime ideal of R, then the ideal (P : M)
is maximal by [9, Proposition 1.2|. So, the submodule P is a maximal
submodule of M. Assume that ﬂie 7 N; € P for a family of submodules
{Ni};cs- Then we have ((;c; Ni: M) = ;e ;(N;i: M) C (P : M). Since
(P : M) is a strongly prime ideal, we conclude that (N; : M) C (P : M)
for some j € J. This implies (Nj : M)M = N; C (P : M)M = P and this
completes the proof. O
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Corollary 2. If R is a strongly 0-dimensional ring, then M is a strongly
0-dimensional R-module.

Next, we give a chain condition for submodules generated by powers
of a single element.

Definition 2. An R-module M satisfies the descending chain condition
(DCC) on principal powers if, for any m € M the chain

m 2 m? 2 m> DI
stops, i.e, m"™ = m™*! for some n.
The following condition is defined by Bilgin and Oral in [6].

Definition 3. A family {N;},.; of submodules of M satisfies (*) property
if for all x € M there exists n € N such that x € rad(JV;) implies 2" C N;.

Bilgin and Oral proved that a family satisfies () property if and only
if intersection and radical operation commutes for this family as can be
seen in the following result:

Theorem 1 ([6, Lemma 4.4.]). A family {N;},.; of submodules of M
satisfies (x) property if and only if for each subset J C I,

rad(iD]NZ) = Q]rad(Ni).

We prove in the following lemma that DCC on principal powers is
equivalent to the condition that every family satisfies (%) property.

Lemma 3. M satisfies DCC on principal powers if and only if every
family of submodules satisfies (x) property.

Proof. (=) : Let {N;} be a family of submodules and x € [, ;rad(N;).
Let
22022 D ...

1

X

be a descending chain of principal powers. Then, by assumption, we have
2" = 2" for some n. Since x € rad(NN;) for each i, we have zi C N;. If
t; > n, then 2" = 2% C N;, so 2™ C N;. If t; < n, then 2™ C 2% C N;,
and thus 2" C N;.

(<) : Let D 22 D 2% D ... be a descending chain of principal powers.
Observe that rad(x) = rad(z?) for each i: Assume that Rz = IM. Then

rad(IM) = rad(vVIM) = rad(VI'M) = rad(I' M)
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and thus rad(z) = rad(z?). As z € rad(z) = rad(a') for each i, by
(%) property, there exists n € N such that 2" C z° for all i, and so
" =gt O

Now, we give one of the main results of this paper. The following the-
orem gives some equivalent conditions for being a strongly 0-dimensional
module.

Theorem 2. M 1is strongly 0-dimensional if and only if the following
conditions hold:
(i) M satisfies DCC on principal powers.
(ii) For every family {P;},c; of prime submodules and any prime sub-
module P of M, the inclusion (\;c ; P; € P implies P; C P for some
jed.

Proof. Let M be a strongly 0-dimensional module, {N;},.; a family of
submodules and P a prime submodule containing (. ; N;. Then N; € P
for some j € J, so rad(N;) € P. Then (,c;rad(N;) C rad(N;) C P,
hence rad((,c; Ni) 2 ;s rad(4V;). Since the opposite inclusion always
holds, M satisfies DCC on principal powers by Lemma 3. The condition
(ii) is clear. Now, assume (i) and (ii) hold. Let P be a prime submodule
and (;c; Vi € P for any family of submodules {N;},.; of M. Then, by
(i), we have rad([;c; Ni) = ;e rad(N;) = mNigPik P, C P =rad(P).
This implies N; C P;, C P for some j € J by (ii). Consequently, M is a
strongly 0-dimensional module. O

The following theorem gives an equivalent condition for a finitely
generated module to satisfy DCC on principal powers.

Theorem 3. Let M be a finitely generated R-module. M satisfies DCC
on principal powers if and only if, for every x € M, I + Ann(z") = R for
somen € N, where Rx = IM.

Proof. (=) : Let x € M. Then Rx = IM for some finitely generated ideal
I of R. Since M satisfies DCC on principal powers, I"M = I"*t1M for
some n € N. Then 1™ M is finitely generated, because M and I are finitely
generated. By [4, Corollary 2.5|, there is an r € I such that (1—r)I"M = 0.
Then 1 —r € Ann(/"M) = Ann(z"). Hence I + Ann(z") = R.

(<) : Let x € M and I + Ann(z") = R. Then we have I"M =
(I + Ann(z™)I"M = "M, O

We conclude that if a finitely generated module satisfies DCC on
principal powers, then its Krull dimension is zero.
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Corollary 3. Let M be a finitely generated module. If M satisfies DCC
on principal powers, then M is zero dimensional.

Proof. Assume that Py & P» are prime submodules of M. Let x € P, — P.
Then 2" ¢ Py for all n € N. This implies Ann(z") C (P : M) C (Py: M)
and so I + Ann(2") C (P> : M) # R. Thus M does not satisfy the DCC

on principal powers. [

In the following theorem, we give some further equivalent conditions
for a finitely generated module to be strongly O-dimensional.

Theorem 4. Let M be a finitely generated module. Then M is strongly
0-dimensional if and only if the following two conditions hold:
(i) No mazimal submodule of M contains the intersection of the other
maximal submodules, and
(il) M satisfies the DCC on principal powers.

Proof. Assume that M is strongly O-dimensional. Since M is zero di-
mensional, (i) is clear and (ii) follows from Theorem 2. For the converse,
assume that M satisfies (i) and (ii). Then M is zero dimensional by
Corollary 3. Let K be a maximal submodule of M and {N;},.; a family
of submodules such that K O ;. ;N;. Then K O rad((),c; NVi). Hence,
K D ;e rad(N;) by (ii). For each i € J, the submodule rad(N;) is an
intersection of maximal submodules as M is zero dimensional. Thus K
must be one of these maximal submodules. Then K O N for some j € J.
Consequently M is strongly 0-dimensional. O

A module M is called quasi-semi-local if it has only finitely many max-
imal submodules. The following theorem shows that a finitely generated
strongly 0-dimensional module is quasi-semi-local.

Theorem 5. Let M be a finitely generated R-module. If M is a strongly
0-dimensional module, then M 1is quasi-semi-local.

Proof. Let Q = {N; : i € J} be the set of all distinct maximal submodules
of M. Assume that € is an infinite set. Since all NV;’s are distinct, ' =
{(N; : M) : N; € Qfor all i € J} is an infinite set of distinct maximal
ideals (not necessarily the set of all maximal ideals) of R. Then, by [9,
Proposition 1.9], either we have (; ;(N; : M) C (N; : M) for some i € J
or there exists a maximal ideal K of R such that (), ;(N; : M) C K, where
K # (Nj: M). I (e ;(Nj : M) C K, then (0: M) C K andso N = KM

is a maximal submodule, by assumption, we have N = KM = N for
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some k € J. This implies that (N : M) = (KM : M) = K = (N : M)
which is a contradiction. Now assume that (), ,;(N; : M) C (N; : M) for
i € J. Then we get ((;,;(IN; : M))M C (N; : M)M and this yields

(((N; : M)M) = (N, € N
j#i j#i

Since Nj is a strongly prime submodule, we have N; C N; for some j € J,
a contradiction. O

It can be easily seen that there is a one-to-one correspondence between
maximal submodules of a finitely generated multiplication R-module M
and maximal ideals of the ring R/(0 : M). Therefore, such a module M is
zero-dimensional if and only if the ring R/(0 : M) is zero dimensional. As
a consequence, we have the following result:

Lemma 4. Suppose that M is a finitely generated R-module. Then M is
a zero dimensional module if and only if

for each family {I;};e of ideals of R such that (0: M) C I;.

Lemma 5. Suppose that M is a finitely generated R-module. If M is zero
dimensional, then M satisfies DCC' on principal powers.

Proof. 1t is sufficient to show that
rad<ﬂ NZ-> = () rad (V).
ic icJ
Assume that ﬂie ;7 N; C P for some prime submodule P of M. Then
(ﬂNi:M> = (Vi : M) C (P: M).
= icd

By Lemma 4, we have

\/mz N V@i - M) C (P: M),
e icJ
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Thus (;cs(rad (N;) : M))M C (P : M)M by [14, Lemma 2.4]. This
implies that

(rad (N;) : M)M] = () rad(N;) € P.
icJ ieJ

Then we get ;e rad(N;) € rad(();c; Vi) which completes the proof. [J

Let M be a finitely generated R-module. If M is a zero dimensional
quasi-semi-local R-module, then M satisfies DCC on principal powers
by Lemma 5. In this case, no maximal submodule contains the inter-
section of other maximal submodules. Thus, by Theorem 4, M is a
strongly 0-dimensional module. Therefore, all finitely generated strongly
0-dimensional modules are exactly zero dimensional quasi-semi-local mod-
ules.

Corollary 4. Let M be a finitely generated R-module. Then M is strongly
0-dimensional if and only if M is zero dimensional quasi-semi-local.

Combining all these results, we have the following corollary:

Corollary 5. Let M be a finitely generated R-module. Then M is a
strongly 0-dimensional module if and only if R/(0 : M) is a strongly
0-dimensional ring.

2. When the idealization of a module is strongly
0-dimensional?

The idealization of M in R is defined as the ring
R(+)M ={(r,m):r€ R,me M}
with component-wise addition and multiplication
(r,m)(s,n) = (rs,rn + sm)

for (r,m), (s,n) € R(+)M. It is a commutative ring with identity (1,0).
The maximal and prime ideals of R(+)M are characterized by Anderson
and Winders in [3] as follows:

Theorem 6 (|3, Theorem 3.2|). The prime (resp., mazimal) ideals of
R(+)M have the form B(+)M where B is a prime (resp., mazimal) ideal
of R. Hence,

dim(R(+)M) = dim(R).
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Here we determine strongly prime ideals of R(+)M:

Lemma 6. Let P* be a strongly prime ideal of R(+)M. Then P* =
P(4+)M for some strongly prime ideal P of R.

Proof. Assume that P* is a strongly prime ideal of R(+)M. Since P* is
also prime, we have P* = P(4)M for some prime ideal P of R. Assume
that (,c; I; € P for some family of ideals {/;};cs of R. Then we have

() L(+)M = (\(Li(+)M) € P(+)M.
icJ icJ

Since P(4+)M is a strongly prime ideal of R(+)M, we have I;(+)M C
P(+)M, and thus I; C P for some j € J. As a consequence, P is a strongly
prime ideal of R. O

Brewer and Richman [7] give an equivalent condition for a ring to be
zero dimensional as follows:

Theorem 7 (|7, Theorem 2.2|). A ring R is zero dimensional if and only
if there exists n such that Rz™ = Rx"T! for each x € R.

This lemma indicates that R is zero dimensional if and only if R
satisfies the DCC on principal powers. In 9], Gottlieb gives the following
theorem as a different characterization of strongly 0-dimensional rings.

Theorem 8 (|9, Theorem 1.8]). R is strongly 0-dimensional if and only
if the following conditions hold:
(i) No maximal ideal of R contains the intersection of the other maximal
ideals.
(ii) R satisfies the DCC on principal powers.

As it mentioned in the introduction, a strongly 0-dimensional ring is
always zero dimensional by [12, Theorem 2.9|. By combining the previous
two theorems, it can be easily seen that the converse is true when the
condition (i) of Theorem 8 is satisfied.

The next theorem shows that strongly O-dimensional property of
R(+)M depends only on strongly 0-dimensional property of R.

Theorem 9. Let M be an R-module. Then R is a strongly 0-dimensional
ring if and only if R(+)M is a strongly 0-dimensional ring.
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Proof. The necessary condition follows from Lemma 6. For the sufficiency,
suppose that R is a strongly 0-dimensional ring. Then it is also zero
dimensional. Thus, R(+)M is also zero dimensional by Theorem 6 and
satisfies DCC on principal powers by Theorem 7. Now, it is enough to
check that if R(+)M satisfies the condition in Theorem 8 (i). Assume
that (,c; (M (+)M) € M;(4)M where M;, M; are maximal ideals of R
for all i € J and i # j. Then we have

() 2(+)M S My(+)M
e

that is, [;c; M € M;, a contradiction. O]

icJ
3. The spectrum of a strongly 0-dimensional module

In this section we will examine topological structure of the set of all
prime submodules Spec(M) of a strongly 0-dimensional module M.
Let N be a submodule of a module M and set

V(N)={P € Spec(M) : N C P}.

The set Spec(M) is equipped with the quasi-Zariski topology if and only
if the family {V(N) : N C M} is closed under finite unions. In this case
M is called a top module, see [13]. Since all modules are assumed to be
multiplication in this article, they are also top modules.

Theorem 10. Let M be a finitely generated R-module. Then M is a
strongly 0-dimensional module if and only if Spec(M) is a finite T} -space.

Proof. Let M be a strongly 0-dimensional module. Then Spec(M) =
Max(M) and also M is quasi-semi-local. This implies that Spec(M) is
a finite T7-space. Conversely, assume that Spec(M) is a finite T;-space.
Since Spec(M) is a Ti-space, every prime submodule is maximal and hence
M is O-dimensional. Also note that M is quasi-semi-local since Spec(M )
is finite topological space. Thus M is a strongly 0-dimensional module by
Corollary 4. O

Note that if M is a strongly 0-dimensional module which is not quasi-
local, Spec(M) is not a connected space since all finite T}-spaces are
equipped with discrete topology. Also note that the quasi-Zariski topology
on a strongly O-dimensional module satisfies all separation axioms. In
particular, Spec(M) is metrizable for a strongly 0-dimensional module M.



182

STRONGLY O-DIMENSIONAL MODULES

[2

3]
(4]

(5]
(6]

(7]
18]

9

[10]
11]
12]
13]

[14]

[15]

[16]

References

Abd El-Bast Z, Smith PF, Multiplication modules, Comm Algebra, 16, (1988),
755-779.

Ameri R, On the prime submodules of multiplication modules, Int J Math Sci,
27, (2003), 1715-1724.

Anderson DD, Winders M, Idealization of a module, J Commut Algebr, 56(1),
(2009), 3-56.

Atiyah MF, MacDonald IG. Intorduction to Commutative Algebra, Addison-Wesley
Publishing Company, Massachusetts, 1994.

Barnard A, Multiplication modules, J Algebra, 71(1), (1988), 174-178.

Bilgin Z, Oral KH, Coprimely structured modules, Palestine J Math, 7, (2018),
161-169.

Brewer J, Richman F, Subrings of 0-dimensional rings, Multiplicative Ideal Theory
in Commutative Rings, (2006), 73-88.

Gilmer RW, An intersection condition for prime ideals, Lect Notes Pure Appl, 189,
(1997), 327-331.

Gottlieb C, On strongly prime ideals and strongly zero-dimensional rings, J. Algebra
Appl., 16(10), (2017), 1750191-1-1750191-9.

Hedstrom JR, Houston EG, Pseudo-valuation domains, Pacific J Math , 75(1),
(1978), 137-147.

Huckaba JA, Commutative rings with zero divisors, New York Monographs and
Textbooks in Pure and Applied Mathematics 117, Marcel Dekker, Inc., 1988.

Jayaram C, Oral KH, Tekir U, Strongly 0-dimensional rings, Comm Algebra, 41(6),
(2013), 2026-2032.

McCasland RL, Moore ME, Smith PF, On the spectrum of a module over a
commutative ring, Comm Algebra, 25(1), (1997), 79-103.

Mostafanasab H, Yetkin E, Tekir U, Darani AY, On 2-Absorbing primary sub-
modules over commutative rings, An. St. Univ. Ovidius Constanta, 24(1), (2016),
335-351.

Oral KH, Ozkirisci NA, Tekir U, Strongly 0-dimensional module, Canad Math
Bull, 57(1), (2014), 159-165.

Smith PF, Some remarks on multiplication modules, Arch Math, 50(3), (1988),
223-235.

CONTACT INFORMATION

Z. Bilgin Philosophy Department, Istanbul Medeniyet

University 34000, Kadikoy, Istanbul, Turkey
E-Mail(s): zehrabilgin.zb@gmail.com

S. Kog Department of Mathematics, Faculty of Science and

Arts, Marmara University 34722, Istanbul, Turkey
E-Mail(s): suat.koc@marmara.edu.tr



Z. BiLGIN, S. Kog, N. A. OzkIRrIscCI 183

N. A. Ozkirisci  Department of Mathematics, Faculty of Science and
Arts, Yildiz Technical University 34210, Istanbul,
Turkey
E-Mail(s): aozk@yildiz.edu.tr

Received by the editors: 29.03.2018
and in final form 18.09.2018.



