Partitions of groups into thin subsets

Igor Protasov

Abstract. Let G be an infinite group with the identity e, κ be an infinite cardinal $\leqslant|G|$. A subset $A \subset G$ is called κ-thin if $|g A \cap A| \leqslant \kappa$ for every $g \in G \backslash\{e\}$. We calculate the minimal cardinal $\mu(G, \kappa)$ such that G can be partitioned in $\mu(G, \kappa) \kappa$-thin subsets. In particular, we show that the statement $\mu\left(\mathbb{R}, \aleph_{0}\right)=\aleph_{0}$ is equivalent to the Continuum Hypothesis.

Let G be an infinite group with the identity e, κ be an infinite cardinal $\leqslant|G|$. By $c f|G|$ we denote the cofinality of $|G|, \kappa^{+}$is the cardinal-successor of $\kappa,[G]^{<\kappa}=\{F \subseteq G:|F|<\kappa\}$.

We say that a subset $A \subseteq G$ is

- κ-large if there exists $F \in[G]^{<\kappa}$ such that $G=F A$;
- κ-small if $L \backslash A$ is κ-large for every κ-large subset L;
- κ-thick if, for every $F \in[G]^{<\kappa}$, there exists $a \in A$ such that $F a \subseteq A$;
- κ-thin if $|g A \cap A|<\kappa$ for every $g \in G \backslash\{e\}$.

We note that \aleph_{0}-large and \aleph_{0}-small subsets were introduced in [2] under name large and small subsets. Following [6, Chapter 9], κ-large, κ-small, κ-thick and κ-thin subsets of a group can be considered as an asymptotic counterparts of dense, nowhere dense, open and discrete subsets of a topological space.

By [4, Theorem 4.2], G can be partitioned in $\kappa \kappa$-large subsets. By [4, Theorem 4.1], G can be partitioned in \aleph_{0} subsets which are κ-small for each cardinal κ such that $\aleph_{0} \leqslant \kappa \leqslant c f|G|$. By [4, Theorem 4.3], if either $\kappa<|G|$ or $\kappa=|G|$ and κ is regular then G can be partitioned in $|G|$ κ-thick subsets.

For κ-thin subsets, its modifications, applications and references see [3]. For a subset A of G, we put $\operatorname{cov}(A)=\min \{|S|: S \subseteq G, G=S A\}$. By [5, Theorem 5], if A is κ-thin and $\kappa<|G|$ then $\operatorname{cov}(A)=|G|$, if $\kappa=|G|$ then $\operatorname{cov}(A) \geqslant c f A$. In contrast to κ-thin subsets, every subgroup A of index κ is κ-small and $\operatorname{cov}(A)=\kappa$.

Given an infinite group G and infinite cardinal $\kappa, \kappa \leqslant|G|$, we denote by $\mu(G, \kappa)$ the minimal cardinal μ such that G can be partitioned in μ κ-thin subsets.

In the following theorem we calculate exact values of $\mu(G, \kappa)$ for all G and κ with only one exception: $|G|$ is singular, $\kappa=|G|$ and $c f|G|$ is a non-limit cardinal.

Theorem. For every infinite group G and every infinite cardinal κ, $\kappa \leqslant$ $|G|$, we have

$$
\mu(G, \kappa)= \begin{cases}\gamma & \text { if }|G| \text { is non-limit cardinal and }|G|=\gamma^{+} ; \\ |G| & \text { if }|G| \text { is a limit cardinal and either } \\ & \kappa<|G| \text { or }|G| \text { is regular; } \\ c f|G| & \text { if }|G| \text { is singular, } \kappa=|G| \text { and } c f|G| \text { is } \\ & \text { a limit cardinal. }\end{cases}
$$

If $|G|$ is singular, $\kappa=|G|$ and $c f|G|$ is a non-limit cardinal, $c f|G|=\gamma^{+}$, then $\mu(G, \kappa) \in\left\{\gamma, \gamma^{+}\right\}$.

To prove this theorem we need two lemmata.
Lemma 1. For an infinite group G of cardinality κ, we have

$$
(\mu(G, \kappa))^{+} \geqslant c f \kappa
$$

Proof. On the contrary, we assume that, for some cardinal μ such that $\mu^{+}<c f \kappa$, there is a partition \mathcal{P} of G in $\mu \kappa$-thin subsets. We fix a subset A of $G,|A|=\mu^{+}$and, for each $g \in G$, pick $P_{g} \in \mathcal{P}$ such that $\left|A g \cap P_{g}\right|>1$. Then we choose distinct elements $x_{g}, y_{g} \in A$ such that $x_{g} g, y_{g} g \in P_{g}$. Since $|\mathcal{P}|=\mu,|A|=\mu^{+}$and $\mu^{+}<c f \kappa$, there exist $P \in \mathcal{P}$, distinct elements $x, y \in A$ and a subset X of G such that $|X|=\kappa$ and $x g, y g \in P$ for each $g \in X$. Then $\left|x y^{-1} P \cap P\right|=\kappa$ so P is not κ-thin and we get a contradiction.

Lemma 2. Let γ be an infinite cardinal, G be a group of cardinality γ^{+}. Then there exists a partition \mathcal{P} of G such that $|\mathcal{P}|=\gamma$ and $|g P \cap P| \leqslant 2$ for all $P \in \mathcal{P}, g \in G \backslash\{e\}$.

Proof. Since G is uncountable, we can choose a family $\left\{G_{\alpha}: \alpha<\gamma^{+}\right\}$of subgroups of G such that
(i) $G_{0}=\{e\}, G=\bigcup\left\{G_{\alpha}: \alpha<\gamma^{+}\right\}$;
(ii) $G_{\alpha} \subseteq G_{\beta}$ for all $\alpha<\beta<\gamma^{+}$;
(iii) $\bigcup\left\{G_{\alpha}: \alpha<\beta\right\}=G_{\beta}$ for every limit ordinal $\beta<\gamma^{+}$;
(iv) $\left|G_{\alpha}\right| \leqslant \gamma$ for each $\alpha<\gamma^{+}$.

Using (iv), for every $\alpha<\gamma^{+}$, we fix an injective mapping $\chi_{\alpha}: G_{\alpha+1} \backslash$ $G_{\alpha} \rightarrow \gamma$ and define a mapping $\chi: G \rightarrow \gamma$ by the rule $\chi(e)=0$ and $\chi \mid G_{\alpha+1} \backslash G_{\alpha}=\chi_{\alpha}, \alpha<\gamma^{+}$. We show that $\left\{\chi^{-1}(\lambda): \lambda<\gamma\right\}$ is the desired partition \mathcal{P}. On the contrary, suppose that there are $g \in G \backslash\{e\}$ and $\lambda<\gamma$ such that $\left|g \chi^{-1}(\lambda) \cap \chi^{-1}(\lambda)\right|>2$. Let x_{1}, x_{2}, x_{3} be distinct elements from $\chi^{-1}(\lambda)$ such that $g x_{1}, g x_{2}, g x_{3} \in \chi^{-1}(\lambda)$. We choose the ordinals $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}<\gamma^{+}$such that

$$
x_{\alpha_{i}} \in G_{\alpha_{i}+1} \backslash G_{\alpha_{i}}, g x_{i} \in G_{\beta_{i}+1} \backslash G_{\beta_{i}}, i \in\{1,2,3\} .
$$

By the definition of $\chi,\left|\chi^{-1}(\lambda) \cap\left(G_{\alpha+1} \backslash G_{\alpha}\right)\right| \leqslant 1$ for every $\alpha<\gamma^{+}$ so $\alpha_{i} \neq \beta_{i}, i \in\{1,2,3\}$. By the pigeonhole principle, there are distinct $k, l \in\{1,2,3\}$ such that either $\alpha_{k}<\beta_{k}, \alpha_{l}<\beta_{l}$ or $\alpha_{k}>\beta_{k}, \alpha_{l}>\beta_{l}$. In the first case, we have $x_{\beta_{k}} x_{\alpha_{k}}^{-1} \in G_{\beta_{k}+1} \backslash G_{\beta_{k}}, x_{\beta_{l}} x_{\alpha_{l}}^{-1} \in G_{\beta_{l}+1} \backslash G_{\beta_{l}}$ and $g=x_{\beta_{k}} x_{\alpha_{k}}^{-1}=x_{\beta_{l}} x_{\alpha_{l}}^{-1}$ which is impossible because $\left(G_{\beta_{k}+1} \backslash G_{\beta_{k}}\right) \cap$ $\left(G_{\beta_{l}+1} \backslash G_{\beta_{l}}\right)=\varnothing$. The second case is reduced to the first if we replace g to g^{-1}.

Proof of Theorem. Assume that $|G|$ is a non-limit cardinal, $|G|=\gamma^{+}$. Since $\mu(G, \kappa) \geqslant \mu(G,|G|)$, by Lemma $1, \mu(G, \kappa) \geqslant \gamma$. By Lemma 2, $\mu(G, \kappa) \leqslant \gamma$.

Assume that $|G|$ is a limit cardinal. If $|G|$ is regular, by Lemma $1, \mu(G,|G|)=|G|$ so $\mu(G, \kappa)=|G|$. If $\kappa<|G|$ and $\lambda<|G|$, we take a subgroup H of G such that $\kappa<|H|, \lambda<|H|$ and $|H|$ is a non-limit cardinal, say, $|H|=\gamma^{+}$. By above paragraph $\mu(H, \kappa)=\gamma$. Hence, $\mu(G, \kappa)=|G|$.

Assume that $|G|$ is singular and $|G|=\kappa$. Since G can be partitioned in $c f|G|$ subsets of cardinality $<\kappa$ and each subset of cardinality $<\kappa$ is κ-thin, we have $\mu(G, \kappa) \leqslant c f|G|$. If $c f|G|$ is a limit cardinal, by Lemma $1, \mu(G, \kappa) \geqslant c f|G|$ so $\mu(G, \kappa)=c f|G|$. If $c f|G|=\gamma^{+}$, by Lemma 1, $\mu(G, \kappa) \geqslant \gamma$ so $\mu(G, \kappa) \in\left\{\gamma, \gamma^{+}\right\}$.

Applying Theorem, we conclude that the statement $\mu\left(\mathbb{R}, \aleph_{0}\right)=\aleph_{0}$ is equivalent to CH. In the seminal version of this paper, I asked whether
$\mathbb{R} \backslash\{0\}$ can be partitioned in \aleph_{0} subsets linearly independent over \mathbb{Q}. By [1, Theorem 4], this statement is also equivalent to CH .

Let G be a group, X be a G-space with the action $G \times X \rightarrow X$, $(g, x) \mapsto g x$. For a cardinal $\kappa \leqslant X$, we say that a subset T of X is κ-thin if

$$
|\{x \in T: g x \neq x, g x \in T\}|<\kappa
$$

for every $g \in G$.
Problem. Calculate the minimal cardinal $\mu(G, X, \kappa)$ such that X can be partitioned in $\mu(G, X, \kappa) \kappa$-thin subsets.

References

[1] T. Banakh, I. Protasov, Partition of groups and matroids into independent subsets, Algebra Discrete Math., 10 (2010), Number 1, pp. 1-7.
[2] A. Bella, V. Malykhin, On certain subsets of groups, Questions and Answers in General Topology, 17 (1999), 183-187.
[3] Ie. Lutsenko, I. V. Protasov, Sparse, thin and other subsets of groups, International Journal of Algebra and Computation, 19 (2009), 491-510.
[4] I. V. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull., 7 (2010), 220-257.
[5] I. V. Protasov, Packings and coverings of groups: some results and open problems, Mat. Stud., 33 (2010), 115-119.
[6] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007.

Contact information

I. Protasov Department of Cybernetics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine E-Mail: i.v.protasov@gmail.com

Received by the editors: 13.03.2011
and in final form 13.03.2011.

