Partitions of groups into thin subsets

Igor Protasov

ABSTRACT. Let G be an infinite group with the identity e, κ be an infinite cardinal $\leq |G|$. A subset $A \subset G$ is called κ -thin if $|gA \cap A| \leq \kappa$ for every $g \in G \setminus \{e\}$. We calculate the minimal cardinal $\mu(G, \kappa)$ such that G can be partitioned in $\mu(G, \kappa) \kappa$ -thin subsets. In particular, we show that the statement $\mu(\mathbb{R}, \aleph_0) = \aleph_0$ is equivalent to the Continuum Hypothesis.

Let G be an infinite group with the identity e, κ be an infinite cardinal $\leq |G|$. By cf|G| we denote the cofinality of $|G|, \kappa^+$ is the cardinal-successor of κ , $[G]^{<\kappa} = \{F \subseteq G : |F| < \kappa\}.$

We say that a subset $A \subseteq G$ is

- κ -large if there exists $F \in [G]^{<\kappa}$ such that G = FA;
- κ -small if $L \setminus A$ is κ -large for every κ -large subset L;
- κ -thick if, for every $F \in [G]^{<\kappa}$, there exists $a \in A$ such that $Fa \subseteq A$;
- κ -thin if $|gA \cap A| < \kappa$ for every $g \in G \setminus \{e\}$.

We note that \aleph_0 -large and \aleph_0 -small subsets were introduced in [2] under name large and small subsets. Following [6, Chapter 9], κ -large, κ -small, κ -thick and κ -thin subsets of a group can be considered as an asymptotic counterparts of dense, nowhere dense, open and discrete subsets of a topological space.

By [4, Theorem 4.2], G can be partitioned in κ κ -large subsets. By [4, Theorem 4.1], G can be partitioned in \aleph_0 subsets which are κ -small for each cardinal κ such that $\aleph_0 \leq \kappa \leq cf |G|$. By [4, Theorem 4.3], if either $\kappa < |G|$ or $\kappa = |G|$ and κ is regular then G can be partitioned in |G| κ -thick subsets.

²⁰⁰⁰ Mathematics Subject Classification: 03E75, 20F99, 20K99. Key words and phrases: κ -thin subsets of a group, partition of a group.

For κ -thin subsets, its modifications, applications and references see [3]. For a subset A of G, we put $cov(A) = \min\{|S| : S \subseteq G, G = SA\}$. By [5, Theorem 5], if A is κ -thin and $\kappa < |G|$ then cov(A) = |G|, if $\kappa = |G|$ then $cov(A) \ge cfA$. In contrast to κ -thin subsets, every subgroup A of index κ is κ -small and $cov(A) = \kappa$.

Given an infinite group G and infinite cardinal $\kappa, \kappa \leq |G|$, we denote by $\mu(G, \kappa)$ the minimal cardinal μ such that G can be partitioned in μ κ -thin subsets.

In the following theorem we calculate exact values of $\mu(G, \kappa)$ for all G and κ with only one exception: |G| is singular, $\kappa = |G|$ and cf|G| is a non-limit cardinal.

Theorem. For every infinite group G and every infinite cardinal $\kappa, \kappa \leq |G|$, we have

$$\mu(G,\kappa) = \begin{cases} \gamma & \text{if } |G| \text{ is non-limit cardinal and } |G| = \gamma^+; \\ |G| & \text{if } |G| \text{ is a limit cardinal and either} \\ \kappa < |G| \text{ or } |G| \text{ is regular;} \\ cf|G| & \text{if } |G| \text{ is singular}, \kappa = |G| \text{ and } cf|G| \text{ is } \\ a \text{ limit cardinal.} \end{cases}$$

If |G| is singular, $\kappa = |G|$ and cf|G| is a non-limit cardinal, $cf|G| = \gamma^+$, then $\mu(G, \kappa) \in \{\gamma, \gamma^+\}$.

To prove this theorem we need two lemmata.

Lemma 1. For an infinite group G of cardinality κ , we have

$$(\mu(G,\kappa))^+ \ge cf\kappa.$$

Proof. On the contrary, we assume that, for some cardinal μ such that $\mu^+ < cf\kappa$, there is a partition \mathcal{P} of G in μ κ -thin subsets. We fix a subset A of G, $|A| = \mu^+$ and, for each $g \in G$, pick $P_g \in \mathcal{P}$ such that $|Ag \cap P_g| > 1$. Then we choose distinct elements $x_g, y_g \in A$ such that $x_gg, y_gg \in P_g$. Since $|\mathcal{P}| = \mu$, $|A| = \mu^+$ and $\mu^+ < cf\kappa$, there exist $P \in \mathcal{P}$, distinct elements $x, y \in A$ and a subset X of G such that $|X| = \kappa$ and $xg, yg \in P$ for each $g \in X$. Then $|xy^{-1}P \cap P| = \kappa$ so P is not κ -thin and we get a contradiction.

Lemma 2. Let γ be an infinite cardinal, G be a group of cardinality γ^+ . Then there exists a partition \mathcal{P} of G such that $|\mathcal{P}| = \gamma$ and $|gP \cap P| \leq 2$ for all $P \in \mathcal{P}$, $g \in G \setminus \{e\}$. *Proof.* Since G is uncountable, we can choose a family $\{G_{\alpha} : \alpha < \gamma^+\}$ of subgroups of G such that

- (i) $G_0 = \{e\}, G = \bigcup \{G_\alpha : \alpha < \gamma^+\};$
- (ii) $G_{\alpha} \subseteq G_{\beta}$ for all $\alpha < \beta < \gamma^+$;
- (iii) $\bigcup \{G_{\alpha} : \alpha < \beta\} = G_{\beta}$ for every limit ordinal $\beta < \gamma^+$;
- (iv) $|G_{\alpha}| \leq \gamma$ for each $\alpha < \gamma^+$.

Using (iv), for every $\alpha < \gamma^+$, we fix an injective mapping $\chi_{\alpha} : G_{\alpha+1} \setminus G_{\alpha} \to \gamma$ and define a mapping $\chi : G \to \gamma$ by the rule $\chi(e) = 0$ and $\chi | G_{\alpha+1} \setminus G_{\alpha} = \chi_{\alpha}, \alpha < \gamma^+$. We show that $\{\chi^{-1}(\lambda) : \lambda < \gamma\}$ is the desired partition \mathcal{P} . On the contrary, suppose that there are $g \in G \setminus \{e\}$ and $\lambda < \gamma$ such that $|g\chi^{-1}(\lambda) \cap \chi^{-1}(\lambda)| > 2$. Let x_1, x_2, x_3 be distinct elements from $\chi^{-1}(\lambda)$ such that $gx_1, gx_2, gx_3 \in \chi^{-1}(\lambda)$. We choose the ordinals $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 < \gamma^+$ such that

$$x_{\alpha_i} \in G_{\alpha_i+1} \setminus G_{\alpha_i}, \ gx_i \in G_{\beta_i+1} \setminus G_{\beta_i}, \ i \in \{1, 2, 3\}.$$

By the definition of χ , $|\chi^{-1}(\lambda) \cap (G_{\alpha+1} \setminus G_{\alpha})| \leq 1$ for every $\alpha < \gamma^+$ so $\alpha_i \neq \beta_i, i \in \{1, 2, 3\}$. By the pigeonhole principle, there are distinct $k, l \in \{1, 2, 3\}$ such that either $\alpha_k < \beta_k, \alpha_l < \beta_l$ or $\alpha_k > \beta_k, \alpha_l > \beta_l$. In the first case, we have $x_{\beta_k} x_{\alpha_k}^{-1} \in G_{\beta_k+1} \setminus G_{\beta_k}, x_{\beta_l} x_{\alpha_l}^{-1} \in G_{\beta_l+1} \setminus G_{\beta_l}$ and $g = x_{\beta_k} x_{\alpha_k}^{-1} = x_{\beta_l} x_{\alpha_l}^{-1}$ which is impossible because $(G_{\beta_k+1} \setminus G_{\beta_k}) \cap (G_{\beta_l+1} \setminus G_{\beta_l}) = \emptyset$. The second case is reduced to the first if we replace g to g^{-1} .

Proof of Theorem. Assume that |G| is a non-limit cardinal, $|G| = \gamma^+$. Since $\mu(G, \kappa) \ge \mu(G, |G|)$, by Lemma 1, $\mu(G, \kappa) \ge \gamma$. By Lemma 2, $\mu(G, \kappa) \le \gamma$.

Assume that |G| is a limit cardinal. If |G| is regular, by Lemma 1, $\mu(G, |G|) = |G|$ so $\mu(G, \kappa) = |G|$. If $\kappa < |G|$ and $\lambda < |G|$, we take a subgroup H of G such that $\kappa < |H|, \lambda < |H|$ and |H| is a non-limit cardinal, say, $|H| = \gamma^+$. By above paragraph $\mu(H, \kappa) = \gamma$. Hence, $\mu(G, \kappa) = |G|$.

Assume that |G| is singular and $|G| = \kappa$. Since G can be partitioned in cf|G| subsets of cardinality $< \kappa$ and each subset of cardinality $< \kappa$ is κ -thin, we have $\mu(G, \kappa) \leq cf|G|$. If cf|G| is a limit cardinal, by Lemma 1, $\mu(G, \kappa) \geq cf|G|$ so $\mu(G, \kappa) = cf|G|$. If $cf|G| = \gamma^+$, by Lemma 1, $\mu(G, \kappa) \geq \gamma$ so $\mu(G, \kappa) \in \{\gamma, \gamma^+\}$. \Box

Applying Theorem, we conclude that the statement $\mu(\mathbb{R}, \aleph_0) = \aleph_0$ is equivalent to CH. In the seminal version of this paper, I asked whether

 $\mathbb{R} \setminus \{0\}$ can be partitioned in \aleph_0 subsets linearly independent over \mathbb{Q} . By [1, Theorem 4], this statement is also equivalent to CH.

Let G be a group, X be a G-space with the action $G \times X \to X$, $(g, x) \mapsto gx$. For a cardinal $\kappa \leq X$, we say that a subset T of X is κ -thin if

$$|\{x \in T : gx \neq x, gx \in T\}| < \kappa$$

for every $g \in G$.

Problem. Calculate the minimal cardinal $\mu(G, X, \kappa)$ such that X can be partitioned in $\mu(G, X, \kappa)$ κ -thin subsets.

References

- T. Banakh, I. Protasov, Partition of groups and matroids into independent subsets, Algebra Discrete Math., 10 (2010), Number 1, pp. 1–7.
- [2] A. Bella, V. Malykhin, On certain subsets of groups, Questions and Answers in General Topology, 17 (1999), 183–187.
- [3] Ie. Lutsenko, I. V. Protasov, Sparse, thin and other subsets of groups, International Journal of Algebra and Computation, 19 (2009), 491–510.
- [4] I. V. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull., 7 (2010), 220–257.
- [5] I. V. Protasov, Packings and coverings of groups: some results and open problems, Mat. Stud., 33 (2010), 115–119.
- [6] I. Protasov, M. Zarichnyi, *General Asymptology*, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007.

CONTACT INFORMATION

I. Protasov Department of Cybernetics, Kyiv National University, Volodymyrska 64, 01033, Kyiv, Ukraine *E-Mail:* i.v.protasov@gmail.com

Received by the editors: 13.03.2011 and in final form 13.03.2011.